Exercise 23.

(a) Solve the following congruences:
(i) $x^{101} \equiv 7(\bmod 12)$

Answer. We have

$$
\phi(12)=\#\{1,5,7,11\} .
$$

Since $\operatorname{gcd}(7,12)=1$, we must have $\operatorname{gcd}(x, 12)=1$. So

$$
1 \equiv_{12} x^{\phi(12)}=x^{4} .
$$

Therefore

$$
7 \equiv_{12} x^{101}=\left(x^{4}\right)^{25} x \equiv_{12} 1 * x=x
$$

So $x=7$ is a solution.
(ii) $10^{x} \equiv 1(\bmod 27)$

Answer. Since $\operatorname{gcd}(10,27)=1$, this has a solution of $x=\phi(27)=\phi\left(3^{3}\right)=3^{2}(3-1)=18$. (There are other solutions as well: e.g. $10^{3}=27 * 37+1$.)
(b) The number 3750 satisfies $\phi(3750)=1000$. Find an integer $1 \leq a \leq 5000$ that is not a multiple of 7 , that satisfies $a \equiv 7^{3003}(\bmod 3750)$ [This integer need not be reduced modulo 3750].

Answer. We have

$$
\left.a \equiv 7^{3003} \quad(\bmod 3750)=\left(7^{1000}\right)^{3}\right) 7^{3} \equiv 1 * 7^{3} \quad(\bmod 3750)=343
$$

This is a multiple of 7 , but adding 3750 (which is not a multiple of 7) preserves its residue. So $7^{3}+3750=4093$ is one such answer.
(c) Show that if $m=561=3 \cdot 11 \cdot 17$, then $a^{m-1} \equiv 1(\bmod m)$ for all a relatively prime to m.
[Hint: There may be 320 values of a between 1 and m that are relatively prime to m, but it is not necessary (nor called for) to actually compute $a^{m-1} \equiv 1(\bmod m)$ for all those values. Instead, use Fermats Little Theorem to check that $a^{m-1} \equiv 1(\bmod p)$ for each prime p dividing m, and then explain why this implies that $a^{m-1} \equiv 1(\bmod m)$.]
Answer. If a is relatively prime to $3 \cdot 11 \cdot 17$, then it is also relatively prime to 3,11 , and 17 . So Fermat's little theorem tells us

$$
a^{2} \equiv 1 \quad(\bmod 3), \quad a^{10} \equiv 1 \quad(\bmod 11), \quad \text { and } \quad a^{16} \equiv 1 \quad(\bmod 17)
$$

But 560 is a multiple of all 2,10 , and 16 :

$$
560=2 * 280=10 * 56=16 * 35 .
$$

So

$$
a^{560} \equiv 1 \quad(\bmod 3), \quad a^{560} \equiv 1 \quad(\bmod 11), \quad \text { and } \quad a^{560} \equiv 1 \quad(\bmod 17) .
$$

But this means $a^{560}-1$ is a multiple of 3,11 , and 17 . So $a^{560}-1$ is a multiple of $1 \mathrm{~cm}(3,11,17)=$ $3 \cdot 11 \cdot 17=561$. Therefore $a^{560} \equiv 1(\bmod 561)$, as desired.

See exercise 10.3 in the book.

Exercise 24. Let $b_{1}<b_{2}<\cdots<b_{\phi(n)}$ be the integers $1 \leq b_{i}<n$ that are relatively prime to n, and let $B=b_{1} b_{2} b_{3} \cdots b_{\phi(n)}$ be their product. [This number came up during the proof of Euler's formula.]
(a) Compute B for $n=4,5,6$, and 8 , modulo n. Note that in each case, $B \equiv 1(\bmod n)$ or $B \equiv n-1(\bmod n)$, which, together, is the same as $B \equiv \pm 1(\bmod n)$.

