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Exercise 23.

(a) Solve the following congruences:
(i) x101 ≡ 7 (mod 12)

Answer. We have
φ(12) = #{1, 5, 7, 11}.

Since gcd(7, 12) = 1, we must have gcd(x, 12) = 1. So

1 ≡12 x
φ(12) = x4.

Therefore
7 ≡12 x

101 = (x4)25x ≡12 1 ∗ x = x.

So x = 7 is a solution.
�

(ii) 10x ≡ 1 (mod 27)

Answer. Since gcd(10, 27) = 1, this has a solution of x = φ(27) = φ(33) = 32(3− 1) = 18.
(There are other solutions as well: e.g. 103 = 27 ∗ 37 + 1.) �

(b) The number 3750 satisfies φ(3750) = 1000. Find an integer 1 ≤ a ≤ 5000 that is not a multiple
of 7, that satisfies a ≡ 73003 (mod 3750) [This integer need not be reduced modulo 3750].

Answer. We have

a ≡ 73003 (mod 3750) = (71000)3)73 ≡ 1 ∗ 73 (mod 3750) = 343.

This is a multiple of 7, but adding 3750 (which is not a multiple of 7) preserves its residue. So
73 + 3750 = 4093 is one such answer.

�

(c) Show that if m = 561 = 3 · 11 · 17, then am−1 ≡ 1 (mod m) for all a relatively prime to m.
[Hint: There may be 320 values of a between 1 and m that are relatively prime to m, but it
is not necessary (nor called for) to actually compute am−1 ≡ 1 (mod m) for all those values.
Instead, use Fermats Little Theorem to check that am−1 ≡ 1 (mod p) for each prime p dividing
m, and then explain why this implies that am−1 ≡ 1 (mod m).]

Answer. If a is relatively prime to 3 · 11 · 17, then it is also relatively prime to 3, 11, and 17.
So Fermat’s little theorem tells us

a2 ≡ 1 (mod 3), a10 ≡ 1 (mod 11), and a16 ≡ 1 (mod 17).

But 560 is a multiple of all 2, 10, and 16:

560 = 2 ∗ 280 = 10 ∗ 56 = 16 ∗ 35.

So
a560 ≡ 1 (mod 3), a560 ≡ 1 (mod 11), and a560 ≡ 1 (mod 17).

But this means a560−1 is a multiple of 3, 11, and 17. So a560−1 is a multiple of lcm(3, 11, 17) =
3 · 11 · 17 = 561. Therefore a560 ≡ 1 (mod 561), as desired.

See exercise 10.3 in the book. �



Exercise 24. Let b1 < b2 < · · · < bφ(n) be the integers 1 ≤ bi < n that are relatively prime to n,
and let B = b1b2b3 · · · bφ(n) be their product. [This number came up during the proof of Euler’s
formula.]

(a) Compute B for n = 4, 5, 6, and 8, modulo n. Note that in each case, B ≡ 1 (mod n) or
B ≡ n− 1 (mod n), which, together, is the same as B ≡ ±1 (mod n).

Answer. As in class, let
Φ(n) = {b1, b2, · · · , bφ(n)}.

n = 4:
Here, Φ(4) = {1, 3}. But 3 ≡ −1 (mod 4), so 1 ∗ 3 ≡4 1(−1) = −1.

n = 5:
Here, Φ(5) = {1, 2, 3, 4}. But 4 ≡ −1 (mod 5) and 2 ∗ 3 ≡ 1 (mod 5), so

1 ∗ 2 ∗ 3 ∗ 4 ≡5 1 ∗ 1 ∗ (−1) = −1.

n = 6:
Here, Φ(5) = {1, 5}. But 5 ≡ −1 (mod 6), so 1 ∗ 5 ≡6 1(−1) = −1.

n = 8:
Here, Φ(5) = {1, 3, 5, 7}. But 7 ≡ −1 (mod 8) and 3 ∗ 5 ≡ −1 (mod 8), so

1 ∗ 3 ∗ 5 ∗ 7 ≡5 1 ∗ (−1) ∗ (−1) = 1.

�

(b) Prove that B ≡ ±1 (mod n) in general. [Hint: Think about multiplicative inverses – when
does an integer a have an inverse? How many are there modulo n?]

