Exercise 17. Prove the following.
(a) If $x=x_{0}$ is a solution to $a+x \equiv b(\bmod n)$, then so is $x=x_{0}+k n$ for all $k \in \mathbb{Z}$.

Proof. If $a+x_{0} \equiv b(\bmod n)$ and $x=x_{0}+k n$, then

$$
a+x=a+x_{0}+k n \equiv b+0 \quad(\bmod n)=b
$$

(b) If $x=x_{0}$ is a solution to $a x \equiv b(\bmod n)$, then so is $x=x_{0}+k n$ for all $k \in \mathbb{Z}$.

Proof. If $a x_{0} \equiv b(\bmod n)$ and $x=x_{0}+k n$, then

$$
a x=a\left(x_{0}+k n\right)=a x_{0}+a k n \equiv b+0 \quad(\bmod n)=b .
$$

Exercise 18. For each of the following congruences, decide if there are any solutions. If there are, give a maximal set of distinct (non-congruent) solutions.
[For examples involving numbers larger than 20, use a computer to calculate relevant data to start the problem. For example, in problem (e), you'll use a computer to calculate $\operatorname{gcd}(21,91)$, as well as one example of $u \in \mathbb{Z}$ such that $21 u \equiv \operatorname{gcd}(21,91)(\bmod 91)$. Use functions that allow you to reduce modulo n easily.]
(a) $7 x \equiv 3(\bmod 15)$

Answer. Since $\operatorname{gcd}(7,15)=1$, there is one answer: since $7 * 13 \equiv_{15} 1$, we have

$$
x=13 \cdot 7 x \equiv 13 \cdot 3 .
$$

(b) $6 x \equiv 5(\bmod 15)$

Answer. Since $\operatorname{gcd}(6,15)=3$, but $3 \nmid 5$, so there are no solutions.
(c) $8 x \equiv 6(\bmod 14)$

Answer. Since $\operatorname{gcd}(8,14)=2$ and $2 \mid 6$, there are 2 answers. First, $8 * 13=\equiv_{14} 8 *(-1) \equiv_{14} 6$, so one solution is $x=13$. Then the other solution is $x=13-14 / 2=6$.
(d) $66 x \equiv 100(\bmod 121)$

Answer. Since $\operatorname{gcd}(66,121)=11$ and $11 \nmid 100$, there are no solutions.
(e) $21 x \equiv 14(\bmod 91)$

Answer. Since $\operatorname{gcd}(21,91)=7$ and $7 \mid 14$, there are 7 solutions. First, since

$$
21 * 87 \equiv_{91} 21 *(-4)=-84 \equiv_{91} 14
$$

we have $x=87$ is one answer. The other 6 are

$$
87-i(91 / 7), \quad \text { for } i=1, \ldots, 6 \text {. }
$$

(f) $72 x \equiv 47(\bmod 200)$

Answer. Since $\operatorname{gcd}(72,200)=8$ and $8 \nmid 47$, there are no solutions.
(g) $4183 x \equiv 5781(\bmod 15087)$

Answer. Since $\operatorname{gcd}(4183,15087)=47$ and $47 \nmid 5781$, there are 47 solutions. First, we use the Euclidean algorithm to solve for u and v such that $4183 u+15087 v=47$:

$$
\begin{aligned}
15087 & =4183 * 3+2538, \\
4183 & =2538 * 1+1645, \\
2538 & =1645 * 1+893, \\
1645 & =893 * 1+752, \\
893 & =752 * 1+141, \\
752 & =141 * 5+47 ;
\end{aligned}
$$

so

$$
\begin{aligned}
47 & =752-141 * 5=(1645-893 * 1)-(893-752 * 1) * 5 \\
& =1645+(-6) * 893+5 * 752 \\
& =(4183-2538 * 1)+(-6)(2538-1645 * 1)+5 *(1645-893 * 1) \\
& =4183+(-7) * 2538+11 * 1645+(-5) * 893 \\
& =4183+(-7) *(15087-4183 * 3)+11 *(4183-2538 * 1)+(-5) *(2538-1645 * 1) \\
& =33 * 4183+(-7) * 15087+(-16) * 2538+5 * 1645 \\
& =33 * 4183+(-7) * 15087+(-16) *(15087-4183 * 3)+5 *(4183-2538 * 1) \\
& =86 * 4183+(-23) * 15087+(-5) * 2538 \\
& =86 * 4183+(-23) * 15087+(-5) *(15087-4183 * 3) \\
& =101 * 4183+(-28) * 15087 .
\end{aligned}
$$

Therefore one solution is $x=101$. The others are

$$
101+i(15087 / 47), \quad \text { for } i=1, \ldots, 46
$$

(h) $1537 x \equiv 2863(\bmod 6731)$

Answer. Since $\operatorname{gcd}(1537,6731)=53$ and $53 \nmid 2863$, there are no solutions.