Answer. As in class, let

$$
\Phi(n)=\left\{b_{1}, b_{2}, \cdots, b_{\phi(n)}\right\} .
$$

$n=4$:
Here, $\Phi(4)=\{1,3\}$. But $3 \equiv-1(\bmod 4)$, so $1 * 3 \equiv_{4} 1(-1)=-1$.
$\underline{n=5}$:
Here, $\Phi(5)=\{1,2,3,4\}$. But $4 \equiv-1(\bmod 5)$ and $2 * 3 \equiv 1(\bmod 5)$, so

$$
1 * 2 * 3 * 4 \equiv_{5} 1 * 1 *(-1)=-1
$$

$\underline{n=6}$:
Here, $\Phi(5)=\{1,5\}$. But $5 \equiv-1(\bmod 6)$, so $1 * 5 \equiv_{6} 1(-1)=-1$.
$\underline{n=8}$:
Here, $\Phi(5)=\{1,3,5,7\}$. But $7 \equiv-1(\bmod 8)$ and $3 * 5 \equiv-1(\bmod 8)$, so

$$
1 * 3 * 5 * 7 \equiv_{5} 1 *(-1) *(-1)=1 .
$$

(b) Prove that $B \equiv \pm 1(\bmod n)$ in general. [Hint: Think about multiplicative inverses - when does an integer a have an inverse? How many are there modulo n ?]

Proof. $=$ Since a number $1 \leq b<n$ has an inverse modulo n if and only if $\operatorname{gcd}(b, n)=1$, we have

$$
\Phi=\left\{b_{1}, b_{2}, \cdots, b_{\phi(n)}\right\}=\{1 \leq b<n \mid b \text { has an inverse } \bmod n\} .
$$

Now, break Φ into two parts, based on the numbers that are their own inverses and those that are not:

$$
\Phi_{1}=\left\{b \in \Phi \mid b^{2} \equiv_{n} 1\right\} \quad \Phi_{2}=\left\{b \in \Phi \mid b^{2} \neq 1\right\}
$$

(since b is its own inverse if and only if $1 \equiv_{n} b \cdot b=b^{2}$). Thus

$$
B=\prod_{b \in \Phi} b=(\underbrace{\prod_{b \in \Phi_{1}} b}_{B_{1}})(\underbrace{\prod_{b \in \Phi_{2}} b}_{B_{2}}) .
$$

Of course, if $b \in \Phi_{2}$, then its unique inverse is in Φ_{2} as well:

$$
b b^{\prime} \equiv_{n} 1 \quad \text { if and only if } \quad b^{\prime} b \equiv_{n} 1 .
$$

So $B_{2}=\prod_{b \in \Phi_{2}} b=1$ (each element of Φ_{2} has a unique counterpart that it cancels with).
Now what about Φ_{1} ? Well, it turns out that the elements of Φ_{1} pair up nicely as well: If $b \in \Phi_{1}$, then $b^{1}=1$, then
(i) $n-b \in \Phi_{1}$:

This follows since

$$
(n-b)^{2}=n^{2}-2 b n+b^{2} \equiv_{n} 0-0+1=1 .
$$

(ii) $b \neq n-b$:

If $b=n-b$, then $2 b=n$, so that $b \mid n$, which contradicts $\operatorname{gcd}(b, n)=1$.
(iii) $b(n-b) \equiv_{n}-1$: This follows since

$$
b(n-b)=b n-b^{2} \equiv_{n} 0-1=-1 .
$$

So the elements of Φ_{1} break into

$$
\Phi_{1}^{(1)}=\{b \in \Phi \mid b<n / 2\} \quad \text { and } \quad \Phi_{1}^{(2)}=\{b \in \Phi \mid b>n / 2\}=\left\{n-b \mid b \in \Phi_{1}^{(1)}\right\} .
$$

Thus

$$
B_{1}=\prod_{b \in \Phi_{1}} b=\prod_{\substack{b \in \Phi_{1} \\ b<n / 2}} b(n-b) \equiv(-1)^{\left|\Phi_{1}\right| / 2}(\bmod n) .
$$

So, finally,

$$
B=B_{1} B_{2} \equiv(-1)^{\left|\Phi_{1}\right| / 2} \cdot 1 \quad(\bmod n)= \pm 1 .
$$

(c) Try to find a pattern for when B is equivalent to $+1(\bmod n)$ and when it is equivalent to -1 $(\bmod n)$. Can you prove your conjecture?
Answer. If $n=2$, then $B=1 \equiv_{2}-1$. Otherwise, for $n>2$, it turns out that $B \equiv_{n}-1$ if and only if there exists a primitive root modulo n, which is a number a such that every $b \in \Phi(n)$ can be written as a^{k} for some k (in group theory, this is what it means for $(\mathbb{Z} / n \mathbb{Z})^{\times}$to be cyclic). Note that happens exactly when

$$
\left\{a, a^{2}, \ldots, a^{\phi(n)}\right\} \equiv_{n} \Phi(n) \quad \text { for some } a \in \Phi(n) .
$$

In particularly, since $a^{\phi(n)} \equiv_{n} 1$, and all of the other powers must be distinct, we know
(a) $a^{k} \equiv_{n} 1$ if and only if $\phi(n) \mid k$;
(b) for $1 \leq \ell \leq \phi(n)$, if $a^{\ell} \not \equiv_{n} 1$ but $a^{2 \ell} \equiv_{n} 1$, then $a^{\ell} \not \equiv_{n}-1$:

We have $\phi(n) \mid 2 \ell$. But since $1 \leq \ell \leq \phi(n)$, this means that we must have $\ell=\phi(n) / 2$; namely there are only two k for which a^{k} is it's own inverse. Since 1 and $n-1$ are both in $\Phi(n)$ and are their own inverses, a^{ℓ} must be the one that's not 1 , namely $n-1$, i.e. -1 $(\bmod n)$.
For example, when $n=5$, take $a=2$:

$$
a^{1}=2, \quad a^{2}=4, \quad a^{3}=8 \equiv_{5} 3, \quad a^{4}=16 \equiv_{5} 1 ;
$$

and since $a^{2 * 2} \equiv_{5} 1$, we have $a^{2} \equiv_{5}-1$.
Now, if we're in this case, then

$$
B \equiv_{n} a \cdot a^{2} \cdots a^{\phi}(n)=a^{1+2+\cdots+\phi(n)} .
$$

But we showed that

$$
1+2+\cdots+\phi(n)=\phi(n)(\phi(n)+1) / 2 .
$$

So $B^{2}=a^{\phi(n)+1(\phi(n)+1)}=\left(a^{\phi(n)}\right)^{\phi(n)+1} \equiv 1^{\phi(n)+1}=1$. Further, since $\phi(n)$ is even (so that $\phi(n)(\phi(n)+1) / 2$ factors into integers as $\phi(n) / 2$ and $\phi(n)+1$-see problem 25(b) below) and $\operatorname{gcd}(\phi(n), \phi(n)+1)=1$, we have $\phi(n) \nmid \phi(n)(\phi(n)+1) / 2$. So $B \not \equiv_{n} 1$. Therefore $B \equiv_{n}-1$.

Otherwise, one can show that $B \equiv_{n} 1$ (I'll spare you the proof).
So when is there a primitive root modulo n ? We prove in modern algebra that this happens exactly when

$$
n=2, \quad 4, \quad p^{k}, \quad \text { or } \quad 2 p^{k}
$$

for any odd prime p.

Exercise 25.

(a) Compute $\phi(97)$ and $\phi(8800)$.

Answer. Since 97 is prime and $8800=2^{5} \cdot 5^{2} \cdot 11$, we have

$$
\phi(97)=96 \quad \text { and } \quad \phi(8800)=2^{4}(2-1) \cdot 5(5-1) \cdot 10 .
$$

(b) For $n \geq 3$, show $\phi(n)$ is even.

Answer. Factor n into prime powers:

$$
n=p_{1}^{r_{1}} \cdots p_{\ell}^{r_{\ell}}, \quad p_{1}<\cdots<p_{\ell} .
$$

If $n=2^{r}$ for some $r \geq 2$, then

$$
\phi(n)=2^{r-1}(2-1)=2^{r-1},
$$

which is even since $r-1>0$. Otherwise, p_{ℓ} is odd, so that $p_{\ell}-1$ is even. Thus

$$
\phi(n)=\phi\left(p_{1}^{r_{1}}\right) \cdots \phi\left(p_{\ell}\right)^{r_{\ell}}=p_{1}^{r_{1}-1}\left(p_{1}-1\right) \cdots p_{\ell}^{r_{\ell}-1}\left(p_{\ell}-1\right)
$$

is even as well.
(c) Fill in the blank and prove: $\phi(n)$ is a multiple of 4 if and only if \qquad .

Answer. As in the previous part, if n has two odd prime divisors, then $\phi(n)$ will have at least two even factors in $\phi(n)=\phi\left(p_{1}^{r_{1}}\right) \cdots \phi\left(p_{\ell}\right)^{r_{\ell}}$, so is a multiple of 4 .

Otherwise, $n=2^{r}$ or $2^{r} p^{s}$ for some odd prime p.
If $n=2^{r}$, then $\phi(n)=2^{r-1}$, which is a multiple of 4 if and only if $r \geq 3$.
If $n=2^{r} p^{s}$ with $r \geq 2$, then $\phi(n)=2^{r-1} p^{s-1}(p-1)$, which is a multiple of 4 since 2^{r-1} and $p-1$ are both even.

Finally, if $n=2 p^{s}$ or p^{s}, then $\phi(n)=p^{s-1}(p-1)$, which is a multiple of 4 if and only if $p \equiv_{4} 1$.
In summary, $\phi(n)$ is a multiple of 4 if and only if (1) n has two odd prime divisors, (2) n has a prime divisor $p \equiv_{4} 1$, or (3) n is a multiple of 4 and has at least one odd prime divisor.
(d) Suppose that $p_{1}, p_{2}, \ldots, p_{r}$ are the distinct primes that divide n (for example, if $n=7000$, then this list is 2,5 , and 7). Use what we already know about $\phi(n)$ to prove that

$$
\phi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{r}}\right) .
$$

Use this formula to double check the value of $\phi(7000)$ (calculated in class), and to compute 1000000. Compare your answer to the other formula for $\phi(n)$.

Answer. We have

$$
n=p_{1}^{k_{1}} \cdots p_{r}^{k_{r}}
$$

so

$$
\begin{aligned}
& n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{r}}\right) \\
& \quad=p_{1}^{k_{1}} \cdots p_{r}^{k_{r}}\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{r}}\right) \\
& \quad=p_{1}^{k_{1}}\left(1-\frac{1}{p_{1}}\right) p_{2}^{k_{2}}\left(1-\frac{1}{p_{2}}\right) \cdots p_{r}^{k_{r}}\left(1-\frac{1}{p_{r}}\right) \\
& \quad=\left(p_{1}^{k_{1}}-p_{1}^{k_{1}-1}\right)\left(p_{2}^{k_{2}}-p_{2}^{k_{2}-1}\right) \cdots\left(p_{r}^{k_{r}}-p_{r}^{k_{r}-1}\right) \\
& \quad=\phi\left(p_{1}^{k_{1}} \cdots p_{r}^{k_{r}}\right)=\phi(n),
\end{aligned}
$$

as desired. So

$$
\phi(7000)=7000(1-1 / 2)(1-1 / 5)(1-1 / 7)=7000(1 / 2)(4 / 5)(6 / 7)=7000(24 / 70)=2400 .
$$

(e) Find at least one solution to $x^{8644}=16(\bmod 2025)$.

Answer. The two prime factors of 2025 are 3 and 5 , so

$$
\phi(2025)=2025(2 / 3)(4 / 5)=2025(8 / 15)=1080 .
$$

So since $\operatorname{gcd}(16,2025)=1$, we must have $\operatorname{gcd}(x, 2025)=1$. Therefore, since $8644 \equiv_{1080} 4$, we have

$$
16 \equiv_{2025} x^{8644} \equiv_{2025} x^{4} .
$$

One solution to this is $x=2$.

Exercise 26.

(a) Find an x that satisfies both $x \equiv 3(\bmod 7)$ and $x \equiv 5(\bmod 9)$.

Answer. If $x \equiv 3(\bmod 7)$, then $x=3+7 y$ for some $y \in \mathbb{Z}$. So

$$
5 \equiv_{9} x \equiv_{9} 3+7 y, \quad \text { i.e. } \quad 7 y \equiv_{9} 2
$$

Since $\operatorname{gcd}(9,7)=1$, this has a unique solution. In particular, since

$$
4 * 7=28=3 * 9+1 \equiv_{9} 1
$$

we have

$$
y \equiv{ }_{9} 4 * 7 * y \equiv{ }_{9} 4 * 2=8
$$

So

$$
x=3+7 * 8=59 \text {. }
$$

(b) Find an x that satisfies both $x \equiv 3(\bmod 37)$ and $x \equiv 1(\bmod 87)$.

Answer. If $x \equiv 3(\bmod 37)$, then $x=3+37 y$ for some $y \in \mathbb{Z}$. So

$$
1 \equiv_{87} x \equiv_{87} 3+37 y, \quad \text { i.e. } \quad 37 y \equiv_{87}-2
$$

Since $\operatorname{gcd}(87,37)=1$, this has a unique solution. In particular, $y=7$ is a solution $(7 * 37=$ $259=3 * 87-2)$. So

$$
x=3+37 * 7=262 .
$$