Proof. = Since a number 1 ≤ b < n has an inverse modulo n if and only if gcd(b, n) = 1, we
have

Φ = {b1, b2, · · · , bφ(n)} = {1 ≤ b < n | b has an inverse mod n }.
Now, break Φ into two parts, based on the numbers that are their own inverses and those that
are not:

Φ1 = {b ∈ Φ | b2 ≡n 1} Φ2 = {b ∈ Φ | b2 6= 1}
(since b is its own inverse if and only if 1 ≡n b · b = b2). Thus

B =
∏
b∈Φ

b =

( ∏
b∈Φ1

b︸ ︷︷ ︸
B1

)( ∏
b∈Φ2

b︸ ︷︷ ︸
B2

)
.

Of course, if b ∈ Φ2, then its unique inverse is in Φ2 as well:

bb′ ≡n 1 if and only if b′b ≡n 1.

So B2 =
∏
b∈Φ2

b = 1 (each element of Φ2 has a unique counterpart that it cancels with).
Now what about Φ1? Well, it turns out that the elements of Φ1 pair up nicely as well: If

b ∈ Φ1, then b1 = 1, then
(i) n− b ∈ Φ1:

This follows since

(n− b)2 = n2 − 2bn+ b2 ≡n 0− 0 + 1 = 1.

(ii) b 6= n− b:
If b = n− b, then 2b = n, so that b|n, which contradicts gcd(b, n) = 1.



(iii) b(n− b) ≡n −1: This follows since

b(n− b) = bn− b2 ≡n 0− 1 = −1.

So the elements of Φ1 break into

Φ
(1)
1 = {b ∈ Φ | b < n/2} and Φ

(2)
1 = {b ∈ Φ | b > n/2} = {n− b | b ∈ Φ

(1)
1 }.

Thus
B1 =

∏
b∈Φ1

b =
∏
b∈Φ1
b<n/2

b(n− b) ≡ (−1)|Φ1|/2 (mod n).

So, finally,

B = B1B2 ≡ (−1)|Φ1|/2 · 1 (mod n) = ±1.

�

(c) Try to find a pattern for when B is equivalent to +1 (mod n) and when it is equivalent to −1
(mod n). Can you prove your conjecture?

Answer. If n = 2, then B = 1 ≡2 −1. Otherwise, for n > 2, it turns out that B ≡n −1 if and
only if there exists a primitive root modulo n, which is a number a such that every b ∈ Φ(n)
can be written as ak for some k (in group theory, this is what it means for (Z/nZ)× to be
cyclic). Note that happens exactly when

{a, a2, . . . , aφ(n)} ≡n Φ(n) for some a ∈ Φ(n).

In particularly, since aφ(n) ≡n 1, and all of the other powers must be distinct, we know
(a) ak ≡n 1 if and only if φ(n)|k;
(b) for 1 ≤ ` ≤ φ(n), if a` 6≡n 1 but a2` ≡n 1, then a` 6≡n −1:

We have φ(n)|2`. But since 1 ≤ ` ≤ φ(n), this means that we must have ` = φ(n)/2;
namely there are only two k for which ak is it’s own inverse. Since 1 and n − 1 are both
in Φ(n) and are their own inverses, a` must be the one that’s not 1, namely n− 1, i.e. −1
(mod n).

For example, when n = 5, take a = 2:

a1 = 2, a2 = 4, a3 = 8 ≡5 3, a4 = 16 ≡5 1;

and since a2∗2 ≡5 1, we have a2 ≡5 −1.

Now, if we’re in this case, then

B ≡n a · a2 · · · aφ(n) = a1+2+···+φ(n).

But we showed that
1 + 2 + · · ·+ φ(n) = φ(n)(φ(n) + 1)/2.

So B2 = aφ(n)+1(φ(n)+1) = (aφ(n))φ(n)+1 ≡ 1φ(n)+1 = 1. Further, since φ(n) is even (so that
φ(n)(φ(n) + 1)/2 factors into integers as φ(n)/2 and φ(n) + 1—see problem 25(b) below) and
gcd(φ(n), φ(n) + 1) = 1, we have φ(n) - φ(n)(φ(n) + 1)/2. So B 6≡n 1. Therefore B ≡n −1.

Otherwise, one can show that B ≡n 1 (I’ll spare you the proof).

So when is there a primitive root modulo n? We prove in modern algebra that this happens
exactly when

n = 2, 4, pk, or 2pk

for any odd prime p. �



Exercise 25.

(a) Compute φ(97) and φ(8800).

