Math 345
Homework 9
11/8/2017
Exercise 32. Find one solution to the following congruences. Make a careful and detailed list of each of your steps. You may use a computer to do any of the intermediate computations.
(a) $x^{329} \equiv 452(\bmod 1147)$

Answer. Compute $\phi(n)$: We have $1147=31 * 37$, so that $\phi(1147)=30 * 36=1080$.
Compute $k^{-1}(\bmod \phi(n))$: Using the Euclidean algorithm, we can compute $1080 * 46+329 *$ $(-151)=1$. So

$$
329 *(-151) \equiv_{1080} 1, \quad \text { i.e. } 329^{-1} \equiv_{1080}-151 \equiv_{1080} 929=u
$$

Compute $b^{u}(\bmod n)$: Using the method of successive squaring, we have

$$
929=2^{9}+2^{8}+2^{7}+2^{5}+2^{0}
$$

and

a	0	1	2	3	4	5	6	7	8	9
${\overline{452^{2-1}}}^{2}$	452	204304	19044	478864	319225	128881	173889	478864	319225	128881
$\overline{452^{2^{a}}}$	452	138	692	565	359	417	692	565	359	417

So

$$
\begin{aligned}
x & \equiv_{1147} 452^{929} \\
& \equiv_{1147} 452^{2^{9}} 452^{2^{8}} 452^{2^{7}} 452^{2^{5}} 452^{2^{0}} \\
& \equiv_{1147} 417 * 359 * 565 * 417 * 452 \\
& \equiv_{1147} 121 * 376 \equiv_{1147} 763 .
\end{aligned}
$$

(b) $x^{275} \equiv 139(\bmod 588)$

Answer. Compute $\phi(n)$: We have $588=2^{2} * 3 * 7^{2}$, so that $\phi(588)=2 * 2 * 42=168$.
Reduce exponent: Since $275 \equiv_{168} 107$, we have $x^{275} \equiv_{588} x^{107}$. Compute $k^{-1}(\bmod \phi(n))$: Using the Euclidean algorithm, we can compute $107 * 11+168 *(-7)=1$. So

$$
107 * 11 \equiv_{168} 1, \quad \text { i.e. } 107^{-1} \equiv_{168} 11=u
$$

Compute $b^{u}(\bmod n)$: Using the method of successive squaring, we have

$$
11=2^{3}+2^{1}+2^{0}
$$

and

a	0	1	2	3
$\overline{\overline{139}^{2^{a-1}}}{ }^{2}$	139	19321	255025	177241
$\overline{139^{2 a}}$	139	505	421	253

So

$$
\begin{aligned}
x & \equiv_{588} 139^{11} \\
& \equiv_{588} 139^{2^{3}} 139^{2^{1}} 139^{2^{0}} \\
& \equiv_{588} 253 * 505 * 139 \equiv_{588} \quad 559 .
\end{aligned}
$$

Exercise 33. In Chapter 17, we described how to compute one k th root of b modulo n, but there may be other solutions. For example, if $a^{2} \equiv_{n} b$, then we also have $(-a)^{2} \equiv_{n} b$.
(a) Let b, k, and n be integers that satisfy

$$
\operatorname{gcd}(b, n)=1 \quad \text { and } \quad \operatorname{gcd}(k, \phi(n))=1
$$

Show that b has exactly one k th root modulo n.
[Hint: You know there's at least one, so you just have to show there isn't more than one. So start by supposing a and a^{\prime} are both k th roots of b modulo n, i.e. $a^{k} \equiv_{n} b$ and $\left(a^{\prime}\right)^{k} \equiv_{n} b$. Now use the tools for finding solutions from class to show that $a \equiv_{n} a^{\prime}$.]

Proof. We already saw that under these assumption, b has at least one k th root mod n. Now suppose that a and a^{\prime} are both k th roots of b modulo n. Since $\operatorname{gcd}(k, \phi(n))=1$, we can find u and v such that $k u+\phi(n) v=1$. Eulers theorem tells us that $a^{\phi(n)} \equiv_{n} 1 \equiv_{n}\left(a^{\prime}\right)^{\phi(n)}$, so we have

$$
a=a^{k u+\phi(n) v}=\left(a^{k}\right)^{u}\left(a^{\phi(n)}\right) v \equiv b^{u} * 1^{v} \equiv b^{u} \quad(\bmod n) .
$$

