Density of primes

Question: What is the density of primes in $\mathbb{Z}_{>0}$?

More concrete example: What is the density of the even integers amongst all positive integers?

Intuitively, about half. How to calculate?

Start with finite sets:

	S	$\{x \in S \mid x \text{ even }\}$	Density
	{1}	Ø	0/1 = 0
	$\{1, 2\}$	$\{2\}$	1/2 = .5
	$\{1, 2, 3\}$	$\{2\}$	$1/3 \approx .3$
	$\{1, 2, 3, 4\}$	$\{2,4\}$	2/4 = .5
	$\{1,\ldots,5\}$	$\{2,4\}$	2/5 = .4
	$\{1,\ldots,6\}$	$\{2, 4, 6\}$	3/6 = .5
	$\{1,\ldots,7\}$	$\{2, 4, 6\}$	$3/7 \approx .43$
	$\{1,\ldots,n\}$	$\{2,4,\ldots,2\lfloor n/2\rfloor\}$	$\lfloor n/2 \rfloor/n$
- 1		11 11 I.I. I.A.	

Then the density is the limit as $n \to \infty$:

$$\lim_{n \to \infty} \lfloor n/2 \rfloor / n = 1/2$$

Density of primes

Question: What is the density of primes in $\mathbb{Z}_{>0}$? Let $\pi(n) = \#\{ \text{ primes } p \leq n \}.$

n	$\pi(n)$	Density	$n/\ln n$
10	4	4/10 = .4	≈ 4.3
25	9	9/25 = .36	≈ 7.8
50	15	15/50 = .3	≈ 12.8
100	25	25/100 = .25	≈ 21.7
500	95	.19	≈ 80.5
1000	168	.168	≈ 144.8
5000	669	.134	≈ 587.0

As $n \to \infty$, we have $\pi(n)/n \to 0$.

Theorem (Prime number theorem)

As
$$n \to \infty$$
, we have $\pi(n) \to n/\ln(n)$. In other words,
$$\lim_{n \to \infty} \frac{\pi(n)}{n/\ln(n)}.$$

(Proof in Analytic Number Theory, using complex analysis.)

Other theorems/open questions in analytic number theory

Goldbach's Conjecture: Every even $n \ge 4$ is a sum of two primes. Proven: Every (sufficiently large) odd n is a sum of three primes.

Twin Primes Conjecture: There are infinitely many prime numbers p such that p + 2 is also prime.

Proven: There are infinitely many prime numbers p such that p + 2 is either prime or the product of 2 primes.

Conjecture: There are infinitely many prime numbers of the form $N^2 + 1$, with $N \in \mathbb{Z}$.

Proven: There are infinitely many (even) N such that $N^2 + 1$ is either prime or the product of two primes.

Let

 $T(n) = \#\{ \text{ primes } p \leqslant n \text{ such that } p+2 \text{ is also prime } \},$ $S(x) = \#\{ \text{primes } p \leqslant n \text{ such that } p = N^2 + 1 \text{ for some } N \in \mathbb{Z} \}$ Conjecture: Both

$\lim \frac{T(n)}{1-r}$	and	$\lim \frac{S(n)}{}$	
$\lim_{n \to \infty} \frac{1}{n/(\ln(n)^2)}$		$\lim_{n \to \infty} \frac{1}{\sqrt{n}} / \ln(n)$)

exist and are positive.

Other theorems/open questions in analytic number theory

Analytic number theory: studying number theory using advanced calculus (analysis).