Exercise 19. (a) Show that $a \in \mathbb{Z}_{>0}$ is divisible by 4 if and only if its last two digits are divisible by 4 . [Hint: consider an equivalence modulo 100.]

Proof. The last two digits of a are by definition the remainder r of a modulo 100:

$$
a=100 * q+r, \quad 0 \leq r<100 .
$$

That's equivalent to $r=a-100 * q$. So since 4|100, we have $4 \mid a$ if and only if $4 \mid a-100 q=r$.
(b) The number $a \in \mathbb{Z}_{>0}$ is divisible by 3 if and only if the sum of its digits is divisible by 3 . [Hint: Express a number as integral combination of powers of 10 , and reduce modulo 3.]

Proof. We can express a uniquely as a linear combination of powers of 10 :

$$
a=a_{0}+a_{1} * 10+a_{2} * 10^{2}+\cdots+a_{\ell} * 10^{\ell}, \quad \text { with } a_{\ell} \neq 0 .
$$

So since $10 \equiv{ }_{3} 1$, we have $10^{k} \equiv_{3} 1^{k}=1$ for all k. So

$$
a \equiv_{3} a_{0}+a_{1} * 1+a_{2} * 1+\cdots+a_{\ell} * 1=a_{0}+a_{1}+a_{2}+\cdots+a_{\ell} .
$$

(c) The number $a \in \mathbb{Z}_{>0}$ is divisible by 9 if and only if the sum of its digits is divisible by 9 . [Hint: Express a number as integral combination of powers of 10, and reduce modulo 9.]

Proof. Again, we can express a uniquely as a linear combination of powers of 10:

$$
a=a_{0}+a_{1} * 10+a_{2} * 10^{2}+\cdots+a_{\ell} * 10^{\ell}, \quad \text { with } a_{\ell} \neq 0
$$

So since $10 \equiv{ }_{9} 1$, we have $10^{k} \equiv_{9} 1^{k}=1$ for all k. So

$$
a \equiv_{9} a_{0}+a_{1} * 1+a_{2} * 1+\cdots+a_{\ell} * 1=a_{0}+a_{1}+a_{2}+\cdots+a_{\ell} .
$$

Exercise 20.

(a) Use a computer to compute a maximal set of (non-congruent) solutions to the following.
(i) $x^{2} \equiv 1(\bmod 8)$

Answer. $\quad x=1,3,5,7$ (see speadsheet).
(ii) $x^{2} \equiv 2(\bmod 7)$ Answer. $\quad x=3,4$ (see speadsheet).
(iii) $x^{2} \equiv 3(\bmod 7)$ Answer. No solutions.
(iv) $x^{4}+5 x^{3}+4 x^{2}-6 x=4 \equiv 0(\bmod 11)$ Answer. $\quad x=1,9$ (see speadsheet).
(b) For $x^{2} \equiv 1(\bmod 8)$, you should have gotten more than 2 solutions. Note that these are all solutions to $x^{2}-1 \equiv 0(\bmod 8)$. Why isn't this a contradiction to the Polynomial Roots Mod p Theorem?

Answer. 8 is not prime.
(c) Let p and q be distinct primes. What is the maximum number of possible non-congruent solutions to a congruence of the form $x^{2}-a \equiv 0(\bmod p q)$.

Proof. The maximum is four solutions. Suppose that r_{1}, \ldots, r_{5} are five distinct solutions. Reducing modulo p, we see that they are solutions to $x^{2}-a \equiv 0(\bmod p)$. This last congruence has at most two solutions, since p is prime, say s_{1} and s_{2}. Each of r_{1}, \ldots, r_{5} must be congruent modulo p to one of s_{1} and s_{2}, so since there are five r_{i} values and only two s_{j} values, it follows that at least three of the r_{i} s are the same modulo p. Relabeling, we may assume that $r_{1} \equiv_{p} r_{2} \equiv_{p} r_{3}$. Next reducing modulo q, we know that $x^{2}-a \equiv_{q} 0$ has at most two solutions, say t_{1} and t_{2}. So the three $r_{i} \mathrm{~S}$ are each congruent to one of the two $t_{j} \mathrm{~s}$, so at least two of the $r_{i} \mathrm{~S}$ are congruent modulo q. Again relableing, we may assume that $r_{1} \equiv r_{2}(\bmod q)$. Thus r_{1} and r_{2} are congruent both modulo p and modulo q, so they are congruent modulo $p q$, contradicting the assumption that they are distinct modulo $p q$. Hence there cannot be five solutions.

