Primes

A prime number is an integer $p \geqslant 2$ whose only (integer) divisors are 1 and p.

Fundamental theorem of arithmetic: Every integer n can be expressed uniquely as

$$
n=p_{1}^{r_{1}} \cdots p_{\ell}^{r_{\ell}}, \quad \text { with } p_{1}<\cdots<p_{\ell} \text { prime, } r_{i} \in \mathbb{Z}_{>0} .
$$

Big idea: primes are the building blocks of the integers.
Question: How many prime numbers are there?
Let $p_{1}, p_{2}, \ldots, p_{\ell}$ be the first ℓ primes, and consider

$$
N=p_{1} p_{2} \cdots p_{\ell}+1
$$

N is congruent to 1 modulo p_{i} for $i=1, \ldots, \ell$, and is therefore not a multiple of any of these.

Theorem
There are infinitely many primes.

Arithmetic progressions

Question: How many primes are there congruent to $0(\bmod 4)$?

Answer: None. (If $4 \mid a$, then a is not prime.)

* Question: How many primes are there congruent to $1(\bmod 4)$?

Question: How many primes are there congruent to $2(\bmod 4)$?

Answer: One. (If $4 \mid a-2$, then a is even.)

* Question: How many primes are there congruent to $3(\bmod 4)$?

Arithmetic progressions

Fact: There are no primes congruent to $0(\bmod 4)$, and there is exactly 1 prime congruent to $2(\bmod 4)$.

Hypothesis: There are infinitely many primes that are congruent to 1 $(\bmod 4)$, and there are infinitely many primes that are congruent to $3(\bmod 4)$.

Recall, an arithmetic progression (or arithmetic sequence) is a sequence of numbers that differ by a constant value n; i.e. a list of all positive integers congruent to some $r(\bmod n)$, given in increasing order. For example,
$1,5,9,13, \ldots$ is arithmetic $, 1,2,4,8, \ldots$ is not.
So
"How many primes are there congruent to $r(\bmod n)$?"
is the same as
"How many primes lie in the arithmetic progressions $r+k n$?"
This is different from finding finite arithmetic sequences of primes.
Example: 3, 7, 11 is an arithmetic progression of length 3.
Example: 5, 17, 29, 41, 53 is an arithmetic progression of length 5.

Arithmetic progressions

Fact: There are no primes congruent to $0(\bmod 4)$, and there is exactly 1 prime congruent to $2(\bmod 4)$.
Hypothesis: There are infinitely many primes that are congruent to $1(\bmod 4)$, and there are infinitely many primes that are congruent to $3(\bmod 4)$.

Theorem (Dirichlet's Thm. on Primes in Arith. Progressions)
Let a and m be integers with $\operatorname{gcd}(a, m)=1$. Then there are infinitely many primes that are congruent to $a(\bmod m)$.
Note: This is challenging to prove, and we won't prove this in general. Instead. . .

Arithmetic progressions

Proposition
There are infinitely many primes that are congruent to $3(\bmod 4)$.
Proof.
Let $\left\{3, p_{1}, \ldots, p_{\ell}\right\}$ be the first $\ell+1$ primes that are congruent to 3 $(\bmod 4)$. Consider

$$
N=4 p_{1} \cdots p_{\ell}+3 .
$$

Now factor N into primes:

$$
N=q_{1} q_{2} \cdots q_{r}, \quad \text { where } q_{1} \leqslant \cdots \leqslant q_{r} \text { are prime. }
$$

Claim 1: $\left\{3, p_{1}, \ldots, p_{\ell}\right\}$ is disjoint from $\left\{q_{1}, q_{2}, \ldots, q_{r}\right\}$.
Claim 2: at least one of $q_{1}, q_{2}, \ldots q_{r}$ is be congruent to $3(\bmod 4)$. So any finite list of primes congruent to $3(\bmod 4)$ is missing at least one such prime.

Why doesn't this proof work for showing that there are infinitely many primes that are congruent to $3(\bmod 4)$?

