A prime number is an integer $p\geqslant 2$ whose only (integer) divisors are 1 and p.

A prime number is an integer $p\geqslant 2$ whose only (integer) divisors are 1 and p.

Fundamental theorem of arithmetic: Every integer n can be expressed uniquely as

$$n = p_1^{r_1} \cdots p_\ell^{r_\ell}$$
, with $p_1 < \cdots < p_\ell$ prime, $r_i \in \mathbb{Z}_{>0}$.

A prime number is an integer $p\geqslant 2$ whose only (integer) divisors are 1 and p.

Fundamental theorem of arithmetic: Every integer n can be expressed uniquely as

$$n = p_1^{r_1} \cdots p_\ell^{r_\ell}, \quad \text{with } p_1 < \cdots < p_\ell \text{ prime, } r_i \in \mathbb{Z}_{>0}.$$

Big idea: primes are the building blocks of the integers.

A prime number is an integer $p\geqslant 2$ whose only (integer) divisors are 1 and p.

Fundamental theorem of arithmetic: Every integer n can be expressed uniquely as

$$n = p_1^{r_1} \cdots p_\ell^{r_\ell}, \quad \text{with } p_1 < \cdots < p_\ell \text{ prime, } r_i \in \mathbb{Z}_{>0}.$$

Big idea: primes are the building blocks of the integers.

Question: How many prime numbers are there?

A prime number is an integer $p\geqslant 2$ whose only (integer) divisors are 1 and p.

Fundamental theorem of arithmetic: Every integer n can be expressed uniquely as

$$n = p_1^{r_1} \cdots p_\ell^{r_\ell}, \quad \text{with } p_1 < \cdots < p_\ell \text{ prime, } r_i \in \mathbb{Z}_{>0}.$$

Big idea: primes are the building blocks of the integers.

Question: How many prime numbers are there? Let p_1, p_2, \ldots, p_ℓ be the first ℓ primes, and consider

$$N=p_1p_2\cdots p_\ell+1.$$

A prime number is an integer $p\geqslant 2$ whose only (integer) divisors are 1 and p.

Fundamental theorem of arithmetic: Every integer n can be expressed uniquely as

$$n = p_1^{r_1} \cdots p_\ell^{r_\ell}, \quad \text{with } p_1 < \cdots < p_\ell \text{ prime, } r_i \in \mathbb{Z}_{>0}.$$

Big idea: primes are the building blocks of the integers.

Question: How many prime numbers are there? Let p_1, p_2, \ldots, p_ℓ be the first ℓ primes, and consider

$$N=p_1p_2\cdots p_\ell+1.$$

N is congruent to 1 modulo p_i for $i=1,\ldots,\ell$, and is therefore not a multiple of any of these.

A prime number is an integer $p\geqslant 2$ whose only (integer) divisors are 1 and p.

Fundamental theorem of arithmetic: Every integer n can be expressed uniquely as

$$n = p_1^{r_1} \cdots p_\ell^{r_\ell}, \quad \text{with } p_1 < \cdots < p_\ell \text{ prime, } r_i \in \mathbb{Z}_{>0}.$$

Big idea: primes are the building blocks of the integers.

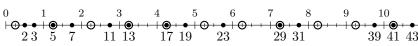
Question: How many prime numbers are there? Let p_1, p_2, \ldots, p_ℓ be the first ℓ primes, and consider

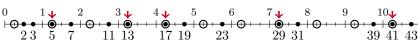
$$N=p_1p_2\cdots p_\ell+1.$$

N is congruent to 1 modulo p_i for $i=1,\ldots,\ell$, and is therefore not a multiple of any of these.

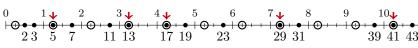
Theorem

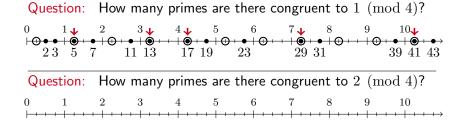
There are infinitely many primes.

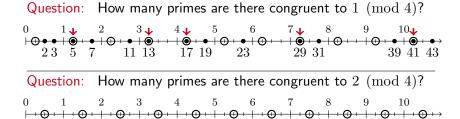




Question: How many primes are there congruent to $1 \pmod{4}$?





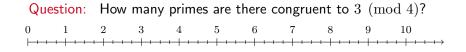


Question: How many primes are there congruent to $1 \pmod{4}$?



Question: How many primes are there congruent to $1 \pmod{4}$?

Question: How many primes are there congruent to $2 \pmod{4}$?



Question: How many primes are there congruent to $3 \pmod{4}$? 5

23

Question: How many primes are there congruent to $0 \pmod{4}$?

Question: How many primes are there congruent to $1 \pmod{4}$?

Question: How many primes are there congruent to $2 \pmod{4}$?

Question: How many primes are there congruent to $0 \pmod{4}$?

Question: How many primes are there congruent to $1 \pmod{4}$?

Question: How many primes are there congruent to $2 \pmod{4}$?

Question: How many primes are there congruent to $0 \pmod{4}$?

Question: How many primes are there congruent to $1 \pmod{4}$?

Question: How many primes are there congruent to $2 \pmod{4}$?

Question: How many primes are there congruent to $0 \pmod{4}$?

Answer: None. (If 4|a, then a is not prime.)

Question: How many primes are there congruent to $1 \pmod{4}$?

Question: How many primes are there congruent to $2 \pmod{4}$?

Question: How many primes are there congruent to $0 \pmod{4}$?

Answer: None. (If 4|a, then a is not prime.)

Question: How many primes are there congruent to $1 \pmod{4}$?

Question: How many primes are there congruent to $2 \pmod{4}$?

Answer: One. (If 4|a-2, then a is even.)

Question: How many primes are there congruent to $0 \pmod{4}$?

Answer: None. (If 4|a, then a is not prime.)

* Question: How many primes are there congruent to $1 \pmod{4}$?

Question: How many primes are there congruent to $2 \pmod{4}$?

Answer: One. (If 4|a-2, then a is even.)

Fact: There are no primes congruent to $0 \pmod{4}$, and there is exactly 1 prime congruent to $2 \pmod{4}$.

Hypothesis: There are infinitely many primes that are congruent to $1 \pmod{4}$, and there are infinitely many primes that are congruent to $3 \pmod{4}$.

Fact: There are no primes congruent to $0 \pmod{4}$, and there is exactly 1 prime congruent to $2 \pmod{4}$.

Hypothesis: There are infinitely many primes that are congruent to $1 \pmod{4}$, and there are infinitely many primes that are congruent to $3 \pmod{4}$.

Recall, an arithmetic progression (or arithmetic sequence) is a sequence of numbers that differ by a constant value n

Fact: There are no primes congruent to $0 \pmod{4}$, and there is exactly 1 prime congruent to $2 \pmod{4}$.

Hypothesis: There are infinitely many primes that are congruent to $1 \pmod{4}$, and there are infinitely many primes that are congruent to $3 \pmod{4}$.

Recall, an arithmetic progression (or arithmetic sequence) is a sequence of numbers that differ by a constant value n; i.e. a list of all positive integers congruent to some $r \pmod n$, given in increasing order.

Fact: There are no primes congruent to $0 \pmod{4}$, and there is exactly 1 prime congruent to $2 \pmod{4}$.

Hypothesis: There are infinitely many primes that are congruent to $1 \pmod{4}$, and there are infinitely many primes that are congruent to $3 \pmod{4}$.

Recall, an arithmetic progression (or arithmetic sequence) is a sequence of numbers that differ by a constant value n; i.e. a list of all positive integers congruent to some $r \pmod n$, given in increasing order. For example,

 $1, 5, 9, 13, \ldots$ is arithmetic, $1, 2, 4, 8, \ldots$ is not.

Fact: There are no primes congruent to $0 \pmod{4}$, and there is exactly 1 prime congruent to $2 \pmod{4}$.

Hypothesis: There are infinitely many primes that are congruent to $1 \pmod 4$, and there are infinitely many primes that are congruent to $3 \pmod 4$.

Recall, an arithmetic progression (or arithmetic sequence) is a sequence of numbers that differ by a constant value n; i.e. a list of all positive integers congruent to some $r \pmod n$, given in increasing order. For example,

 $1, 5, 9, 13, \ldots$ is arithmetic, $1, 2, 4, 8, \ldots$ is not.

So

"How many primes are there congruent to $r \pmod n$?" is the same as

"How many primes lie in the arithmetic progressions r + kn?"

Fact: There are no primes congruent to $0 \pmod 4$, and there is exactly 1 prime congruent to $2 \pmod 4$.

Hypothesis: There are infinitely many primes that are congruent to $1 \pmod 4$, and there are infinitely many primes that are congruent to $3 \pmod 4$.

Recall, an arithmetic progression (or arithmetic sequence) is a sequence of numbers that differ by a constant value n; i.e. a list of all positive integers congruent to some $r \pmod n$, given in increasing order. For example,

 $1, 5, 9, 13, \ldots$ is arithmetic, $1, 2, 4, 8, \ldots$ is not.

So

"How many primes are there congruent to $r \pmod n$?" is the same as

"How many primes lie in the arithmetic progressions r + kn?" This is different from finding finite arithmetic sequences of primes.

Fact: There are no primes congruent to $0 \pmod 4$, and there is exactly 1 prime congruent to $2 \pmod 4$.

Hypothesis: There are infinitely many primes that are congruent to $1 \pmod 4$, and there are infinitely many primes that are congruent to $3 \pmod 4$.

Recall, an arithmetic progression (or arithmetic sequence) is a sequence of numbers that differ by a constant value n; i.e. a list of all positive integers congruent to some $r \pmod n$, given in increasing order. For example,

 $1, 5, 9, 13, \ldots$ is arithmetic, $1, 2, 4, 8, \ldots$ is not.

So

"How many primes are there congruent to $r \pmod n$?" is the same as

"How many primes lie in the arithmetic progressions r + kn?" This is *different* from finding finite arithmetic sequences of primes. Example: 3, 7, 11 is an arithmetic progression of length 3.

Fact: There are no primes congruent to $0 \pmod 4$, and there is exactly 1 prime congruent to $2 \pmod 4$.

Hypothesis: There are infinitely many primes that are congruent to $1 \pmod 4$, and there are infinitely many primes that are congruent to $3 \pmod 4$.

Recall, an arithmetic progression (or arithmetic sequence) is a sequence of numbers that differ by a constant value n; i.e. a list of all positive integers congruent to some $r \pmod n$, given in increasing order. For example,

 $1, 5, 9, 13, \ldots$ is arithmetic, $1, 2, 4, 8, \ldots$ is not.

So

"How many primes are there congruent to $r \pmod n$?" is the same as

"How many primes lie in the arithmetic progressions r + kn?" This is different from finding finite arithmetic sequences of primes.

Example: 3, 7, 11 is an arithmetic progression of length 3.

Example: 5, 17, 29, 41, 53 is an arithmetic progression of length 5.

Fact: There are no primes congruent to $0 \pmod{4}$, and there is exactly 1 prime congruent to $2 \pmod{4}$.

Hypothesis: There are infinitely many primes that are congruent to $1 \pmod 4$, and there are infinitely many primes that are congruent to $3 \pmod 4$.

Theorem (Dirichlet's Thm. on Primes in Arith. Progressions) Let a and m be integers with gcd(a, m) = 1. Then there are infinitely many primes that are congruent to $a \pmod{m}$.

Fact: There are no primes congruent to $0 \pmod{4}$, and there is exactly 1 prime congruent to $2 \pmod{4}$.

Hypothesis: There are infinitely many primes that are congruent to $1 \pmod 4$, and there are infinitely many primes that are congruent to $3 \pmod 4$.

Theorem (Dirichlet's Thm. on Primes in Arith. Progressions)

Let a and m be integers with gcd(a, m) = 1. Then there are infinitely many primes that are congruent to $a \pmod m$.

Note: This is challenging to prove, and we won't prove this in general.

Fact: There are no primes congruent to $0 \pmod{4}$, and there is exactly 1 prime congruent to $2 \pmod{4}$.

Hypothesis: There are infinitely many primes that are congruent to $1 \pmod{4}$, and there are infinitely many primes that are congruent to $3 \pmod{4}$.

Theorem (Dirichlet's Thm. on Primes in Arith. Progressions)

Let a and m be integers with gcd(a, m) = 1. Then there are infinitely many primes that are congruent to $a \pmod{m}$.

Note: This is challenging to prove, and we won't prove this in general. Instead...

Fact: There are no primes congruent to $0 \pmod{4}$, and there is exactly 1 prime congruent to $2 \pmod{4}$.

Hypothesis: There are infinitely many primes that are congruent to $1 \pmod{4}$, and there are infinitely many primes that are congruent to $3 \pmod{4}$.

Theorem (Dirichlet's Thm. on Primes in Arith. Progressions)

Let a and m be integers with gcd(a, m) = 1. Then there are infinitely many primes that are congruent to $a \pmod{m}$.

Note: This is challenging to prove, and we won't prove this in general. Instead. . .

Proposition

There are infinitely many primes that are congruent to $3 \pmod{4}$.

Theorem (Dirichlet's Thm. on Primes in Arith. Progressions)

Let a and m be integers with gcd(a, m) = 1. Then there are infinitely many primes that are congruent to $a \pmod{m}$.

Note: This is challenging to prove, and we won't prove this in general. Instead. . .

Proposition

There are infinitely many primes that are congruent to $3 \pmod{4}$.

Proof.

Let $\{3, p_1, \dots, p_\ell\}$ be the first $\ell + 1$ primes that are congruent to $3 \pmod 4$.

Theorem (Dirichlet's Thm. on Primes in Arith. Progressions)

Let a and m be integers with gcd(a, m) = 1. Then there are infinitely many primes that are congruent to $a \pmod{m}$.

Note: This is challenging to prove, and we won't prove this in general. Instead. . .

Proposition

There are infinitely many primes that are congruent to $3 \pmod{4}$.

Proof.

Let $\{3,p_1,\ldots,p_\ell\}$ be the first $\ell+1$ primes that are congruent to $3\pmod 4$. Consider

$$N=4p_1\cdots p_\ell+3.$$

Proposition

There are infinitely many primes that are congruent to $3 \pmod{4}$.

Proof.

Let $\{3, p_1, \dots, p_\ell\}$ be the first $\ell + 1$ primes that are congruent to $3 \pmod 4$. Consider

$$N=4p_1\cdots p_\ell+3.$$

Now factor N into primes:

$$N = q_1 q_2 \cdots q_r$$
, where $q_1 \leqslant \cdots \leqslant q_r$ are prime.

Proposition

There are infinitely many primes that are congruent to $3 \pmod{4}$.

Proof.

Let $\{3, p_1, \dots, p_\ell\}$ be the first $\ell + 1$ primes that are congruent to $3 \pmod 4$. Consider

$$N = 4p_1 \cdots p_{\ell} + 3.$$

Now factor N into primes:

$$N = q_1 q_2 \cdots q_r$$
, where $q_1 \leqslant \cdots \leqslant q_r$ are prime.

Claim 1: $\{3, p_1, \ldots, p_\ell\}$ is disjoint from $\{q_1, q_2, \ldots, q_r\}$.

Proposition

There are infinitely many primes that are congruent to $3 \pmod{4}$.

Proof.

Let $\{3, p_1, \dots, p_\ell\}$ be the first $\ell + 1$ primes that are congruent to $3 \pmod 4$. Consider

$$N=4p_1\cdots p_\ell+3.$$

Now factor N into primes:

$$N = q_1 q_2 \cdots q_r$$
, where $q_1 \leqslant \cdots \leqslant q_r$ are prime.

Claim 1: $\{3, p_1, \ldots, p_\ell\}$ is disjoint from $\{q_1, q_2, \ldots, q_r\}$.

Claim 2: at least one of $q_1, q_2, \ldots q_r$ is be congruent to $3 \pmod{4}$.

Proposition

There are infinitely many primes that are congruent to $3 \pmod{4}$.

Proof.

Let $\{3, p_1, \dots, p_\ell\}$ be the first $\ell + 1$ primes that are congruent to $3 \pmod 4$. Consider

$$N=4p_1\cdots p_\ell+3.$$

Now factor N into primes:

$$N = q_1 q_2 \cdots q_r$$
, where $q_1 \leqslant \cdots \leqslant q_r$ are prime.

Claim 1: $\{3, p_1, \ldots, p_\ell\}$ is disjoint from $\{q_1, q_2, \ldots, q_r\}$.

Claim 2: at least one of $q_1, q_2, \ldots q_r$ is be congruent to $3 \pmod{4}$.

So any finite list of primes congruent to $3 \pmod 4$ is missing at least one such prime.

Proposition

There are infinitely many primes that are congruent to $3 \pmod{4}$.

Proof.

Let $\{3, p_1, \dots, p_\ell\}$ be the first $\ell + 1$ primes that are congruent to $3 \pmod 4$. Consider

$$N = 4p_1 \cdots p_\ell + 3$$
.

Now factor N into primes:

$$N = q_1 q_2 \cdots q_r$$
, where $q_1 \leqslant \cdots \leqslant q_r$ are prime.

Claim 1: $\{3, p_1, \ldots, p_\ell\}$ is disjoint from $\{q_1, q_2, \ldots, q_r\}$.

Claim 2: at least one of $q_1, q_2, \ldots q_r$ is be congruent to $3 \pmod{4}$.

So any finite list of primes congruent to $3 \pmod{4}$ is missing at least one such prime.

Why doesn't this proof work for showing that there are infinitely many primes that are congruent to $3 \pmod{4}$?