Exercise 21. Use Fermat's Little Theorem to do the following without the use of a computer (show your work!).
(a) Find the least residue of $9^{794}(\bmod 73)$.

Answer. Since 73 is prime and $73 \nmid 9$, we have $9^{72} \equiv 1(\bmod 73)$. So since $794 \equiv 2$ (mod 72), we have

$$
9^{794} \equiv_{73} 9^{2}=81 \equiv_{73} 8 .
$$

(b) Solve $x^{86} \equiv 6(\bmod 29)$.

Answer. Since 6 is relatively prime to 29 , we have $x^{86} \equiv 6(\bmod 29)$ implies x is relatively prime to 29 . So $x^{28} \equiv 1(\bmod 29)$. So since $86 \equiv 2(\bmod 28)$, we have $6 \equiv_{29} x^{86} \equiv_{29} x^{2}$, which has solutions $x=8$ and 21 .
(c) Solve $x^{39} \equiv 3(\bmod 13)$.

Answer. Since 3 is relatively prime to 13 , we have $x^{39} \equiv 3(\bmod 13)$ implies x is relatively prime to 13 . So $x^{12} \equiv 1(\bmod 13)$. So since $39 \equiv 3(\bmod 12)$, we have $3 \equiv_{13} x^{86} \equiv_{13} x^{3}$. But this has no solutions.

Exercise 22. Recall the quantity $(p-1)!(\bmod p)$ appeared in our proof of Fermats Little Theorem (without actually having to compute it).
(a) Use a computer to calculate $(p-1)!(\bmod p)$ for primes p up to 13 .

Answer.

p	2	3	5	7	11	13
$(p-1)!\quad(\bmod p)$	1	-1	-1	-1	-1	-1

(b) Make a conjecture for what $(p-1)$! $(\bmod p)$ is in general, and prove it.
[Hint: Do a few examples by hand - say for $p=2,3$, and 5 , and try to discover why $(p-1)$! $(\bmod p)$ has the value it does. Then generalize your observation to prove the formula for all values of p.]

Answer. We have $(p-1)!\equiv-1(\bmod p)$, unless $p=2($ in which case it is equivalent to 1$)$. This is because every number $1 \leq a \leq p-1$ has a multiplicative inverse (something that you can multiply them by to get $1 \bmod p$). For $p \geq 3$, there are exactly two values that are their own inverses (i.e. solutions to $a^{2} \equiv_{p} 1$), which are 1 and $p-1 \equiv_{p}-1$. So all the other numbers pair up to multiply by 1 . For example,

$$
1 * 2 * 3 * 4 * 5 * 6=1 *(2 * 4) *(3 * 5) * 6 \equiv_{7} 1 * 1 * 1 *(-1)=-1 \text {. }
$$

So

$$
(p-1)!=1 * 2 * 3 * \cdots *(p-2) *(p-1) \equiv_{p} 1 * 1 * \cdots * 1 *(-1)=-1 .
$$

Otherwise, for $p=2$, we have $(p-1)!=1!=1$.
(c) Compute the value of $(m-1)$! $(\bmod m)$ for some small values of m that are not prime $(m=$ $4,6, \ldots)$. Do you find the same pattern as you found for primes? Do you see any pattern?

Answer. For most values, $(m-1)!\equiv 0(\bmod m)$. This is because if m is composite, and not a prime power, there are a and b less than m that are relatively prime that satisfy $a b=m$. So $m=a b \mid(m-1)$!. If m is a prime power, with $m=p^{k}$, then p^{k-1} is one of the factors of $\left(p^{k}-1\right)!$; and as long as $p>2$ or $k>2$, then there is a distinct factor in $\left(p^{k}-1\right)$! that is a
multiple of p. So $p * p^{k-1} \mid\left(p^{k}-1\right)$!. The only exception, therefore, is $m=4$, in which case $(m-1)!=3!=6 \equiv_{4} 2$.

