Question: What is the density of primes in $\mathbb{Z}_{>0}$?

Question: What is the density of primes in $\mathbb{Z}_{>0}$?

More concrete example: What is the density of the even integers amongst all positive integers?

Question: What is the density of primes in $\mathbb{Z}_{>0}$?

More concrete example: What is the density of the even integers amongst all positive integers?

Intuitively, about half.

Question: What is the density of primes in $\mathbb{Z}_{>0}$?

More concrete example: What is the density of the even integers amongst all positive integers?

Intuitively, about half. How to calculate?

Question: What is the density of primes in $\mathbb{Z}_{>0}$?

More concrete example: What is the density of the even integers amongst all positive integers?

Intuitively, about half. How to calculate?

Start with finite sets:

Question: What is the density of primes in $\mathbb{Z}_{>0}$?

More concrete example: What is the density of the even integers amongst all positive integers?

Intuitively, about half. How to calculate?

Start with finite sets:

IIIIILE SELS.		
S	$ \{ x \in S \mid x \text{ even } \} $	Density
{1}	Ø	0/1 = 0
$\{1, 2\}$	{2}	1/2 = .5
$\{1, 2, 3\}$	{2}	$1/3 \approx .3$
$\{1, 2, 3, 4\}$	$\{2,4\}$	2/4 = .5
$\{1,\ldots,5\}$	$\{2,4\}$	2/5 = .4
$\{1,\ldots,6\}$	$\{2, 4, 6\}$	3/6 = .5
$\{1,\ldots,7\}$	$\{2, 4, 6\}$	$3/7 \approx .43$
	!	

Question: What is the density of primes in $\mathbb{Z}_{>0}$?

More concrete example: What is the density of the even integers amongst all positive integers?

Intuitively, about half. How to calculate?

Start with finite sets:

S	$ \{ x \in S \mid x \text{ even } \} $	Density
{1}	Ø	0/1 = 0
$\{1, 2\}$	$\{2\}$	1/2 = .5
$\{1, 2, 3\}$	{2}	$1/3 \approx .3$
$\{1, 2, 3, 4\}$	$\{2,4\}$	2/4 = .5
$\{1, \ldots, 5\}$	$\{2,4\}$	2/5 = .4
$\{1,\ldots,6\}$	$\{2,4,6\}$	3/6 = .5
$\{1,\ldots,7\}$	$\{2,4,6\}$	$3/7 \approx .43$
$\frac{\{1,\ldots,r\}}{\{1,\ldots,n\}}$	$\{2, 4, 0\}$ $\{2, 4, \dots, 2\lfloor n/2 \rfloor\}$	$\frac{ 3/1 \sim .43}{ n/2 /n}$
$\{1, \dots, n\}$	$ \{2,4,\ldots,2[n/2]\} $	[16/2]/16

Question: What is the density of primes in $\mathbb{Z}_{>0}$?

More concrete example: What is the density of the even integers amongst all positive integers?

Intuitively, about half. How to calculate?

Start with finite sets:

milito sots.		
S	$ \{ x \in S \mid x \text{ even } \} $	Density
{1}	Ø	0/1 = 0
$\{1, 2\}$	{2}	1/2 = .5
$\{1, 2, 3\}$	{2}	$1/3 \approx .3$
$\{1, 2, 3, 4\}$	$\{2,4\}$	2/4 = .5
$\{1,\ldots,5\}$	$\{2,4\}$	2/5 = .4
$\{1,\ldots,6\}$	$\{2, 4, 6\}$	3/6 = .5
$\{1,\ldots,7\}$	$\{2, 4, 6\}$	$3/7 \approx .43$
$\overline{\{1,\ldots,n\}}$	$\{2,4,\ldots,2\lfloor n/2\rfloor\}$	$\lfloor n/2 \rfloor / n$

Then the density is the limit as $n \to \infty$:

$$\lim_{n \to \infty} \lfloor n/2 \rfloor / n = 1/2.$$

Question: What is the density of primes in $\mathbb{Z}_{>0}$? Let $\pi(n) = \#\{ \text{ primes } p \leq n \}.$

Question: What is the density of primes in $\mathbb{Z}_{>0}$? Let $\pi(n) = \#\{ \text{ primes } p \leq n \}$.

inites $p \leqslant n_{\mathcal{S}}$.				
n		$\pi(n)$	Density	
10)	4	4/10 = .4	
25	5	9	9/25 = .36	
50)	15	15/50 = .3	
10	0	25	25/100 = .25	
50	0	95	.19	
100	00	168	.168	
500	00	669	.134	

Question: What is the density of primes in $\mathbb{Z}_{>0}$? Let $\pi(n) = \#\{ \text{ primes } p \leq n \}$.

- I)	
n	$\pi(n)$	Density
10	4	4/10 = .4
25	9	9/25 = .36
50	15	15/50 = .3
100	25	25/100 = .25
500	95	.19
1000	168	.168
5000	669	.134

As $n \to \infty$, we have $\pi(n)/n \to 0$.

Question: What is the density of primes in $\mathbb{Z}_{>0}$?

Let $\pi(n) = \#\{ \text{ primes } p \leq n \}.$

1	, - ,	
n	$\pi(n)$	Density
10	4	4/10 = .4
25	9	9/25 = .36
50	15	15/50 = .3
100	25	25/100 = .25
500	95	.19
1000	168	.168
5000	669	.134

As $n \to \infty$, we have $\pi(n)/n \to 0$.

Theorem (Prime number theorem)

As $n \to \infty$, we have $\pi(n) \to n/\ln(n)$. In other words,

$$\lim_{n\to\infty}\frac{\pi(n)}{n/\ln(n)}.$$

Question: What is the density of primes in $\mathbb{Z}_{>0}$?

Let $\pi(n) = \#\{ \text{ primes } p \leqslant n \}.$

•	('	1	,	
	n	$\pi(n)$	Density	$n/\ln n$
	10	4	4/10 = .4	≈ 4.3
	25	9	9/25 = .36	≈ 7.8
	50	15	15/50 = .3	≈ 12.8
	100	25	25/100 = .25	≈ 21.7
	500	95	.19	≈ 80.5
	1000	168	.168	≈ 144.8
	5000	669	.134	≈ 587.0

As $n \to \infty$, we have $\pi(n)/n \to 0$.

Theorem (Prime number theorem)

As $n \to \infty$, we have $\pi(n) \to n/\ln(n)$. In other words,

$$\lim_{n\to\infty}\frac{\pi(n)}{n/\ln(n)}.$$

Question: What is the density of primes in $\mathbb{Z}_{>0}$?

Let $\pi(n) = \#\{ \text{ primes } p \leqslant n \}.$

,	('	1 '	,	
	n	$\pi(n)$	Density	$n/\ln n$
	10	4	4/10 = .4	≈ 4.3
	25	9	9/25 = .36	≈ 7.8
	50	15	15/50 = .3	≈ 12.8
	100	25	25/100 = .25	≈ 21.7
	500	95	.19	≈ 80.5
	1000	168	.168	≈ 144.8
	5000	669	.134	≈ 587.0

As $n \to \infty$, we have $\pi(n)/n \to 0$.

Theorem (Prime number theorem)

As $n \to \infty$, we have $\pi(n) \to n/\ln(n)$. In other words,

$$\lim_{n\to\infty}\frac{\pi(n)}{n/\ln(n)}.$$

(Proof in Analytic Number Theory, using complex analysis.)

Analytic number theory: studying number theory using advanced calculus (analysis).

Analytic number theory: studying number theory using advanced calculus (analysis).

Goldbach's Conjecture: Every even $n \ge 4$ is a sum of two primes.

Analytic number theory: studying number theory using advanced calculus (analysis).

Goldbach's Conjecture: Every even $n \ge 4$ is a sum of two primes. Proven: Every (sufficiently large) odd n is a sum of three primes.

