Let

 $\Phi(n) = \{ \text{ integers } 1 \leqslant x \leqslant n-1 \text{ relatively prime to } n \},$ and define $\phi(n) = |\Phi(n)|$. This is called Euler's phi function.

Let

 $\Phi(n) = \{ \text{ integers } 1 \leqslant x \leqslant n-1 \text{ relatively prime to } n \},$ and define $\phi(n) = |\Phi(n)|$. This is called Euler's phi function.

Example: Since $\Phi(8) = \{1, 3, 5, 7\}$, we have $\phi(8) = 4$.

Let

 $\Phi(n) = \{ \text{ integers } 1 \leqslant x \leqslant n-1 \text{ relatively prime to } n \},$ and define $\phi(n) = |\Phi(n)|$. This is called Euler's phi function.

Example: Since $\Phi(8) = \{1, 3, 5, 7\}$, we have $\phi(8) = 4$.

Example: For any prime p, $\phi(p^k) = p^k - p^{k-1} = p^{k-1}(p-1)$.

Let

 $\Phi(n)=\{ \text{ integers } 1\leqslant x\leqslant n-1 \text{ relatively prime to } n \}, \\ \text{and define } \phi(n)=|\Phi(n)|. \text{ This is called Euler's phi function.} \end{cases}$

Example: Since $\Phi(8) = \{1, 3, 5, 7\}$, we have $\phi(8) = 4 = 2^2(2-1)\checkmark$.

Example: For any prime p, $\phi(p^k) = p^k - p^{k-1} = p^{k-1}(p-1)$.

Let

 $\Phi(n) = \{ \text{ integers } 1 \leqslant x \leqslant n-1 \text{ relatively prime to } n \},$ and define $\phi(n) = |\Phi(n)|$. This is called Euler's phi function.

Example: Since $\Phi(8) = \{1, 3, 5, 7\}$, we have $\phi(8) = 4 = 2^2(2-1)\checkmark$.

Example: For any prime p, $\phi(p^k) = p^k - p^{k-1} = p^{k-1}(p-1)$.

Theorem (Euler's formula)

For n > 0 and $a \in \mathbb{Z}$, either gcd(a, n) > 1, so that $a^i \equiv 1 \pmod{p}$ has no solutions, or

gcd(a,n) = 1 and $a^{\phi(n)} \equiv 1 \pmod{n}$.

Let

 $\Phi(n)=\{ \text{ integers } 1\leqslant x\leqslant n-1 \text{ relatively prime to } n \}, \\ \text{and define } \phi(n)=|\Phi(n)|. \text{ This is called Euler's phi function.} \end{cases}$

Example: Since $\Phi(8) = \{1, 3, 5, 7\}$, we have $\phi(8) = 4 = 2^2(2-1)\checkmark$.

Example: For any prime p, $\phi(p^k) = p^k - p^{k-1} = p^{k-1}(p-1)$.

Theorem (Euler's formula)

For n > 0 and $a \in \mathbb{Z}$, either gcd(a, n) > 1, so that $a^i \equiv 1 \pmod{p}$ has no solutions, or

gcd(a,n) = 1 and $a^{\phi(n)} \equiv 1 \pmod{n}$.

Today: $\phi(mn) = \phi(m)\phi(n)$ whenever gcd(m, n) = 1.

Let $\Phi(n)=\{ \text{ integers } 1\leqslant x\leqslant n-1 \text{ relatively prime to } n \ \},$ and define $\phi(n)=|\Phi(n)|.$

Claim: $\phi(mn) = \phi(m)\phi(n)$ whenever gcd(m, n) = 1.

Let $\Phi(n)=\{ \text{ integers } 1\leqslant x\leqslant n-1 \text{ relatively prime to } n \ \},$ and define $\phi(n)=|\Phi(n)|.$

Claim: $\phi(mn) = \phi(m)\phi(n)$ whenever gcd(m, n) = 1.

Note

$$\phi(mn)=|\Phi(mn)|,\quad \phi(m)=|\Phi(m)|,\quad \text{ and }\quad \phi(n)=|\Phi(n)|,$$

Let $\Phi(n)=\{ \text{ integers } 1\leqslant x\leqslant n-1 \text{ relatively prime to } n \ \},$ and define $\phi(n)=|\Phi(n)|.$

 $\label{eq:claim:phi} \begin{array}{ll} {\sf Claim:} & \phi(mn) = \phi(m) \phi(n) \mbox{ whenever } \gcd(m,n) = 1. \end{array}$

Note

 $\phi(mn) = |\Phi(mn)|, \quad \phi(m) = |\Phi(m)|, \quad \text{ and } \quad \phi(n) = |\Phi(n)|,$ and so

$$\phi(m)\phi(n) = |\Phi(m) \times \Phi(n)|,$$

where $\Phi(m) \times \Phi(n) = \{(a, b) \mid a \in \Phi(m), b \in \Phi(n)\}.$

Let $\Phi(n)=\{ \text{ integers } 1\leqslant x\leqslant n-1 \text{ relatively prime to } n \ \},$ and define $\phi(n)=|\Phi(n)|.$

Claim: $\phi(mn) = \phi(m)\phi(n)$ whenever gcd(m, n) = 1.

Note

 $\phi(mn) = |\Phi(mn)|, \quad \phi(m) = |\Phi(m)|, \quad \text{ and } \quad \phi(n) = |\Phi(n)|,$ and so

$$\phi(m)\phi(n) = |\Phi(m) \times \Phi(n)|,$$

where $\Phi(m) \times \Phi(n) = \{(a, b) \mid a \in \Phi(m), b \in \Phi(n)\}.$ Example:

$$\Phi(4) = \{1, 3\}, \qquad \Phi(5) = \{1, 2, 3, 4\}$$

Let $\Phi(n)=\{ \text{ integers } 1\leqslant x\leqslant n-1 \text{ relatively prime to } n \ \},$ and define $\phi(n)=|\Phi(n)|.$

 $\label{eq:claim:phi} \begin{array}{ll} {\sf Claim:} & \phi(mn) = \phi(m) \phi(n) \mbox{ whenever } \gcd(m,n) = 1. \end{array}$

Note

 $\phi(mn) = |\Phi(mn)|, \quad \phi(m) = |\Phi(m)|, \quad \text{ and } \quad \phi(n) = |\Phi(n)|,$ and so

$$\phi(m)\phi(n) = |\Phi(m) \times \Phi(n)|,$$

where $\Phi(m) \times \Phi(n) = \{(a, b) \mid a \in \Phi(m), b \in \Phi(n)\}.$

$$\begin{split} \Phi(4) &= \{1,3\}, \qquad \Phi(5) = \{1,2,3,4\} \\ \Phi(4) \times \Phi(5) &= \{(1,1),(1,2),(1,3),(1,4),(3,1),(3,2),(3,3),(3,4)\} \end{split}$$

Let $\Phi(n)=\{ \text{ integers } 1\leqslant x\leqslant n-1 \text{ relatively prime to } n \ \},$ and define $\phi(n)=|\Phi(n)|.$

Claim: $\phi(mn) = \phi(m)\phi(n)$ whenever gcd(m, n) = 1.

Note

 $\phi(mn) = |\Phi(mn)|, \quad \phi(m) = |\Phi(m)|, \quad \text{ and } \quad \phi(n) = |\Phi(n)|,$ and so

$$\phi(m)\phi(n) = |\Phi(m) \times \Phi(n)|,$$

where $\Phi(m) \times \Phi(n) = \{(a, b) \mid a \in \Phi(m), b \in \Phi(n)\}.$

$$\Phi(4) = \{1,3\}, \qquad \Phi(5) = \{1,2,3,4\}$$

$$\Phi(4) \times \Phi(5) = \{(1,1), (1,2), (1,3), (1,4), (3,1), (3,2), (3,3), (3,4)\}$$

$$\Phi(20) = \{1, 3, 7, 9, 11, 13, 17, 19\}$$

Let $\Phi(n)=\{ \text{ integers } 1\leqslant x\leqslant n-1 \text{ relatively prime to } n \ \},$ and define $\phi(n)=|\Phi(n)|.$

Claim: $\phi(mn) = \phi(m)\phi(n)$ whenever gcd(m, n) = 1.

Note

 $\phi(mn) = |\Phi(mn)|, \quad \phi(m) = |\Phi(m)|, \quad \text{ and } \quad \phi(n) = |\Phi(n)|,$ and so

$$\phi(m)\phi(n) = |\Phi(m) \times \Phi(n)|,$$

where $\Phi(m) \times \Phi(n) = \{(a, b) \mid a \in \Phi(m), b \in \Phi(n)\}.$

$$\Phi(4) = \{1,3\}, \qquad \Phi(5) = \{1,2,3,4\}$$

$$\Phi(4) \times \Phi(5) = \{(1,1), (1,2), (1,3), (1,4), (3,1), (3,2), (3,3), (3,4)\}$$

$$\Phi(20) = \{1, 3, 7, 9, 11, 13, 17, 19\}$$

Let $\Phi(n)=\{ \text{ integers } 1\leqslant x\leqslant n-1 \text{ relatively prime to } n \ \},$ and define $\phi(n)=|\Phi(n)|.$

Claim: $\phi(mn) = \phi(m)\phi(n)$ whenever gcd(m, n) = 1.

Note

 $\phi(mn) = |\Phi(mn)|, \quad \phi(m) = |\Phi(m)|, \quad \text{ and } \quad \phi(n) = |\Phi(n)|,$ and so

$$\phi(m)\phi(n) = |\Phi(m) \times \Phi(n)|,$$

where $\Phi(m) \times \Phi(n) = \{(a, b) \mid a \in \Phi(m), b \in \Phi(n)\}.$

$$\Phi(4) = \{1,3\}, \qquad \Phi(5) = \{1,2,3,4\}$$

$$\Phi(4) \times \Phi(5) = \{(1,1), (1,2), (1,3), (1,4), (3,1), (3,2), (3,3), (3,4)\}$$

$$\Phi(20) = \{1, 3, 7, 9, 11, 13, 17, 19\}$$

Let $\Phi(n)=\{ \text{ integers } 1\leqslant x\leqslant n-1 \text{ relatively prime to } n \ \},$ and define $\phi(n)=|\Phi(n)|.$

Claim: $\phi(mn) = \phi(m)\phi(n)$ whenever gcd(m, n) = 1.

Note

 $\phi(mn) = |\Phi(mn)|, \quad \phi(m) = |\Phi(m)|, \quad \text{ and } \quad \phi(n) = |\Phi(n)|,$ and so

$$\phi(m)\phi(n) = |\Phi(m) \times \Phi(n)|,$$

where $\Phi(m) \times \Phi(n) = \{(a, b) \mid a \in \Phi(m), b \in \Phi(n)\}.$

$$\Phi(4) = \{1,3\}, \qquad \Phi(5) = \{1,2,3,4\}$$

$$\Phi(4) \times \Phi(5) = \{(1,1), (1,2), (1,3), (1,4), (3,1), (3,2), (3,3), (3,4)\}$$

$$\Phi(20) = \{1, 3, 7, 9, 11, 13, 17, 19\}$$

Let $\Phi(n)=\{ \text{ integers } 1\leqslant x\leqslant n-1 \text{ relatively prime to } n \ \},$ and define $\phi(n)=|\Phi(n)|.$

Claim: $\phi(mn) = \phi(m)\phi(n)$ whenever gcd(m, n) = 1.

Note

 $\phi(mn) = |\Phi(mn)|, \quad \phi(m) = |\Phi(m)|, \quad \text{ and } \quad \phi(n) = |\Phi(n)|,$ and so

$$\phi(m)\phi(n) = |\Phi(m) \times \Phi(n)|,$$

where $\Phi(m) \times \Phi(n) = \{(a, b) \mid a \in \Phi(m), b \in \Phi(n)\}.$

$$\Phi(4) = \{1,3\}, \qquad \Phi(5) = \{1,2,3,4\}$$

$$\Phi(4) \times \Phi(5) = \{(1,1), (1,2), (1,3), (1,4), (3,1), (3,2), (3,3), (3,4)\}$$

$$\Phi(20) = \{1, 3, 7, 9, 11, 13, 17, 19\}$$

Let $\Phi(n)=\{ \text{ integers } 1\leqslant x\leqslant n-1 \text{ relatively prime to } n \ \},$ and define $\phi(n)=|\Phi(n)|.$

Claim: $\phi(mn) = \phi(m)\phi(n)$ whenever gcd(m, n) = 1.

Note

 $\phi(mn) = |\Phi(mn)|, \quad \phi(m) = |\Phi(m)|, \quad \text{ and } \quad \phi(n) = |\Phi(n)|,$ and so

$$\phi(m)\phi(n) = |\Phi(m) \times \Phi(n)|,$$

where $\Phi(m) \times \Phi(n) = \{(a, b) \mid a \in \Phi(m), b \in \Phi(n)\}.$

$$\Phi(4) = \{1,3\}, \qquad \Phi(5) = \{1,2,3,4\}$$

$$\Phi(4) \times \Phi(5) = \{(1,1), (1,2), (1,3), (1,4), (3,1), (3,2), (3,3), (3,4)\}$$

$$\Phi(20) = \{1, 3, 7, 9, 11, 13, 17, 19\}$$

Let $\Phi(n)=\{ \text{ integers } 1\leqslant x\leqslant n-1 \text{ relatively prime to } n \ \},$ and define $\phi(n)=|\Phi(n)|.$

Claim: $\phi(mn) = \phi(m)\phi(n)$ whenever gcd(m, n) = 1.

