
SOLUTIONS
Math 345

Homework 9
11/8/2017

Exercise 32. Find one solution to the following congruences. Make a careful and detailed list of
each of your steps. You may use a computer to do any of the intermediate computations.

(a) x329 ≡ 452 (mod 1147)
Answer. Compute φ(n): We have 1147 = 31 ∗ 37, so that φ(1147) = 30 ∗ 36 = 1080.
Compute k−1 (mod φ(n)): Using the Euclidean algorithm, we can compute 1080∗46+329∗
(−151) = 1. So

329 ∗ (−151) ≡1080 1, i.e. 329−1 ≡1080 −151 ≡1080 929 = u.

Compute bu (mod n): Using the method of successive squaring, we have

929 = 29 + 28 + 27 + 25 + 20,

and

a 0 1 2 3 4 5 6 7 8 9

4522a−12 452 204304 19044 478864 319225 128881 173889 478864 319225 128881

4522a 452 138 692 565 359 417 692 565 359 417

.

So

x ≡1147 452929

≡1147 4522
9
4522

8
4522

7
4522

5
4522

0

≡1147 417 ∗ 359 ∗ 565 ∗ 417 ∗ 452

≡1147 121 ∗ 376 ≡1147 763 .

�

(b) x275 ≡ 139 (mod 588)
Answer. Compute φ(n): We have 588 = 22 ∗ 3 ∗ 72, so that φ(588) = 2 ∗ 2 ∗ 42 = 168.
Reduce exponent: Since 275 ≡168 107, we have x275 ≡588 x

107. Compute k−1 (mod φ(n)):
Using the Euclidean algorithm, we can compute 107 ∗ 11 + 168 ∗ (−7) = 1. So

107 ∗ 11 ≡168 1, i.e. 107−1 ≡168 11 = u.

Compute bu (mod n): Using the method of successive squaring, we have

11 = 23 + 21 + 20,

and

a 0 1 2 3

1392a−12 139 19321 255025 177241

1392a 139 505 421 253

.



So

x ≡588 13911

≡588 1392
3
1392

1
1392

0

≡588 253 ∗ 505 ∗ 139 ≡588 559 .

�

Exercise 33. In Chapter 17, we described how to compute one kth root of b modulo n, but there
may be other solutions. For example, if a2 ≡n b, then we also have (−a)2 ≡n b.
(a) Let b, k, and n be integers that satisfy

gcd(b, n) = 1 and gcd(k, φ(n)) = 1.

Show that b has exactly one kth root modulo n.
[Hint: You know there’s at least one, so you just have to show there isn’t more than one. So
start by supposing a and a′ are both kth roots of b modulo n, i.e. ak ≡n b and (a′)k ≡n b. Now
use the tools for finding solutions from class to show that a ≡n a′.]

Proof. We already saw that under these assumption, b has at least one kth root mod n. Now
suppose that a and a′ are both kth roots of b modulo n. Since gcd(k, φ(n)) = 1, we can find

u and v such that ku + φ(n)v = 1. Eulers theorem tells us that aφ(n) ≡n 1 ≡n (a′)φ(n), so we
have

a = aku+φ(n)v = (ak)u(aφ(n))v ≡ bu ∗ 1v ≡ bu (mod n).

Similarly, a′ ≡ bu (mod n). So a ≡ a′ (mod n). �

(b) Why doesn’t part (a) contradict our example above? Namely why doesn’t the fact that there
is more than one solution to a2 ≡n b for most n and b provide a counterexample to part (a)?
Answer. For most values of n, we have 2|φ(n), so gcd(2, φ(n)) 6= 1. �

(c) Look at some examples were n is prime and try to find a formula for the number of kth roots
of b modulo n (assuming that it has at least one). (Don’t try to prove your formula.)
[Try setting n = 3, 5, and 7 and use a computer to compute ak (mod n) for a = 2, 3, . . . , n− 1
and k = 1, 2, . . . , n− 1. If you need more data, do more prime n’s.]
Answer. We will see that b has gcd(k, p− 1) kth roots modulo p. �

Exercise 34. Our method for solving xk ≡n b is first to find positive integers u and v satisfying
ku − φ(n)v = 1, and then the solution is x ≡n bu. However, we only showed that this works

provided that gcd(b,m) = 1, since we used Eulers formula bφ(n) ≡n 1.

(a) If n is a product of distinct primes, show that x ≡n bu (with u as above) is always a solution
x ≡n bu, even if gcd(b, n) > 1.

[Hint: Check that n divides (bu)k− b by checking that each prime divisor of n divides (bu)k− b.
To do that, if p|n, then break into cases where p|b or p - b. If p|b, what can you conclude? If
p - b, check that p−1|φ(n), and then plug that information into “ku = φ(n)v+1”, and compute
(bu)k (mod p) using Fermat.]

Proof. We want to show that (bu)k ≡ b (mod n), which means we want to check that n divides
(bu)k − b.



First factor n as n = p1p2 · · · pr, for primes p1 < · · · < pr. So we really only need to check
that each pi divides (bu)k − b. There are two possibilities.

Case 1: pi divides b. Then pi divides (bu)k − b.
Case 2: Second, pi doesn’t divide b. In this case, note

φ(n) = (p1 − 1)(p2 − 2) · · · (pr − 1),

so that pi − 1 divides φ(n). This means that

uk = 1 + φ(n)v = 1 + (pi− 1)w for some w.

So
(bu)k = buk = b · (bpi−1)w ≡ b · 1w ≡ b (mod pi).

�

(b) Show that our method does not work for the congruence x5 ≡ 6 (mod 9) (by finding u and
plugging in).

Proof. First, we solve ku−φ(n)v = 1. In our case, k = 5, n = 9, and φ(n) = 6, so we get u = 5
and v = 4. Then bu = 65 ≡ 0 (mod 9). But x = 0 is not a solution of the congruence x5 ≡ 6
mod 9. (In fact, this congruence doesnt have any solutions.) �

Exercise 35. Decode the following message, which was sent using the modulus n = 7081 and the
exponent k = 1789. (Note that you will first need to factor n.)

5192, 2604, 4222

Answer. We have 7081 = 73 · 97, so φ(7081) = 72 · 96 = 6912. The least positive value of u which
solves uk + vφ(n) = 1 is u = 85. Using this, we compute

5192u ≡ 1615 (mod 7081),

2604u ≡ 2823 (mod n),

and
4222u ≡ 1130 (mod n).

So the message is 161528231130, which translates to “Fermat.”
�

Exercise 36. It may appear that RSA decryption does not work if you are unlucky enough to
choose a message a that is not relatively prime to n. Of course, if n = pq and p and q are large,
this is very unlikely to occur. [See Exercise 34.]

(a) Show that in fact RSA decryption does work for all messages a, regardless of whether or not
they have a factor in common with n. In other words, show that RSA decryption works for all
messages a as long as n is a product of distinct primes.

Answer. This is essentially exercise 34. �

(b) Give an example with n = 18 and a = 3 where RSA decryption does not work. [Remember, k
must be chosen relatively prime to φ(n) = 6 .]

Answer. Take k = 5.Then ak = 35 ≡ 9 (mod 18), so b = 9. Next 5k − 4φ(n) = 1, so we
compute b5 = 95 ≡ 9 (mod 18). Thus we do not recover the original message a = 3. �


