
Last time

Let
Φpnq “ t integers 1 ď x ď n´ 1 relatively prime to n u,

and define φpnq “ |Φpnq|. This is called Euler’s phi function.

Example: Since Φp8q “ t1, 3, 5, 7u, we have φp8q “ 4.

Example: For any prime p, φppkq “ pk ´ pk´1 “ pk´1pp´ 1q .

Theorem (Euler’s formula)

For n ą 0 and a P Z, either
gcdpa, nq ą 1, so that ai ” 1 pmod pq has no solutions,

or
gcdpa, nq “ 1 and aφpnq ” 1 pmod nq.

Today: φpmnq “ φpmqφpnq whenever gcdpm,nq “ 1.
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Bijective proofs

Let Φpnq “ t integers 1 ď x ď n´ 1 relatively prime to n u, and
define φpnq “ |Φpnq|.

Claim: φpmnq “ φpmqφpnq whenever gcdpm,nq “ 1.

Note
φpmnq “ |Φpmnq|, φpmq “ |Φpmq|, and φpnq “ |Φpnq|,

and so
φpmqφpnq “ |Φpmq ˆ Φpnq|,

where Φpmq ˆ Φpnq “ tpa, bq | a P Φpmq, b P Φpnqu.

Example:

Φp4q “ t1, 3u, Φp5q “ t1, 2, 3, 4u

Φp4q ˆ Φp5q “ tp1, 1q, p1, 2q, p1, 3q, p1, 4q, p3, 1q, p3, 2q, p3, 3q, p3, 4qu

Φp20q “ t1, 3, 7, 9, 11, 13, 17, 19u

Goal: Show |Φpmnq| “ |Φpmq ˆ Φpnq| by giving a bijection

Φpmnq Ñ Φpmq ˆ Φpnq.
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Theorem (Chinese Remainder Theorem)

Let m and n be integers satisfying gcdpm,nq “ 1, and let b and c
be any integers. Then the simultaneous congruences

x ” b pmod mq and x ” c pmod nq

have exactly one solution with 0 ď x ă mn.

Q. How do you usually solve systems of linear equations?
One way: solve one equation for one variable, plug another
equation, and simplify.

Example: Find an 0 ď x ă 4 ¨ 5 that satisfies both

x ” 1 pmod 4q and x ” 3 pmod 5q.

Solution. Rewrite x ” 1 pmod 4q as x “ 1` 4y, and plug in:

3 ”5 x “ 1` 4y, so 4y ” 2 pmod 5q.
We know 44 ” 1 pmod 5q, so the inverse of 4 mod 5 is 43. Thus

y ”5 43p4yq ”5 43 ¨ 2 “ 128 ”5 3.

So x “ 1` 4 ¨ 3 “ 13 .
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solution modulo mn will fix x’s value both mod m and mod n.
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Back to the φ function

Corollary

If gcdpm,nq “ 1, then φpmnq “ φpmqφpnq.

Proof.
Define

f : Φpmnq Ñ Φpmq ˆ Φpnq defined by a ÞÑ pb, cq

where 0 ď b ă m and 0 ď c ă n satisfy

b ” a pmod mq and c ” a pmod nq, so that fpaq “ pb, cq. (˚)

Well-defined: If gcdpa,mnq “ 1, then so gcdpa,mq “ 1 and
gcdpa, nq “ 1. And if a “ qm` r with 0 ď r ă m, then
1 “ gcdpa,mq “ gcdpr,mq (and similarly for n). X

Bijective: By the Chinese Remainder Theorem, there one and only
one solution to the equations in (˚) between 1 and mn. So f´1 is
well defined.
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Theorem
Let φpnq be the number of integers relatively prime to n (up to
equivalence). Then φpnq can be calculated by

1. if p is prime, then φppkq “ pk ´ pk´1 “ pk´1pp´ 1q; and

2. if gcdpm,nq “ 1, then φpmnq “ φpmqφpnq.

Example: Compute φp7000q.

First

7000 “ 7 ¨ p10q3 “ 23537.

So

φp7000q “ φp23qφp53qφp7q “ p23 ´ 22qp53 ´ 52qp7´ 1q.

In general:

1. Factor n into prime powers,

2. compute φppkq for each maximal p power dividing n, and

3. multiply there together.

Example: Find some x satisfying x21002 ” 9 pmod 7000q.
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Example: Find some x satisfying x12002 ” 9 pmod 7000q.

First question: Is x relatively prime to 7000?
Consider what it means that x12002 ” 9 pmod 7000q:
This is equivalent to

x12002 ´ 9 “ 7000k for some k P Z, i.e. 9 “ x12002 ´ 7000k.

So since 9 is an integer combination of x and 7000, we must have
gcdpx, 7000q|9. But gcdp7000, 9q “ 1, so the only possibility is
gcdpx, 7000q “ 1.
Yes, x relatively prime to 7000! So we can use xφpnq ” 1
pmod nq. . .

We just saw
φp7000q “ p23 ´ 22qp53 ´ 52qp7´ 1q “ 2400 .

So since

12002 “ 5p2400q ` 2, we have x12002 “ px2400q5x2.

So

9 ”7000 x
12002 “ px2400q5x2 ”7000 15x2 “ x2.

At least 2 sol’s: x “ 3 and x “ ´3 ”7000 6997. (There may be more.)
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