SOLUTIONS

Math 345
Homework 6
10/11,/2017
Exercise 23.
(a) Solve the following congruences:
(i) 2 =7 (mod 12)
Answer. We have
9(12) = #{1,5,7,11}.
Since ged(7,12) = 1, we must have ged(x,12) = 1. So
1=19 2912 = 24,
Therefore
7 =15 201 = (:134)2535 = lxx =2
So x = 7 is a solution.
O

(b)

(ii) 10* =1 (mod 27)

Answer. Since ged(10,27) = 1, this has a solution of = ¢(27) = ¢(3%) = 32(3 —1) = 18.
(There are other solutions as well: e.g. 10% = 27 % 37 + 1.) O

The number 3750 satisfies ¢(3750) = 1000. Find an integer 1 < a < 5000 that is not a multiple
of 7, that satisfies a = 73°°3 (mod 3750) [This integer need not be reduced modulo 3750].

Answer. We have
a =7 (mod 3750) = (7} 73 = 1% 7  (mod 3750) = 343.

This is a multiple of 7, but adding 3750 (which is not a multiple of 7) preserves its residue. So
73 4 3750 = 4093 is one such answer.
O

Show that if m = 561 = 3-11- 17, then a™ ! =1 (mod m) for all a relatively prime to m.
[Hint: There may be 320 values of a between 1 and m that are relatively prime to m, but it
is not necessary (nor called for) to actually compute a™ ! = 1 (mod m) for all those values.
Instead, use Fermats Little Theorem to check that a™~! =1 (mod p) for each prime p dividing
m, and then explain why this implies that a™ ! =1 (mod m).]

Answer. If a is relatively prime to 3 - 11 - 17, then it is also relatively prime to 3, 11, and 17.
So Fermat’s little theorem tells us
a?>=1 (mod 3), a'®=1 (mod11), and a'®*=1 (mod 17).
But 560 is a multiple of all 2, 10, and 16:
560 = 2 % 280 = 10 % 56 = 16 * 35.

So
=1 (mod 3), a®® =1 (mod11), and a*°=1 (mod 17).
But this means a®%” —1 is a multiple of 3, 11, and 17. So a®%° —1 is a multiple of lem(3, 11, 17) =
3-11-17 = 561. Therefore a®®° = 1 (mod 561), as desired.
See exercise 10.3 in the book. O



Exercise 24. Let by < by < -+ < bg(,) be the integers 1 < b; < n that are relatively prime to n,

and let B = b1babs - - - by(,) be their product. [This number came up during the proof of Euler’s

formula.]

(a) Compute B for n = 4,5,6, and 8, modulo n. Note that in each case, B = 1 (mod n) or
B =n—1 (mod n), which, together, is the same as B = +1 (mod n).

Answer. As in class, let

@(n) = {bl,bQ, s ,b¢(n)}.
4:

H ere, ®(4) = {1,3}. But 3=—1 (mod 4), so 1 *3 =4 1(—1) = —1.
n = o:
Here, ®(5) = {1,2,3,4}. But 4= —1 (mod 5) and 2% 3 =1 (mod 5), so

1%2%x3%4=51x1x(—1)=—-1.

n = 6:
Here, ®(5) = {1,5}. But 5= —1 (mod 6), so 1 x5 =¢ 1(—1) = —1.
n=_8:

Here, ®(5) ={1,3,5,7}. But 7= —1 (mod 8) and 3% 5= —1 (mod 8), so
1%3%bx7=51*(—1)*(—-1)=1
O

(b) Prove that B = £1 (mod n) in general. [Hint: Think about multiplicative inverses — when
does an integer a have an inverse? How many are there modulo n?]

Proof. = Since a number 1 < b < n has an inverse modulo n if and only if ged(b,n) = 1, we
have

@ = {b1,b2, - ,bgn)} ={1 <b<n| bhas an inverse mod n }.
Now, break ® into two parts, based on the numbers that are their own inverses and those that
are not:

P ={becd|bP=,1} Do={bc®|b*#1}
(since b is its own inverse if and only if 1 =, b- b = b?). Thus

s=T0=(110)(110)

B By
Of course, if b € ®9, then its unique inverse is in ®o as well:
b =,1 ifandonlyif bb=,1

So Bz = [[cq, b =1 (each element of ®3 has a unique counterpart that it cancels with).
Now what about ®;7 Well, it turns out that the elements of ®; pair up nicely as well: If
b € @y, then b' = 1, then
(i) n—be P5:
This follows since
(n—b?*=n>-2m+b"=,0-0+1=1.

(ii) b#n—b:
If b =n — b, then 2b = n, so that b|n, which contradicts ged(b,n) = 1.



(iii) b(n — b) =, —1: This follows since
bn—b)=bn—-b>=,0-1=—1.
So the elements of ®; break into
oV =(bed|b<n/2} and 3P ={bed®|b>n/2}={n—b|bedV}
Thus
B, = H b= H b(n —b) = (=1)I®1172 (mod n).

bedy bedy
b<n/2

So, finally,
B=DB1By=(—1)®V2.1 (mod n) = +1.
([l

Try to find a pattern for when B is equivalent to +1 (mod n) and when it is equivalent to —1
(mod n). Can you prove your conjecture?

Answer. If n =2, then B =1 =9 —1. Otherwise, for n > 2, it turns out that B =, —1 if and
only if there exists a primitive root modulo n, which is a number a such that every b € ®(n)
can be written as a* for some k (in group theory, this is what it means for (Z/nZ)* to be
cyclic). Note that happens exactly when

{a,a?,...,a®™} =, ®(n) for some a € B(n).

In particularly, since a®™ =,, 1, and all of the other powers must be distinct, we know

(a) a¥ =, 1 if and only if ¢(n)|k;

(b) for 1 < ¢ < ¢(n), if a* #, 1 but a® =, 1, then o’ #, —1:
We have ¢(n)|2¢. But since 1 < £ < ¢(n), this means that we must have £ = ¢(n)/2;
namely there are only two k for which a¥ is it’s own inverse. Since 1 and n — 1 are both
in ®(n) and are their own inverses, a’ must be the one that’s not 1, namely n — 1, i.e. —1
(mod n).

For example, when n = 5, take a = 2:

at=2, a?=4, *=8=53, a'=16=;1;

2%2

and since a?*? =5 1, we have a? =5 —1.

Now, if we're in this case, then
B=na-a? - a®(n) = o' T2+,
But we showed that
L+24+---+0¢(n) = d(n)(o(n) +1)/2.

So B? = g?M+Hem)+1) — (gé(n)e(m)+1 = 16()+1 — 1 Further, since ¢(n) is even (so that
d(n)(¢p(n) + 1)/2 factors into integers as ¢(n)/2 and ¢(n) + 1—see problem 25(b) below) and
ged(o(n), ¢(n) + 1) =1, we have ¢(n) + ¢(n)(¢(n) +1)/2. So B %, 1. Therefore B =, —1.

Otherwise, one can show that B =,, 1 (I'll spare you the proof).

So when is there a primitive root modulo n? We prove in modern algebra that this happens
exactly when
n=2, 4, pk, or 2pk
for any odd prime p. O



Exercise 25.

(a) Compute ¢(97) and ¢(8800).

Answer. Since 97 is prime and 8800 = 2° - 52 - 11, we have

#(97) =96 and  ¢(8800) = 24(2 —1)-5(5 —1) - 10.

O

(b) For n > 3, show ¢(n) is even.

Answer. Factor n into prime powers:

nzp?---pze, p1 < -+ < pp.
If n = 2" for some r > 2, then
$(n)=2""12-1)=2""1,
which is even since r — 1 > 0. Otherwise, py is odd, so that p, — 1 is even. Thus
$(n) = o(pi') - ¢(pe)™ =P ot = 1) -0 (e — 1)
is even as well. O

(c) Fill in the blank and prove: ¢(n) is a multiple of 4 if and only if

Answer. As in the previous part, if n has two odd prime divisors, then ¢(n) will have at least
two even factors in ¢(n) = ¢(pi') - - - ¢(pe)", so is a multiple of 4.

Otherwise, n = 2" or 2"p* for some odd prime p.
If n =27, then ¢(n) = 2", which is a multiple of 4 if and only if » > 3.

If n = 2"p® with r > 2, then ¢(n) = 2" !p*~1(p — 1), which is a multiple of 4 since 2"~1 and
p — 1 are both even.

Finally, if n = 2p® or p*, then ¢(n) = p*~(p — 1), which is a multiple of 4 if and only if p =4 1.

In summary, ¢(n) is a multiple of 4 if and only if (1) n has two odd prime divisors, (2) n has
a prime divisor p =4 1, or (3) n is a multiple of 4 and has at least one odd prime divisor.
O



(d) Suppose that p1, po, ..., p, are the distinct primes that divide n (for example, if n = 7000,

then this list is 2,5, and 7). Use what we already know about ¢(n) to prove that

as(n):n(l—pll) <1—pl2><1‘pl>

Use this formula to double check the value of ¢(7000) (calculated in class), and to compute
1000000. Compare your answer to the other formula for ¢(n).

Answer. We have

SO

1 1 1
St () (1) (1)
P1 b2 Dr
1 1 1
_ k1 1— — ko 1_)... kr(1_>
b1 < p1>p2 ( P2 br pr

k ki—1v, k ko—1 ko p—
=(py' =P )W® —p" ) (o — 1y 1)
k kry _
=o(py' - py") = ¢(n),

as desired. So

$(7000) = 7000(1 — 1/2)(1 — 1/5)(1 — 1/7) = 7000(1/2)(4/5)(6/7) = 7000(24/70) = 2400.

Find at least one solution to #3644 = 16 (mod 2025).

Answer. The two prime factors of 2025 are 3 and 5, so
#(2025) = 2025(2/3)(4/5) = 2025(8/15) = 1080.

So since ged(16,2025) = 1, we must have ged(x,2025) = 1. Therefore, since 8644 =19g9 4, we
have

_ 8644 _ 4
16 =2025 @ =2025 T -

One solution to this is z = 2.



Exercise 26.
(a) Find an x that satisfies both x =3 (mod 7) and x =5 (mod 9).
Answer. If x =3 (mod 7), then z = 3 + 7Ty for some y € Z. So
S=gx=93+Ty, ie Ty=g?2.
Since ged(9,7) = 1, this has a unique solution. In particular, since
4%x7T=28=3%x9+1=91,

we have
Yy=9dxTxy=9g4d*x2=28.

x=34+7+8=[59]

So

(b) Find an z that satisfies both x =3 (mod 37) and z =1 (mod 87).
Answer. If x =3 (mod 37), then = = 3 4 37y for some y € Z. So
1 =87 £ =87 3+ 37y, i.e. 37y =87 —2.

Since ged(87,37) = 1, this has a unique solution. In particular, y = 7 is a solution (7 * 37 =

259 =3 %87 —2). So
x:3+37*7:.