Note

 $\phi(mn) = |\Phi(mn)|, \quad \phi(m) = |\Phi(m)|, \quad \text{ and } \quad \phi(n) = |\Phi(n)|,$ and so

$$\phi(m)\phi(n) = |\Phi(m) \times \Phi(n)|,$$

where $\Phi(m) \times \Phi(n) = \{(a, b) \mid a \in \Phi(m), b \in \Phi(n)\}.$

$$\Phi(4) = \{1,3\}, \qquad \Phi(5) = \{1,2,3,4\}$$

$$\Phi(4) \times \Phi(5) = \{(1,1), (1,2), (1,3), (1,4), (3,1), (3,2), (3,3), (3,4)\}$$

$$\Phi(20) = \{1, 3, 7, 9, 11, 13, 17, 19\}$$

Let $\Phi(n)=\{ \text{ integers } 1\leqslant x\leqslant n-1 \text{ relatively prime to } n \ \},$ and define $\phi(n)=|\Phi(n)|.$

Claim: $\phi(mn) = \phi(m)\phi(n)$ whenever gcd(m, n) = 1.

Note

 $\phi(mn) = |\Phi(mn)|, \quad \phi(m) = |\Phi(m)|, \quad \text{ and } \quad \phi(n) = |\Phi(n)|,$ and so

$$\phi(m)\phi(n) = |\Phi(m) \times \Phi(n)|,$$

where $\Phi(m) \times \Phi(n) = \{(a, b) \mid a \in \Phi(m), b \in \Phi(n)\}.$

$$\Phi(4) = \{1,3\}, \qquad \Phi(5) = \{1,2,3,4\}$$

$$\Phi(4) \times \Phi(5) = \{(1,1), (1,2), (1,3), (1,4), (3,1), (3,2), (3,3), (3,4)\}$$

$$\Phi(20) = \{1, 3, 7, 9, 11, 13, 17, 19\}$$

Let $\Phi(n)=\{ \text{ integers } 1\leqslant x\leqslant n-1 \text{ relatively prime to } n \ \},$ and define $\phi(n)=|\Phi(n)|.$

Claim: $\phi(mn) = \phi(m)\phi(n)$ whenever gcd(m, n) = 1.

Note

 $\phi(mn) = |\Phi(mn)|, \quad \phi(m) = |\Phi(m)|, \quad \text{ and } \quad \phi(n) = |\Phi(n)|,$ and so

$$\phi(m)\phi(n) = |\Phi(m) \times \Phi(n)|,$$

where $\Phi(m) \times \Phi(n) = \{(a, b) \mid a \in \Phi(m), b \in \Phi(n)\}.$

$$\Phi(4) = \{1,3\}, \qquad \Phi(5) = \{1,2,3,4\}$$

$$\Phi(4) \times \Phi(5) = \{(1,1), (1,2), (1,3), (1,4), (3,1), (3,2), (3,3), (3,4)\}$$

$$\Phi(20) = \{1, 3, 7, 9, 11, 13, 17, 19\}$$

Let $\Phi(n)=\{ \text{ integers } 1\leqslant x\leqslant n-1 \text{ relatively prime to } n \ \},$ and define $\phi(n)=|\Phi(n)|.$

Claim: $\phi(mn) = \phi(m)\phi(n)$ whenever gcd(m, n) = 1.

Note

 $\phi(mn) = |\Phi(mn)|, \quad \phi(m) = |\Phi(m)|, \quad \text{ and } \quad \phi(n) = |\Phi(n)|,$ and so

$$\phi(m)\phi(n) = |\Phi(m) \times \Phi(n)|,$$

where $\Phi(m) \times \Phi(n) = \{(a, b) \mid a \in \Phi(m), b \in \Phi(n)\}.$

Example:

$$\Phi(4) = \{1,3\}, \qquad \Phi(5) = \{1,2,3,4\}$$

$$\Phi(4) \times \Phi(5) = \{(1,1), (1,2), (1,3), (1,4), (3,1), (3,2), (3,3), (3,4)\}$$

$$\Phi(20) = \{1, 3, 7, 9, 11, 13, 17, 19\}$$

Goal: Show $|\Phi(mn)| = |\Phi(m) \times \Phi(n)|$ by giving a bijection $\Phi(mn) \to \Phi(m) \times \Phi(n).$

Let m and n be integers satisfying gcd(m,n) = 1, and let b and c be any integers. Then the simultaneous congruences

 $x \equiv b \pmod{m}$ and $x \equiv c \pmod{n}$

have exactly one solution with $0 \leq x < mn$.

Let m and n be integers satisfying gcd(m,n) = 1, and let b and c be any integers. Then the simultaneous congruences

 $x \equiv b \pmod{m}$ and $x \equiv c \pmod{n}$

have exactly one solution with $0 \leq x < mn$.

Q. How do you usually solve systems of linear equations?

Let m and n be integers satisfying gcd(m,n) = 1, and let b and c be any integers. Then the simultaneous congruences

 $x \equiv b \pmod{m}$ and $x \equiv c \pmod{n}$

have exactly one solution with $0 \leq x < mn$.

Q. How do you usually solve systems of linear equations? One way: solve one equation for one variable, plug another equation, and simplify.

Let m and n be integers satisfying gcd(m,n) = 1, and let b and c be any integers. Then the simultaneous congruences

 $x \equiv b \pmod{m}$ and $x \equiv c \pmod{n}$

have exactly one solution with $0 \leq x < mn$.

Q. How do you usually solve systems of linear equations? One way: solve one equation for one variable, plug another equation, and simplify.

Example: Find an $0 \le x < 4 \cdot 5$ that satisfies both

 $x \equiv 1 \pmod{4}$ and $x \equiv 3 \pmod{5}$.

Let m and n be integers satisfying gcd(m,n) = 1, and let b and c be any integers. Then the simultaneous congruences

 $x \equiv b \pmod{m}$ and $x \equiv c \pmod{n}$

have exactly one solution with $0 \leq x < mn$.

Q. How do you usually solve systems of linear equations? One way: solve one equation for one variable, plug another equation, and simplify.