Answer. Since 97 is prime and 8800 = 25 · 52 · 11, we have

φ(97) = 96 and φ(8800) = 24(2− 1) · 5(5− 1) · 10.

�

(b) For n ≥ 3, show φ(n) is even.

Answer. Factor n into prime powers:

n = pr11 · · · p
r`
` , p1 < · · · < p`.

If n = 2r for some r ≥ 2, then

φ(n) = 2r−1(2− 1) = 2r−1,

which is even since r − 1 > 0. Otherwise, p` is odd, so that p` − 1 is even. Thus

φ(n) = φ(pr11 ) · · ·φ(p`)
r` = pr1−1

1 (p1 − 1) · · · pr`−1
` (p` − 1)

is even as well. �

(c) Fill in the blank and prove: φ(n) is a multiple of 4 if and only if .

Answer. As in the previous part, if n has two odd prime divisors, then φ(n) will have at least
two even factors in φ(n) = φ(pr11 ) · · ·φ(p`)

r` , so is a multiple of 4.

Otherwise, n = 2r or 2rps for some odd prime p.

If n = 2r, then φ(n) = 2r−1, which is a multiple of 4 if and only if r ≥ 3.

If n = 2rps with r ≥ 2, then φ(n) = 2r−1ps−1(p − 1), which is a multiple of 4 since 2r−1 and
p− 1 are both even.

Finally, if n = 2ps or ps, then φ(n) = ps−1(p− 1), which is a multiple of 4 if and only if p ≡4 1.

In summary, φ(n) is a multiple of 4 if and only if (1) n has two odd prime divisors, (2) n has
a prime divisor p ≡4 1, or (3) n is a multiple of 4 and has at least one odd prime divisor.

�



(d) Suppose that p1, p2, . . . , pr are the distinct primes that divide n (for example, if n = 7000,
then this list is 2, 5, and 7). Use what we already know about φ(n) to prove that

φ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

pr

)
.

Use this formula to double check the value of φ(7000) (calculated in class), and to compute
1000000. Compare your answer to the other formula for φ(n).

Answer. We have

n = pk1
1 · · · p

kr
r ,

so

n

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

pr

)
= pk1

1 · · · p
kr
r

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

pr

)
= pk1

1

(
1− 1

p1

)
pk2

2

(
1− 1

p2

)
· · · pkrr

(
1− 1

pr

)
= (pk1

1 − p
k1−1
1 )(pk2

2 − p
k2−1
2 ) · · · (pkrr − pkr−1

r )

= φ(pk1
1 · · · p

kr
r ) = φ(n),

as desired. So

φ(7000) = 7000(1− 1/2)(1− 1/5)(1− 1/7) = 7000(1/2)(4/5)(6/7) = 7000(24/70) = 2400.

�

(e) Find at least one solution to x8644 = 16 (mod 2025).

Answer. The two prime factors of 2025 are 3 and 5, so

φ(2025) = 2025(2/3)(4/5) = 2025(8/15) = 1080.

So since gcd(16, 2025) = 1, we must have gcd(x, 2025) = 1. Therefore, since 8644 ≡1080 4, we
have

16 ≡2025 x
8644 ≡2025 x

4.

One solution to this is x = 2.
�



Exercise 26.

(a) Find an x that satisfies both x ≡ 3 (mod 7) and x ≡ 5 (mod 9).

Answer. If x ≡ 3 (mod 7), then x = 3 + 7y for some y ∈ Z. So

5 ≡9 x ≡9 3 + 7y, i.e. 7y ≡9 2.

Since gcd(9, 7) = 1, this has a unique solution. In particular, since

4 ∗ 7 = 28 = 3 ∗ 9 + 1 ≡9 1,

we have
y ≡9 4 ∗ 7 ∗ y ≡9 4 ∗ 2 = 8.

So
x = 3 + 7 ∗ 8 = 59 .

�

(b) Find an x that satisfies both x ≡ 3 (mod 37) and x ≡ 1 (mod 87).

Answer. If x ≡ 3 (mod 37), then x = 3 + 37y for some y ∈ Z. So

1 ≡87 x ≡87 3 + 37y, i.e. 37y ≡87 −2.

Since gcd(87, 37) = 1, this has a unique solution. In particular, y = 7 is a solution (7 ∗ 37 =
259 = 3 ∗ 87− 2). So

x = 3 + 37 ∗ 7 = 262 .

�


