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solution modulo mn will fix 2's value both mod m and mod n. [
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Proof.
Define

f:®(mn) > ®(m) x ®(n) defined by a— (b,c)
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ged(a,n) = 1. And if @ = gm + r with 0 < r < m, then
1 = ged(a, m) = ged(r,m) (and similarly for n). v/

Bijective: By the Chinese Remainder Theorem, there one and only
one solution to the equations in () between 1 and mn. So f~!is
well defined.
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Let ¢(n) be the number of integers relatively prime to n (up to
equivalence). Then ¢(n) can be calculated by

1. if p is prime, then ¢(p*) = p* — p*~1 = p*~Y(p — 1); and
2. ifged(m,n) =1, then ¢(mn) = ¢(m)op(n).

Example: Compute ¢(7000).
First
7000 = 7 - (10)3 = 23537.
So
6(7000) = $(23)$(5%)8(7) = (2 — 22)(5> — 52)(7 — 1).

In general:

1. Factor n into prime powers,

2. compute ¢(p*) for each maximal p power dividing n, and

3. multiply there together.
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Example: Find some z satisfying 21202 = 9 (mod 7000).

First question: Is z relatively prime to 70007

Consider what it means that 2'2°92 = 9 (mod 7000):

This is equivalent to

22002 _ 9 — 7000k for some ke Z, i.e. 9= 212992 _ 7000k.

So since 9 is an integer combination of z and 7000, we must have
ged(z, 7000)(9. But ged(7000,9) = 1, so the only possibility is
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Yes, z relatively prime to 7000! So we can use 2¢(™ = 1
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We just saw
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So since
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Example: Find some z satisfying 21202 = 9 (mod 7000).

First question: Is z relatively prime to 70007

Consider what it means that 2'2°92 = 9 (mod 7000):

This is equivalent to

22002 _ 9 — 7000k for some ke Z, i.e. 9= 212992 _ 7000k.

So since 9 is an integer combination of z and 7000, we must have
ged(z, 7000)(9. But ged(7000,9) = 1, so the only possibility is
ged(z, 7000) = 1.

Yes, z relatively prime to 7000! So we can use 2¢(™ = 1

(mod n)...

We just saw
¢(7000) = (2% — 22)(5% — 5%)(7 — 1) = 2400

So since
12002 = 5(2400) + 2,  we have z!2002 = (32400)552,

So

2

12002  (52400Y5,2 — 0001552 = 42,

9 =7000 T
At least 2 sol's: x = 3 and © = —3 =799 6997. (There may be more.)