Example: Find an $0 \le x < 4 \cdot 5$ that satisfies both

 $x \equiv 1 \pmod{4}$ and $x \equiv 3 \pmod{5}$.

Solution. Rewrite $x \equiv 1 \pmod{4}$ as x = 1 + 4y

Let m and n be integers satisfying gcd(m,n) = 1, and let b and c be any integers. Then the simultaneous congruences

 $x \equiv b \pmod{m}$ and $x \equiv c \pmod{n}$

have exactly one solution with $0 \leq x < mn$.

Q. How do you usually solve systems of linear equations? One way: solve one equation for one variable, plug another equation, and simplify.

Example: Find an $0 \le x < 4 \cdot 5$ that satisfies both

 $x \equiv 1 \pmod{4}$ and $x \equiv 3 \pmod{5}$.

Solution. Rewrite $x \equiv 1 \pmod{4}$ as x = 1 + 4y, and plug in:

$$3 \equiv_5 x = 1 + 4y$$

Let m and n be integers satisfying gcd(m,n) = 1, and let b and c be any integers. Then the simultaneous congruences

 $x \equiv b \pmod{m}$ and $x \equiv c \pmod{n}$

have exactly one solution with $0 \leq x < mn$.

Q. How do you usually solve systems of linear equations? One way: solve one equation for one variable, plug another equation, and simplify.

Example: Find an $0 \le x < 4 \cdot 5$ that satisfies both

 $x \equiv 1 \pmod{4}$ and $x \equiv 3 \pmod{5}$.

Solution. Rewrite $x \equiv 1 \pmod{4}$ as x = 1 + 4y, and plug in:

 $3 \equiv_5 x = 1 + 4y$, so $4y \equiv 2 \pmod{5}$.

Let m and n be integers satisfying gcd(m,n) = 1, and let b and c be any integers. Then the simultaneous congruences

 $x \equiv b \pmod{m}$ and $x \equiv c \pmod{n}$

have exactly one solution with $0 \leq x < mn$.

Q. How do you usually solve systems of linear equations? One way: solve one equation for one variable, plug another equation, and simplify.

Example: Find an $0 \le x < 4 \cdot 5$ that satisfies both

 $x \equiv 1 \pmod{4}$ and $x \equiv 3 \pmod{5}$.

Solution. Rewrite $x \equiv 1 \pmod{4}$ as x = 1 + 4y, and plug in:

 $3\equiv_5 x=1+4y, \quad \text{so} \quad 4y\equiv 2 \pmod{5}.$ We know $4^4\equiv 1 \pmod{5}$

Let m and n be integers satisfying gcd(m,n) = 1, and let b and c be any integers. Then the simultaneous congruences

 $x \equiv b \pmod{m}$ and $x \equiv c \pmod{n}$

have exactly one solution with $0 \leq x < mn$.

Q. How do you usually solve systems of linear equations? One way: solve one equation for one variable, plug another equation, and simplify.

Example: Find an $0 \le x < 4 \cdot 5$ that satisfies both

 $x \equiv 1 \pmod{4}$ and $x \equiv 3 \pmod{5}$.

Solution. Rewrite $x \equiv 1 \pmod{4}$ as x = 1 + 4y, and plug in:

 $3\equiv_5 x=1+4y, \text{ so } 4y\equiv 2 \pmod{5}.$ We know $4^4\equiv 1 \pmod{5}$, so the inverse of 4 mod 5 is 4^3 .

Let m and n be integers satisfying gcd(m,n) = 1, and let b and c be any integers. Then the simultaneous congruences

 $x \equiv b \pmod{m}$ and $x \equiv c \pmod{n}$

have exactly one solution with $0 \leq x < mn$.

Q. How do you usually solve systems of linear equations? One way: solve one equation for one variable, plug another equation, and simplify.

Example: Find an $0 \le x < 4 \cdot 5$ that satisfies both

 $x \equiv 1 \pmod{4}$ and $x \equiv 3 \pmod{5}$.

Solution. Rewrite $x \equiv 1 \pmod{4}$ as x = 1 + 4y, and plug in:

 $\begin{array}{lll} 3\equiv_5 x=1+4y, & \text{so} & 4y\equiv 2 \pmod{5}.\\ \text{We know } 4^4\equiv 1 \pmod{5}, \text{ so the inverse of } 4 \mod 5 \text{ is } 4^3. \text{ Thus}\\ y\equiv_5 4^3(4y) \end{array}$

Let m and n be integers satisfying gcd(m,n) = 1, and let b and c be any integers. Then the simultaneous congruences

 $x \equiv b \pmod{m}$ and $x \equiv c \pmod{n}$

have exactly one solution with $0 \leq x < mn$.

Q. How do you usually solve systems of linear equations? One way: solve one equation for one variable, plug another equation, and simplify.

Example: Find an $0 \le x < 4 \cdot 5$ that satisfies both

 $x \equiv 1 \pmod{4}$ and $x \equiv 3 \pmod{5}$.

Solution. Rewrite $x \equiv 1 \pmod{4}$ as x = 1 + 4y, and plug in:

 $\begin{array}{ll} 3\equiv_5 x=1+4y, \quad \text{so} \quad 4y\equiv 2 \pmod{5}.\\ \text{We know } 4^4\equiv 1 \pmod{5}, \text{ so the inverse of } 4 \mod 5 \text{ is } 4^3. \text{ Thus}\\ y\equiv_5 4^3(4y)\equiv_5 4^3\cdot 2=128 \end{array}$

Let m and n be integers satisfying gcd(m,n) = 1, and let b and c be any integers. Then the simultaneous congruences

 $x \equiv b \pmod{m}$ and $x \equiv c \pmod{n}$

have exactly one solution with $0 \leq x < mn$.

Q. How do you usually solve systems of linear equations? One way: solve one equation for one variable, plug another equation, and simplify.

Example: Find an $0 \le x < 4 \cdot 5$ that satisfies both

 $x \equiv 1 \pmod{4}$ and $x \equiv 3 \pmod{5}$.

Solution. Rewrite $x \equiv 1 \pmod{4}$ as x = 1 + 4y, and plug in:

 $\begin{array}{ll} 3\equiv_5 x=1+4y, \quad \text{so} \quad 4y\equiv 2 \pmod{5}.\\ \text{We know } 4^4\equiv 1 \pmod{5}, \text{ so the inverse of } 4 \mod 5 \text{ is } 4^3. \text{ Thus}\\ y\equiv_5 4^3(4y)\equiv_5 4^3\cdot 2=128\equiv_5 3. \end{array}$

Let m and n be integers satisfying gcd(m,n) = 1, and let b and c be any integers. Then the simultaneous congruences

 $x \equiv b \pmod{m}$ and $x \equiv c \pmod{n}$

have exactly one solution with $0 \leq x < mn$.

Q. How do you usually solve systems of linear equations? One way: solve one equation for one variable, plug another equation, and simplify.

Example: Find an $0 \le x < 4 \cdot 5$ that satisfies both

 $x \equiv 1 \pmod{4}$ and $x \equiv 3 \pmod{5}$.

Solution. Rewrite $x \equiv 1 \pmod{4}$ as x = 1 + 4y, and plug in:

 $\begin{array}{ll} 3\equiv_5 x=1+4y, \quad \text{so} \quad 4y\equiv 2 \pmod{5}.\\ \text{We know } 4^4\equiv 1 \pmod{5}, \text{ so the inverse of } 4 \mod 5 \text{ is } 4^3. \text{ Thus}\\ y\equiv_5 4^3(4y)\equiv_5 4^3\cdot 2=128\equiv_5 3.\\ \text{So } x=1+4\cdot 3=\fbox{13}. \end{array}$

Let m and n be integers satisfying gcd(m,n) = 1, and let b and c be any integers. Then the simultaneous congruences

 $x \equiv b \pmod{m}$ and $x \equiv c \pmod{n}$

have exactly one solution with $0 \leq x < mn$.

Q. How do you usually solve systems of linear equations? One way: solve one equation for one variable, plug another equation, and simplify.

Example: Find an $0 \le x < 4 \cdot 5$ that satisfies both

 $x \equiv 1 \pmod{4}$ and $x \equiv 3 \pmod{5}$.

Solution. Rewrite $x \equiv 1 \pmod{4}$ as x = 1 + 4y, and plug in:

 $\begin{array}{ll} 3\equiv_5 x=1+4y, \quad \text{so} \quad 4y\equiv 2 \pmod{5}.\\ \text{We know } 4^4\equiv 1 \pmod{5}, \text{ so the inverse of } 4 \mod 5 \text{ is } 4^3. \text{ Thus}\\ y\equiv_5 4^3(4y)\equiv_5 4^3\cdot 2=128\equiv_5 3.\\ \text{So } x=1+4\cdot 3=\fbox{13}. \end{array}$

Let m and n be integers satisfying gcd(m, n) = 1, and let b and c be any integers. Then the simultaneous congruences

 $x \equiv b \pmod{m}$ and $x \equiv c \pmod{n}$

have exactly one solution with $0 \leq x < mn$.

Proof. Rewrite $x \equiv b \pmod{m}$ as x = b + ym

Let m and n be integers satisfying gcd(m,n) = 1, and let b and c be any integers. Then the simultaneous congruences

 $x \equiv b \pmod{m}$ and $x \equiv c \pmod{n}$

have exactly one solution with $0 \leq x < mn$.

Proof. Rewrite $x \equiv b \pmod{m}$ as x = b + ym, and plug in: $c \equiv_n x$

Let m and n be integers satisfying gcd(m,n) = 1, and let b and c be any integers. Then the simultaneous congruences

 $x \equiv b \pmod{m}$ and $x \equiv c \pmod{n}$

have exactly one solution with $0 \leq x < mn$.

Proof. Rewrite $x \equiv b \pmod{m}$ as x = b + ym, and plug in: $c \equiv_n x \equiv_n b + ym$

Let m and n be integers satisfying gcd(m, n) = 1, and let b and c be any integers. Then the simultaneous congruences

 $x \equiv b \pmod{m}$ and $x \equiv c \pmod{n}$

have exactly one solution with $0 \leq x < mn$.

Proof. Rewrite $x \equiv b \pmod{m}$ as x = b + ym, and plug in: $c \equiv_n x \equiv_n b + ym$. So $ym \equiv (c - b) \pmod{n}$.

Let m and n be integers satisfying gcd(m, n) = 1, and let b and c be any integers. Then the simultaneous congruences

 $x \equiv b \pmod{m}$ and $x \equiv c \pmod{n}$

have exactly one solution with $0 \leq x < mn$.

Proof.

Rewrite $x \equiv b \pmod{m}$ as x = b + ym, and plug in:

 $c \equiv_n x \equiv_n b + ym$. So $ym \equiv (c - b) \pmod{n}$.

Since gcd(m, n) = 1, we can solve $ym \equiv (c - b) \pmod{n}$ uniquely with some $0 \leq y < n$.

Let m and n be integers satisfying gcd(m,n) = 1, and let b and c be any integers. Then the simultaneous congruences

 $x \equiv b \pmod{m}$ and $x \equiv c \pmod{n}$

have exactly one solution with $0 \leq x < mn$.

Proof.

Rewrite $x \equiv b \pmod{m}$ as x = b + ym, and plug in:

 $c \equiv_n x \equiv_n b + ym$. So $ym \equiv (c - b) \pmod{n}$.

Since gcd(m, n) = 1, we can solve $ym \equiv (c - b) \pmod{n}$ uniquely with some $0 \leq y < n$. So we can solve uniquely for x.

Let m and n be integers satisfying gcd(m,n) = 1, and let b and c be any integers. Then the simultaneous congruences

 $x \equiv b \pmod{m}$ and $x \equiv c \pmod{n}$

have exactly one solution with $0 \leq x < mn$.

Proof.

Rewrite $x \equiv b \pmod{m}$ as x = b + ym, and plug in:

 $c \equiv_n x \equiv_n b + ym$. So $ym \equiv (c - b) \pmod{n}$.

Since gcd(m, n) = 1, we can solve $ym \equiv (c - b) \pmod{n}$ uniquely with some $0 \leq y < n$. So we can solve uniquely for x. This gives us exactly one solution $b \leq x < b + mn$.

Let m and n be integers satisfying gcd(m,n) = 1, and let b and c be any integers. Then the simultaneous congruences

 $x \equiv b \pmod{m}$ and $x \equiv c \pmod{n}$

have exactly one solution with $0 \leq x < mn$.

Proof.

Rewrite $x \equiv b \pmod{m}$ as x = b + ym, and plug in:

 $c \equiv_n x \equiv_n b + ym$. So $ym \equiv (c - b) \pmod{n}$.

Since gcd(m, n) = 1, we can solve $ym \equiv (c - b) \pmod{n}$ uniquely with some $0 \leq y < n$. So we can solve uniquely for x. This gives us exactly one solution $b \leq x < b + mn$.

Since mn is an integer multiple of both m and n, reducing our solution modulo mn will fix x's value both mod m and mod n.

Corollary

If gcd(m, n) = 1, then $\phi(mn) = \phi(m)\phi(n)$.

Corollary If gcd(m, n) = 1, then $\phi(mn) = \phi(m)\phi(n)$. Proof.

Define

$$f: \Phi(mn) \to \Phi(m) \times \Phi(n) \quad \text{defined by} \quad a \mapsto (b,c)$$

where $0 \le b < m$ and $0 \le c < n$ satisfy $b \equiv a \pmod{m}$ and $c \equiv a \pmod{n}$, so that f(a) = (b, c). (*)

Corollary If gcd(m, n) = 1, then $\phi(mn) = \phi(m)\phi(n)$. Proof.

Define

$$f: \Phi(mn) \to \Phi(m) \times \Phi(n) \quad \text{defined by} \quad a \mapsto (b,c)$$

where $0 \le b < m$ and $0 \le c < n$ satisfy $b \equiv a \pmod{m}$ and $c \equiv a \pmod{n}$, so that f(a) = (b, c). (*) Well-defined: If gcd(a, mn) = 1, then so gcd(a, m) = 1 and gcd(a, n) = 1.

Corollary If gcd(m, n) = 1, then $\phi(mn) = \phi(m)\phi(n)$. Proof.

Define

$$f: \Phi(mn) \to \Phi(m) \times \Phi(n) \quad \text{defined by} \quad a \mapsto (b,c)$$

where $0 \le b < m$ and $0 \le c < n$ satisfy $b \equiv a \pmod{m}$ and $c \equiv a \pmod{n}$, so that f(a) = (b, c). (*) Well-defined: If gcd(a, mn) = 1, then so gcd(a, m) = 1 and gcd(a, n) = 1. And if a = qm + r with $0 \le r < m$, then 1 = gcd(a, m) = gcd(r, m)

Corollary If gcd(m, n) = 1, then $\phi(mn) = \phi(m)\phi(n)$. Proof.

Define

$$f: \Phi(mn) \to \Phi(m) \times \Phi(n) \quad \text{defined by} \quad a \mapsto (b,c)$$

where $0 \leqslant b < m$ and $0 \leqslant c < n$ satisfy

 $b \equiv a \pmod{m}$ and $c \equiv a \pmod{n}$, so that f(a) = (b, c). (*)

Well-defined: If gcd(a, mn) = 1, then so gcd(a, m) = 1 and gcd(a, n) = 1. And if a = qm + r with $0 \le r < m$, then 1 = gcd(a, m) = gcd(r, m) (and similarly for n).

Corollary If gcd(m, n) = 1, then $\phi(mn) = \phi(m)\phi(n)$. Proof.

Define

$$f: \Phi(mn) \to \Phi(m) \times \Phi(n) \quad \text{defined by} \quad a \mapsto (b,c)$$

where $0 \leqslant b < m$ and $0 \leqslant c < n$ satisfy

 $b \equiv a \pmod{m}$ and $c \equiv a \pmod{n}$, so that f(a) = (b, c). (*)

Well-defined: If gcd(a, mn) = 1, then so gcd(a, m) = 1 and gcd(a, n) = 1. And if a = qm + r with $0 \le r < m$, then 1 = gcd(a, m) = gcd(r, m) (and similarly for n). \checkmark

Corollary If gcd(m, n) = 1, then $\phi(mn) = \phi(m)\phi(n)$.

Proof. Define

$$f: \Phi(mn) \to \Phi(m) \times \Phi(n) \quad \text{defined by} \quad a \mapsto (b,c)$$

where $0 \leq b < m$ and $0 \leq c < n$ satisfy

 $b \equiv a \pmod{m}$ and $c \equiv a \pmod{n}$, so that f(a) = (b, c). (*)

Well-defined: If gcd(a, mn) = 1, then so gcd(a, m) = 1 and gcd(a, n) = 1. And if a = qm + r with $0 \le r < m$, then 1 = gcd(a, m) = gcd(r, m) (and similarly for n). \checkmark

Bijective: By the Chinese Remainder Theorem, there one and only one solution to the equations in (*) between 1 and mn.

Corollary If gcd(m, n) = 1, then $\phi(mn) = \phi(m)\phi(n)$.

Proof. Define

$$f: \Phi(mn) \to \Phi(m) \times \Phi(n) \quad \text{defined by} \quad a \mapsto (b,c)$$

where $0 \leq b < m$ and $0 \leq c < n$ satisfy

 $b \equiv a \pmod{m}$ and $c \equiv a \pmod{n}$, so that f(a) = (b, c). (*)

Well-defined: If gcd(a, mn) = 1, then so gcd(a, m) = 1 and gcd(a, n) = 1. And if a = qm + r with $0 \le r < m$, then 1 = gcd(a, m) = gcd(r, m) (and similarly for n). \checkmark

Bijective: By the Chinese Remainder Theorem, there one and only one solution to the equations in (*) between 1 and mn. So f^{-1} is well defined.

Let $\phi(n)$ be the number of integers relatively prime to n (up to equivalence). Then $\phi(n)$ can be calculated by

- 1. if p is prime, then $\phi(p^k) = p^k p^{k-1} = p^{k-1}(p-1)$; and
- 2. if gcd(m, n) = 1, then $\phi(mn) = \phi(m)\phi(n)$.

Let $\phi(n)$ be the number of integers relatively prime to n (up to equivalence). Then $\phi(n)$ can be calculated by

- 1. if p is prime, then $\phi(p^k) = p^k p^{k-1} = p^{k-1}(p-1)$; and
- 2. if gcd(m, n) = 1, then $\phi(mn) = \phi(m)\phi(n)$.

Example: Compute $\phi(7000)$.

Let $\phi(n)$ be the number of integers relatively prime to n (up to equivalence). Then $\phi(n)$ can be calculated by

1. if
$$p$$
 is prime, then $\phi(p^k) = p^k - p^{k-1} = p^{k-1}(p-1)$; and

2. if
$$gcd(m, n) = 1$$
, then $\phi(mn) = \phi(m)\phi(n)$.

Example: Compute $\phi(7000)$.

First

$$7000 = 7 \cdot (10)^3$$

Let $\phi(n)$ be the number of integers relatively prime to n (up to equivalence). Then $\phi(n)$ can be calculated by

1. if
$$p$$
 is prime, then $\phi(p^k) = p^k - p^{k-1} = p^{k-1}(p-1)$; and

2. if
$$gcd(m, n) = 1$$
, then $\phi(mn) = \phi(m)\phi(n)$.

Example: Compute $\phi(7000)$.

First

$$7000 = 7 \cdot (10)^3 = 2^3 5^3 7.$$

Let $\phi(n)$ be the number of integers relatively prime to n (up to equivalence). Then $\phi(n)$ can be calculated by

1. if
$$p$$
 is prime, then $\phi(p^k) = p^k - p^{k-1} = p^{k-1}(p-1)$; and

2. if
$$gcd(m, n) = 1$$
, then $\phi(mn) = \phi(m)\phi(n)$.

Example: Compute $\phi(7000)$.

First

$$7000 = 7 \cdot (10)^3 = 2^3 5^3 7.$$

So

 $\phi(7000) = \phi(2^3)\phi(5^3)\phi(7)$

Let $\phi(n)$ be the number of integers relatively prime to n (up to equivalence). Then $\phi(n)$ can be calculated by

1. if
$$p$$
 is prime, then $\phi(p^k) = p^k - p^{k-1} = p^{k-1}(p-1)$; and

2. if
$$gcd(m, n) = 1$$
, then $\phi(mn) = \phi(m)\phi(n)$.

Example: Compute $\phi(7000)$.

First

$$7000 = 7 \cdot (10)^3 = 2^3 5^3 7.$$

$$\phi(7000) = \phi(2^3)\phi(5^3)\phi(7) = (2^3 - 2^2)(5^3 - 5^2)(7 - 1).$$

Let $\phi(n)$ be the number of integers relatively prime to n (up to equivalence). Then $\phi(n)$ can be calculated by

1. if
$$p$$
 is prime, then $\phi(p^k) = p^k - p^{k-1} = p^{k-1}(p-1)$; and

2. if
$$gcd(m, n) = 1$$
, then $\phi(mn) = \phi(m)\phi(n)$.

Example: Compute $\phi(7000)$.

First

$$7000 = 7 \cdot (10)^3 = 2^3 5^3 7.$$

So

$$\phi(7000) = \phi(2^3)\phi(5^3)\phi(7) = (2^3 - 2^2)(5^3 - 5^2)(7 - 1).$$

In general:

- 1. Factor n into prime powers,
- 2. compute $\phi(p^k)$ for each maximal p power dividing n, and
- 3. multiply there together.

Let $\phi(n)$ be the number of integers relatively prime to n (up to equivalence). Then $\phi(n)$ can be calculated by

1. if
$$p$$
 is prime, then $\phi(p^k) = p^k - p^{k-1} = p^{k-1}(p-1)$; and

2. if
$$gcd(m, n) = 1$$
, then $\phi(mn) = \phi(m)\phi(n)$.

Example: Compute $\phi(7000)$.

First

$$7000 = 7 \cdot (10)^3 = 2^3 5^3 7.$$

So

$$\phi(7000) = \phi(2^3)\phi(5^3)\phi(7) = (2^3 - 2^2)(5^3 - 5^2)(7 - 1).$$

In general:

- 1. Factor n into prime powers,
- 2. compute $\phi(p^k)$ for each maximal p power dividing n, and
- 3. multiply there together.

Example: Find some x satisfying $x^{21002} \equiv 9 \pmod{7000}$.

First question: Is x relatively prime to 7000?

First question: Is x relatively prime to 7000? Consider what it means that $x^{12002} \equiv 9 \pmod{7000}$:

First question: Is x relatively prime to 7000? Consider what it means that $x^{12002}\equiv 9\pmod{7000}$: This is equivalent to

 $x^{12002} - 9 = 7000k \quad \text{ for some } k \in \mathbb{Z}$

First question: Is x relatively prime to 7000? Consider what it means that $x^{12002} \equiv 9 \pmod{7000}$: This is equivalent to

 $x^{12002} - 9 = 7000k$ for some $k \in \mathbb{Z}$, i.e. $9 = x^{12002} - 7000k$.

First question: Is x relatively prime to 7000? Consider what it means that $x^{12002} \equiv 9 \pmod{7000}$: This is equivalent to

 $x^{12002} - 9 = 7000k$ for some $k \in \mathbb{Z}$, i.e. $9 = x^{12002} - 7000k$.

So since 9 is an integer combination of x and 7000, we must have gcd(x, 7000)|9.

First question: Is x relatively prime to 7000? Consider what it means that $x^{12002} \equiv 9 \pmod{7000}$: This is equivalent to $x^{12002} - 9 = 7000k$ for some $k \in \mathbb{Z}$, i.e. $9 = x^{12002} - 7000k$.

So since 9 is an integer combination of x and 7000, we must have gcd(x, 7000)|9. But gcd(7000, 9) = 1, so the only possibility is gcd(x, 7000) = 1.

First question: Is x relatively prime to 7000? Consider what it means that $x^{12002} \equiv 9 \pmod{7000}$: This is equivalent to $x^{12002} - 9 = 7000k$ for some $k \in \mathbb{Z}$, i.e. $9 = x^{12002} - 7000k$. So since 9 is an integer combination of x and 7000, we must have gcd(x, 7000)|9. But gcd(7000, 9) = 1, so the only possibility is gcd(x, 7000) = 1. Yes, x relatively prime to 7000!

First question: Is x relatively prime to 7000? Consider what it means that $x^{12002} \equiv 9 \pmod{7000}$: This is equivalent to $x^{12002} - 9 = 7000k$ for some $k \in \mathbb{Z}$, i.e. $9 = x^{12002} - 7000k$. So since 9 is an integer combination of x and 7000, we must have gcd(x, 7000)|9. But gcd(7000, 9) = 1, so the only possibility is gcd(x, 7000) = 1. Yes, x relatively prime to 7000! So we can use $x^{\phi(n)} \equiv 1 \pmod{n}$...

First question: Is x relatively prime to 7000? Consider what it means that $x^{12002} \equiv 9 \pmod{7000}$: This is equivalent to $x^{12002} - 9 = 7000k$ for some $k \in \mathbb{Z}$, i.e. $9 = x^{12002} - 7000k$. So since 9 is an integer combination of x and 7000, we must have gcd(x, 7000)|9. But gcd(7000, 9) = 1, so the only possibility is gcd(x, 7000) = 1. Yes, x relatively prime to 7000! So we can use $x^{\phi(n)} \equiv 1 \pmod{n}$...

We just saw

$$\phi(7000) = (2^3 - 2^2)(5^3 - 5^2)(7 - 1)$$

First question: Is x relatively prime to 7000? Consider what it means that $x^{12002} \equiv 9 \pmod{7000}$: This is equivalent to $x^{12002} - 9 = 7000k$ for some $k \in \mathbb{Z}$, i.e. $9 = x^{12002} - 7000k$. So since 9 is an integer combination of x and 7000, we must have gcd(x, 7000)|9. But gcd(7000, 9) = 1, so the only possibility is gcd(x, 7000) = 1. Yes, x relatively prime to 7000! So we can use $x^{\phi(n)} \equiv 1 \pmod{n}$...

We just saw

$$\phi(7000) = (2^3 - 2^2)(5^3 - 5^2)(7 - 1) = 2400.$$

First question: Is x relatively prime to 7000? Consider what it means that $x^{12002} \equiv 9 \pmod{7000}$: This is equivalent to $x^{12002} - 9 = 7000k$ for some $k \in \mathbb{Z}$, i.e. $9 = x^{12002} - 7000k$. So since 9 is an integer combination of x and 7000, we must have gcd(x, 7000)|9. But gcd(7000, 9) = 1, so the only possibility is gcd(x, 7000) = 1. Yes, x relatively prime to 7000! So we can use $x^{\phi(n)} \equiv 1 \pmod{n}$...

We just saw

$$\phi(7000) = (2^3 - 2^2)(5^3 - 5^2)(7 - 1) = 2400$$

So since

12002 = 5(2400) + 2

First question: Is x relatively prime to 7000? Consider what it means that $x^{12002} \equiv 9 \pmod{7000}$: This is equivalent to $x^{12002} - 9 = 7000k$ for some $k \in \mathbb{Z}$, i.e. $9 = x^{12002} - 7000k$. So since 9 is an integer combination of x and 7000, we must have gcd(x, 7000)|9. But gcd(7000, 9) = 1, so the only possibility is gcd(x, 7000) = 1. Yes, x relatively prime to 7000! So we can use $x^{\phi(n)} \equiv 1 \pmod{n}$...

We just saw

$$\phi(7000) = (2^3 - 2^2)(5^3 - 5^2)(7 - 1) = 2400$$

So since

12002 = 5(2400) + 2, we have $x^{12002} = (x^{2400})^5 x^2$.

First question: Is x relatively prime to 7000? Consider what it means that $x^{12002} \equiv 9 \pmod{7000}$: This is equivalent to $x^{12002} - 9 = 7000k$ for some $k \in \mathbb{Z}$, i.e. $9 = x^{12002} - 7000k$. So since 9 is an integer combination of x and 7000, we must have gcd(x, 7000)|9. But gcd(7000, 9) = 1, so the only possibility is gcd(x, 7000) = 1. Yes, x relatively prime to 7000! So we can use $x^{\phi(n)} \equiv 1 \pmod{n}$...

We just saw

$$\phi(7000) = (2^3 - 2^2)(5^3 - 5^2)(7 - 1) = 2400$$

So since

$$12002 = 5(2400) + 2$$
, we have $x^{12002} = (x^{2400})^5 x^2$.

$$9 \equiv_{7000} x^{12002} = (x^{2400})^5 x^2$$

First question: Is x relatively prime to 7000? Consider what it means that $x^{12002} \equiv 9 \pmod{7000}$: This is equivalent to $x^{12002} - 9 = 7000k$ for some $k \in \mathbb{Z}$, i.e. $9 = x^{12002} - 7000k$. So since 9 is an integer combination of x and 7000, we must have gcd(x, 7000)|9. But gcd(7000, 9) = 1, so the only possibility is gcd(x, 7000) = 1. Yes, x relatively prime to 7000! So we can use $x^{\phi(n)} \equiv 1 \pmod{n}$...

We just saw

$$\phi(7000) = (2^3 - 2^2)(5^3 - 5^2)(7 - 1) = 2400$$

So since

$$12002 = 5(2400) + 2$$
, we have $x^{12002} = (x^{2400})^5 x^2$.

$$9 \equiv_{7000} x^{12002} = (x^{2400})^5 x^2 \equiv_{7000} 1^5 x^2$$

First question: Is x relatively prime to 7000? Consider what it means that $x^{12002} \equiv 9 \pmod{7000}$: This is equivalent to $x^{12002} - 9 = 7000k$ for some $k \in \mathbb{Z}$, i.e. $9 = x^{12002} - 7000k$. So since 9 is an integer combination of x and 7000, we must have gcd(x, 7000)|9. But gcd(7000, 9) = 1, so the only possibility is gcd(x, 7000) = 1. Yes, x relatively prime to 7000! So we can use $x^{\phi(n)} \equiv 1 \pmod{n}$...

We just saw

$$\phi(7000) = (2^3 - 2^2)(5^3 - 5^2)(7 - 1) = 2400$$

So since

$$12002 = 5(2400) + 2$$
, we have $x^{12002} = (x^{2400})^5 x^2$.

$$9 \equiv_{7000} x^{12002} = (x^{2400})^5 x^2 \equiv_{7000} 1^5 x^2 = x^2.$$

First question: Is x relatively prime to 7000? Consider what it means that $x^{12002} \equiv 9 \pmod{7000}$: This is equivalent to $x^{12002} - 9 = 7000k$ for some $k \in \mathbb{Z}$, i.e. $9 = x^{12002} - 7000k$. So since 9 is an integer combination of x and 7000, we must have gcd(x, 7000)|9. But gcd(7000, 9) = 1, so the only possibility is gcd(x, 7000) = 1. Yes, x relatively prime to 7000! So we can use $x^{\phi(n)} \equiv 1 \pmod{n}$...

We just saw

$$\phi(7000) = (2^3 - 2^2)(5^3 - 5^2)(7 - 1) = 2400$$

So since

$$12002 = 5(2400) + 2$$
, we have $x^{12002} = (x^{2400})^5 x^2$.

So

$$9 \equiv_{7000} x^{12002} = (x^{2400})^5 x^2 \equiv_{7000} 1^5 x^2 = x^2.$$

At least 2 sol's

First question: Is x relatively prime to 7000? Consider what it means that $x^{12002} \equiv 9 \pmod{7000}$: This is equivalent to $x^{12002} - 9 = 7000k$ for some $k \in \mathbb{Z}$, i.e. $9 = x^{12002} - 7000k$. So since 9 is an integer combination of x and 7000, we must have gcd(x, 7000)|9. But gcd(7000, 9) = 1, so the only possibility is gcd(x, 7000) = 1. Yes, x relatively prime to 7000! So we can use $x^{\phi(n)} \equiv 1 \pmod{n}$...

We just saw

$$\phi(7000) = (2^3 - 2^2)(5^3 - 5^2)(7 - 1) = 2400.$$

So since

$$12002 = 5(2400) + 2$$
, we have $x^{12002} = (x^{2400})^5 x^2$.

So

$$9 \equiv_{7000} x^{12002} = (x^{2400})^5 x^2 \equiv_{7000} 1^5 x^2 = x^2.$$

At least 2 sol's: x = 3 and $x = -3 \equiv_{7000} 6997$. (There may be more.)