Last time

Let

$$
\Phi(n)=\{\text { integers } 1 \leqslant x \leqslant n-1 \text { relatively prime to } n\}
$$

and define $\phi(n)=|\Phi(n)|$. This is called Euler's phi function.
Example: Since $\Phi(8)=\{1,3,5,7\}$, we have

$$
\phi(8)=4=2^{2}(2-1) \checkmark .
$$

Example: For any prime $p, \phi\left(p^{k}\right)=p^{k}-p^{k-1}=p^{k-1}(p-1)$.

Theorem (Euler's formula)
For $n>0$ and $a \in \mathbb{Z}$, either
$\operatorname{gcd}(a, n)>1, \quad$ so that $a^{i} \equiv 1(\bmod p)$ has no solutions,
or

$$
\operatorname{gcd}(a, n)=1 \quad \text { and } \quad a^{\phi(n)} \equiv 1(\bmod n) .
$$

Today: $\phi(m n)=\phi(m) \phi(n)$ whenever $\operatorname{gcd}(m, n)=1$.

Bijective proofs

Let $\Phi(n)=\{$ integers $1 \leqslant x \leqslant n-1$ relatively prime to $n\}$, and define $\phi(n)=|\Phi(n)|$.

Claim: $\quad \phi(m n)=\phi(m) \phi(n)$ whenever $\operatorname{gcd}(m, n)=1$.
Note

$$
\phi(m n)=|\Phi(m n)|, \quad \phi(m)=|\Phi(m)|, \quad \text { and } \quad \phi(n)=|\Phi(n)|,
$$

and so

$$
\phi(m) \phi(n)=|\Phi(m) \times \Phi(n)|,
$$

where $\Phi(m) \times \Phi(n)=\{(a, b) \mid a \in \Phi(m), b \in \Phi(n)\}$.
Example:

$$
\Phi(4)=\{1,3\}, \quad \Phi(5)=\{1,2,3,4\}
$$

$$
\Phi(4) \times \Phi(5)=\{(1,1),(1,2),(1,3),(1,4),(3,1),(3,2),(3,3),(3,4)\}
$$

$$
\Phi(20)=\{1,3,7,9,11,13,17,19\}
$$

Goal: Show $|\Phi(m n)|=|\Phi(m) \times \Phi(n)|$ by giving a bijection

$$
\Phi(m n) \rightarrow \Phi(m) \times \Phi(n) .
$$

Theorem (Chinese Remainder Theorem)
Let m and n be integers satisfying $\operatorname{gcd}(m, n)=1$, and let b and c be any integers. Then the simultaneous congruences

$$
x \equiv b \quad(\bmod m) \quad \text { and } \quad x \equiv c \quad(\bmod n)
$$

have exactly one solution with $0 \leqslant x<m n$.
Q. How do you usually solve systems of linear equations?

One way: solve one equation for one variable, plug another
equation, and simplify.
Example: Find an $0 \leqslant x<4 \cdot 5$ that satisfies both

$$
x \equiv 1(\bmod 4) \quad \text { and } \quad x \equiv 3(\bmod 5) .
$$

Solution. Rewrite $x \equiv 1(\bmod 4)$ as $x=1+4 y$, and plug in:

$$
3 \equiv_{5} x=1+4 y, \quad \text { so } \quad 4 y \equiv 2(\bmod 5) .
$$

We know $4^{4} \equiv 1(\bmod 5)$, so the inverse of $4 \bmod 5$ is 4^{3}. Thus

$$
y \equiv_{5} 4^{3}(4 y) \equiv_{5} 4^{3} \cdot 2=128 \equiv_{5} 3 .
$$

So $x=1+4 \cdot 3=13$.

Theorem (Chinese Remainder Theorem)

Let m and n be integers satisfying $\operatorname{gcd}(m, n)=1$, and let b and c be any integers. Then the simultaneous congruences

$$
x \equiv b \quad(\bmod m) \quad \text { and } \quad x \equiv c \quad(\bmod n)
$$

have exactly one solution with $0 \leqslant x<m n$.
Proof.
Rewrite $x \equiv b(\bmod m)$ as $x=b+y m$, and plug in:

$$
c \equiv_{n} x \equiv_{n} b+y m . \quad \text { So } \quad y m \equiv(c-b)(\bmod n) .
$$

Since $\operatorname{gcd}(m, n)=1$, we can solve $y m \equiv(c-b)(\bmod n)$ uniquely with some $0 \leqslant y<n$. So we can solve uniquely for x. This gives us exactly one solution $b \leqslant x<b+m n$.

Since $m n$ is an integer multiple of both m and n, reducing our solution modulo $m n$ will fix x 's value both $\bmod m$ and $\bmod n$.

Back to the ϕ function

Corollary
If $\operatorname{gcd}(m, n)=1$, then $\phi(m n)=\phi(m) \phi(n)$.
Proof.
Define

$$
f: \Phi(m n) \rightarrow \Phi(m) \times \Phi(n) \quad \text { defined by } \quad a \mapsto(b, c)
$$

where $0 \leqslant b<m$ and $0 \leqslant c<n$ satisfy

$$
\begin{equation*}
b \equiv a(\bmod m) \text { and } c \equiv a(\bmod n), \text { so that } f(a)=(b, c) . \tag{*}
\end{equation*}
$$

Well-defined: If $\operatorname{gcd}(a, m n)=1$, then so $\operatorname{gcd}(a, m)=1$ and $\operatorname{gcd}(a, n)=1$. And if $a=q m+r$ with $0 \leqslant r<m$, then $1=\operatorname{gcd}(a, m)=\operatorname{gcd}(r, m)$ (and similarly for n).
Bijective: By the Chinese Remainder Theorem, there one and only one solution to the equations in (*) between 1 and $m n$. So f^{-1} is well defined.

Theorem

Let $\phi(n)$ be the number of integers relatively prime to n (up to equivalence). Then $\phi(n)$ can be calculated by

1. if p is prime, then $\phi\left(p^{k}\right)=p^{k}-p^{k-1}=p^{k-1}(p-1)$; and
2. if $\operatorname{gcd}(m, n)=1$, then $\phi(m n)=\phi(m) \phi(n)$.

Example: Compute $\phi(7000)$.
First

$$
7000=7 \cdot(10)^{3}=2^{3} 5^{3} 7
$$

So

$$
\phi(7000)=\phi\left(2^{3}\right) \phi\left(5^{3}\right) \phi(7)=\left(2^{3}-2^{2}\right)\left(5^{3}-5^{2}\right)(7-1) .
$$

In general:

1. Factor n into prime powers,
2. compute $\phi\left(p^{k}\right)$ for each maximal p power dividing n, and
3. multiply there together.

Example: Find some x satisfying $x^{12002} \equiv 9(\bmod 7000)$.
First question: Is x relatively prime to 7000 ?
Consider what it means that $x^{12002} \equiv 9(\bmod 7000)$:
This is equivalent to

$$
x^{12002}-9=7000 k \quad \text { for some } k \in \mathbb{Z}, \quad \text { i.e. } 9=x^{12002}-7000 k .
$$

So since 9 is an integer combination of x and 7000 , we must have $\operatorname{gcd}(x, 7000) \mid 9$. But $\operatorname{gcd}(7000,9)=1$, so the only possibility is $\operatorname{gcd}(x, 7000)=1$.
Yes, x relatively prime to 7000 ! So we can use $x^{\phi(n)} \equiv 1$
$(\bmod n) \ldots$
We just saw

$$
\phi(7000)=\left(2^{3}-2^{2}\right)\left(5^{3}-5^{2}\right)(7-1)=2400 .
$$

So since

$$
12002=5(2400)+2, \quad \text { we have } x^{12002}=\left(x^{2400}\right)^{5} x^{2}
$$

So

$$
9 \equiv_{7000} x^{12002}=\left(x^{2400}\right)^{5} x^{2} \equiv_{7000} 1^{5} x^{2}=x^{2} .
$$

At least 2 sol's: $x=3$ and $x=-3 \equiv_{7000} 6997$. (There may be more.)