Similarly, $a^{\prime} \equiv b^{u}(\bmod n)$. So $a \equiv a^{\prime}(\bmod n)$.
(b) Why doesn't part (a) contradict our example above? Namely why doesn't the fact that there is more than one solution to $a^{2} \equiv_{n} b$ for most n and b provide a counterexample to part (a)?
Answer. For most values of n, we have $2 \mid \phi(n)$, so $\operatorname{gcd}(2, \phi(n)) \neq 1$.
(c) Look at some examples were n is prime and try to find a formula for the number of k th roots of b modulo n (assuming that it has at least one). (Don't try to prove your formula.)
[Try setting $n=3,5$, and 7 and use a computer to compute $a^{k}(\bmod n)$ for $a=2,3, \ldots, n-1$ and $k=1,2, \ldots, n-1$. If you need more data, do more prime n 's.]
Answer. We will see that b has $\operatorname{gcd}(k, p-1) k$ th roots modulo p.
Exercise 34. Our method for solving $x^{k} \equiv_{n} b$ is first to find positive integers u and v satisfying $k u-\phi(n) v=1$, and then the solution is $x \equiv_{n} b^{u}$. However, we only showed that this works provided that $\operatorname{gcd}(b, m)=1$, since we used Eulers formula $b^{\phi(n)} \equiv_{n} 1$.
(a) If n is a product of distinct primes, show that $x \equiv_{n} b^{u}$ (with u as above) is always a solution $x \equiv_{n} b^{u}$, even if $\operatorname{gcd}(b, n)>1$.
[Hint: Check that n divides $\left(b^{u}\right)^{k}-b$ by checking that each prime divisor of n divides $\left(b^{u}\right)^{k}-b$. To do that, if $p \mid n$, then break into cases where $p \mid b$ or $p \nmid b$. If $p \mid b$, what can you conclude? If $p \nmid b$, check that $p-1 \mid \phi(n)$, and then plug that information into " $k u=\phi(n) v+1$ ", and compute $\left(b^{u}\right)^{k}(\bmod p)$ using Fermat.]

Proof. We want to show that $\left(b^{u}\right)^{k} \equiv b(\bmod n)$, which means we want to check that n divides $\left(b^{u}\right)^{k}-b$.

First factor n as $n=p_{1} p_{2} \cdots p_{r}$, for primes $p_{1}<\cdots<p_{r}$. So we really only need to check that each p_{i} divides $\left(b^{u}\right)^{k}-b$. There are two possibilities.

Case 1: p_{i} divides b. Then p_{i} divides $\left(b^{u}\right)^{k}-b$.
Case 2: Second, p_{i} doesn't divide b. In this case, note

$$
\phi(n)=\left(p_{1}-1\right)\left(p_{2}-2\right) \cdots\left(p_{r}-1\right),
$$

so that $p_{i}-1$ divides $\phi(n)$. This means that

$$
u k=1+\phi(n) v=1+(p i-1) w \quad \text { for some } w .
$$

So

$$
\left(b^{u}\right)^{k}=b^{u k}=b \cdot\left(b^{p_{i}-1}\right) w \equiv b \cdot 1^{w} \equiv b \quad\left(\bmod p_{i}\right) .
$$

(b) Show that our method does not work for the congruence $x^{5} \equiv 6(\bmod 9)$ (by finding u and plugging in).
Proof. First, we solve $k u-\phi(n) v=1$. In our case, $k=5, n=9$, and $\phi(n)=6$, so we get $u=5$ and $v=4$. Then $b^{u}=6^{5} \equiv 0(\bmod 9)$. But $x=0$ is not a solution of the congruence $x^{5} \equiv 6$ mod 9. (In fact, this congruence doesnt have any solutions.)

Exercise 35. Decode the following message, which was sent using the modulus $n=7081$ and the exponent $k=1789$. (Note that you will first need to factor n.)

$$
5192, \quad 2604, \quad 4222
$$

Answer. We have $7081=73 \cdot 97$, so $\phi(7081)=72 \cdot 96=6912$. The least positive value of u which solves $u k+v \phi(n)=1$ is $u=85$. Using this, we compute

$$
\begin{gathered}
5192 u \equiv 1615 \quad(\bmod 7081), \\
2604 u \equiv 2823 \quad(\bmod n)
\end{gathered}
$$

and

$$
4222 u \equiv 1130 \quad(\bmod n)
$$

So the message is 161528231130 , which translates to "Fermat."

Exercise 36. It may appear that RSA decryption does not work if you are unlucky enough to choose a message a that is not relatively prime to n. Of course, if $n=p q$ and p and q are large, this is very unlikely to occur. [See Exercise 34.]
(a) Show that in fact RSA decryption does work for all messages a, regardless of whether or not they have a factor in common with n. In other words, show that RSA decryption works for all messages a as long as n is a product of distinct primes.
Answer. This is essentially exercise 34.
(b) Give an example with $n=18$ and $a=3$ where RSA decryption does not work. [Remember, k must be chosen relatively prime to $\phi(n)=6$.]
Answer. Take $k=5$.Then $a^{k}=35 \equiv 9(\bmod 18)$, so $b=9$. Next $5 k-4 \phi(n)=1$, so we compute $b^{5}=9^{5} \equiv 9(\bmod 18)$. Thus we do not recover the original message $a=3$.

