Density of primes

Question: What is the density of primes in $\mathbb{Z}_{>0}$?
More concrete example: What is the density of the even integers amongst all positive integers?
Intuitively, about half. How to calculate?
Start with finite sets:

S	$\{x \in S \mid x$ even $\}$	Density
$\{1\}$	\varnothing	$0 / 1=0$
$\{1,2\}$	$\{2\}$	$1 / 2=.5$
$\{1,2,3\}$	$\{2\}$	$1 / 3 \approx .3$
$\{1,2,3,4\}$	$\{2,4\}$	$2 / 4=.5$
$\{1, \ldots, 5\}$	$\{2,4\}$	$2 / 5=.4$
$\{1, \ldots, 6\}$	$\{2,4,6\}$	$3 / 6=.5$
$\{1, \ldots, 7\}$	$\{2,4,6\}$	$3 / 7 \approx .43$
$\{1, \ldots, n\}$	$\{2,4, \ldots, 2\lfloor n / 2\rfloor\}$	$\lfloor n / 2\rfloor / n$

Then the density is the limit as $n \rightarrow \infty$:

$$
\lim _{n \rightarrow \infty}\lfloor n / 2\rfloor / n=1 / 2 .
$$

Density of primes

Question: What is the density of primes in $\mathbb{Z}_{>0}$?
Let $\pi(n)=\#\{$ primes $p \leqslant n\}$.

n	$\pi(n)$	Density	$n / \ln n$
10	4	$4 / 10=.4$	≈ 4.3
25	9	$9 / 25=.36$	≈ 7.8
50	15	$15 / 50=.3$	≈ 12.8
100	25	$25 / 100=.25$	≈ 21.7
500	95	.19	≈ 80.5
1000	168	.168	≈ 144.8
5000	669	.134	≈ 587.0

As $n \rightarrow \infty$, we have $\pi(n) / n \rightarrow 0$.
Theorem (Prime number theorem)
As $n \rightarrow \infty$, we have $\pi(n) \rightarrow n / \ln (n)$. In other words,

$$
\lim _{n \rightarrow \infty} \frac{\pi(n)}{n / \ln (n)}
$$

(Proof in Analytic Number Theory, using complex analysis.)

Other theorems/open questions in analytic number theory Goldbach's Conjecture: Every even $n \geqslant 4$ is a sum of two primes. Proven: Every (sufficiently large) odd n is a sum of three primes.
Twin Primes Conjecture: There are infinitely many prime numbers p such that $p+2$ is also prime.
Proven: There are infinitely many prime numbers p such that $p+2$ is either prime or the product of 2 primes.
Conjecture: There are infinitely many prime numbers of the form $N^{2}+1$, with $N \in \mathbb{Z}$.
Proven: There are infinitely many (even) N such that $N^{2}+1$ is either prime or the product of two primes.
Let
$T(n)=\#\{$ primes $p \leqslant n$ such that $p+2$ is also prime $\}$, $S(x)=\#\left\{\right.$ primes $p \leqslant n$ such that $p=N^{2}+1$ for some $\left.N \in \mathbb{Z}\right\}$ Conjecture: Both

$$
\lim _{n \rightarrow \infty} \frac{T(n)}{n /\left(\ln (n)^{2}\right.} \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{S(n)}{\sqrt{n} / \ln (n)}
$$

exist and are positive.

Other theorems/open questions in analytic number theory Analytic number theory: studying number theory using advanced calculus (analysis).

