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Primes

A prime number is an integer p > 2 whose only (integer) divisors
are 1 and p.

Fundamental theorem of arithmetic: Every integer n can be
expressed uniquely as

n=pi'---pf, with py <--- <pgprime, r; € Zsy.

Big idea: primes are the building blocks of the integers.
Question: How many prime numbers are there?
Let p1,po,...,ps be the first £ primes, and consider

N =pip2---pe + 1.
N is congruent to 1 modulo p; for ¢ = 1,...,¢, and is therefore
not a multiple of any of these.

Theorem
There are infinitely many primes.
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Arithmetic progressions

Proposition
There are infinitely many primes that are congruent to 3 (mod 4).

Proof.
Let {3,p1,...,pe} be the first £ + 1 primes that are congruent to 3
(mod 4). Consider
N =4p;---pe+ 3.

Now factor NV into primes:

N =qq- - q, where ¢1 < -+ < ¢, are prime.
Claim 1: {3,p1,...,pe} is disjoint from {q1,q2,...,qr}.
Claim 2: at least one of q1, ¢, ... g, is be congruent to 3 (mod 4).
So any finite list of primes congruent to 3 (mod 4) is missing at

least one such prime. O

Why doesn'’t this proof work for showing that there are infinitely
many primes that are congruent to 3 (mod 4)?