Analytic number theory: studying number theory using advanced calculus (analysis).

Goldbach's Conjecture: Every even $n \ge 4$ is a sum of two primes. Proven: Every (sufficiently large) odd n is a sum of three primes.

Twin Primes Conjecture: There are infinitely many prime numbers p such that p+2 is also prime.

Analytic number theory: studying number theory using advanced calculus (analysis).

Goldbach's Conjecture: Every even $n \ge 4$ is a sum of two primes. Proven: Every (sufficiently large) odd n is a sum of three primes.

Twin Primes Conjecture: There are infinitely many prime numbers p such that p+2 is also prime.

Proven: There are infinitely many prime numbers p such that p+2 is either prime or the product of 2 primes.

Analytic number theory: studying number theory using advanced calculus (analysis).

Goldbach's Conjecture: Every even $n \ge 4$ is a sum of two primes. Proven: Every (sufficiently large) odd n is a sum of three primes.

Twin Primes Conjecture: There are infinitely many prime numbers p such that p+2 is also prime.

Proven: There are infinitely many prime numbers p such that p+2 is either prime or the product of 2 primes.

Conjecture: There are infinitely many prime numbers of the form N^2+1 , with $N\in\mathbb{Z}$.

Analytic number theory: studying number theory using advanced calculus (analysis).

Goldbach's Conjecture: Every even $n \geqslant 4$ is a sum of two primes.

Proven: Every (sufficiently large) odd n is a sum of three primes.

Twin Primes Conjecture: There are infinitely many prime numbers p such that p+2 is also prime.

Proven: There are infinitely many prime numbers p such that p+2 is either prime or the product of 2 primes.

Conjecture: There are infinitely many prime numbers of the form $N^2 + 1$, with $N \in \mathbb{Z}$.

Proven: There are infinitely many (even) N such that N^2+1 is either prime or the product of two primes.

Analytic number theory: studying number theory using advanced calculus (analysis).

Goldbach's Conjecture: Every even $n \ge 4$ is a sum of two primes.

Proven: Every (sufficiently large) odd n is a sum of three primes.

Twin Primes Conjecture: There are infinitely many prime numbers p such that p+2 is also prime.

Proven: There are infinitely many prime numbers p such that p+2 is either prime or the product of 2 primes.

Conjecture: There are infinitely many prime numbers of the form N^2+1 , with $N\in\mathbb{Z}$.

Proven: There are infinitely many (even) N such that N^2+1 is either prime or the product of two primes.

Let

 $T(n)=\#\{ \text{ primes } p\leqslant n \text{ such that } p+2 \text{ is also prime } \},$ $S(x)=\#\{ \text{primes } p\leqslant n \text{ such that } p=N^2+1 \text{ for some } N\in \mathbb{Z} \}$

Goldbach's Conjecture: Every even $n\geqslant 4$ is a sum of two primes.

Proven: Every (sufficiently large) odd n is a sum of three primes.

Twin Primes Conjecture: There are infinitely many prime numbers p such that p+2 is also prime.

Proven: There are infinitely many prime numbers p such that p+2 is either prime or the product of 2 primes.

Conjecture: There are infinitely many prime numbers of the form N^2+1 , with $N\in\mathbb{Z}$.

Proven: There are infinitely many (even) N such that N^2+1 is either prime or the product of two primes.

Let

$$T(n)=\#\{ \text{ primes } p\leqslant n \text{ such that } p+2 \text{ is also prime } \}, \\ S(x)=\#\{ \text{primes } p\leqslant n \text{ such that } p=N^2+1 \text{ for some } N\in \mathbb{Z} \}$$

Conjecture: Both

$$\lim_{n \to \infty} \frac{T(n)}{n/(\ln(n)^2} \quad \text{ and } \quad \lim_{n \to \infty} \frac{S(n)}{\sqrt{n}/\ln(n)}$$

exist and are positive.