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Exercise 17. Prove the following.

(a) If x = x0 is a solution to a + x ≡ b (mod n), then so is x = x0 + kn for all k ∈ Z.

Proof. If a + x0 ≡ b (mod n) and x = x0 + kn, then

a + x = a + x0 + kn ≡ b + 0 (mod n) = b.

�

(b) If x = x0 is a solution to ax ≡ b (mod n), then so is x = x0 + kn for all k ∈ Z.

Proof. If ax0 ≡ b (mod n) and x = x0 + kn, then

ax = a(x0 + kn) = ax0 + akn ≡ b + 0 (mod n) = b.

�

Exercise 18. For each of the following congruences, decide if there are any solutions. If there are,
give a maximal set of distinct (non-congruent) solutions.
[For examples involving numbers larger than 20, use a computer to calculate relevant data to start
the problem. For example, in problem (e), you’ll use a computer to calculate gcd(21, 91), as well
as one example of u ∈ Z such that 21u ≡ gcd(21, 91) (mod 91). Use functions that allow you to
reduce modulo n easily.]

(a) 7x ≡ 3 (mod 15)

Answer. Since gcd(7, 15) = 1, there is one answer: since 7 ∗ 13 ≡15 1, we have

x = 13 · 7x ≡ 13 · 3.

(b) 6x ≡ 5 (mod 15)

Answer. Since gcd(6, 15) = 3, but 3 - 5, so there are no solutions.

(c) 8x ≡ 6 (mod 14)

Answer. Since gcd(8, 14) = 2 and 2|6, there are 2 answers. First, 8∗13 =≡14 8∗(−1) ≡14 6,

so one solution is x = 13 . Then the other solution is x = 13− 14/2 = 6 .

(d) 66x ≡ 100 (mod 121)

Answer. Since gcd(66, 121) = 11 and 11 - 100, there are no solutions.

(e) 21x ≡ 14 (mod 91)

Answer. Since gcd(21, 91) = 7 and 7 | 14, there are 7 solutions. First, since

21 ∗ 87 ≡91 21 ∗ (−4) = −84 ≡91 14,

we have x = 87 is one answer. The other 6 are

87− i(91/7), for i = 1, . . . , 6.



(f) 72x ≡ 47 (mod 200)

Answer. Since gcd(72, 200) = 8 and 8 - 47, there are no solutions.

(g) 4183x ≡ 5781 (mod 15087)

Answer. Since gcd(4183, 15087) = 47 and 47 - 5781, there are 47 solutions. First, we use
the Euclidean algorithm to solve for u and v such that 4183u + 15087v = 47:

15087 = 4183 ∗ 3 + 2538,

4183 = 2538 ∗ 1 + 1645,

2538 = 1645 ∗ 1 + 893,

1645 = 893 ∗ 1 + 752,

893 = 752 ∗ 1 + 141,

752 = 141 ∗ 5 + 47;

so

47 = 752− 141 ∗ 5 = (1645− 893 ∗ 1)− (893− 752 ∗ 1) ∗ 5

= 1645 + (−6) ∗ 893 + 5 ∗ 752

= (4183− 2538 ∗ 1) + (−6)(2538− 1645 ∗ 1) + 5 ∗ (1645− 893 ∗ 1)

= 4183 + (−7) ∗ 2538 + 11 ∗ 1645 + (−5) ∗ 893

= 4183 + (−7) ∗ (15087− 4183 ∗ 3) + 11 ∗ (4183− 2538 ∗ 1) + (−5) ∗ (2538− 1645 ∗ 1)

= 33 ∗ 4183 + (−7) ∗ 15087 + (−16) ∗ 2538 + 5 ∗ 1645

= 33 ∗ 4183 + (−7) ∗ 15087 + (−16) ∗ (15087− 4183 ∗ 3) + 5 ∗ (4183− 2538 ∗ 1)

= 86 ∗ 4183 + (−23) ∗ 15087 + (−5) ∗ 2538

= 86 ∗ 4183 + (−23) ∗ 15087 + (−5) ∗ (15087− 4183 ∗ 3)

= 101 ∗ 4183 + (−28) ∗ 15087.

Therefore one solution is x = 101. The others are

101 + i(15087/47), for i = 1, . . . , 46.

(h) 1537x ≡ 2863 (mod 6731)

Answer. Since gcd(1537, 6731) = 53 and 53 - 2863, there are no solutions.

Exercise 19. (a) Show that a ∈ Z>0 is divisible by 4 if and only if its last two digits are divisible
by 4. [Hint: consider an equivalence modulo 100.]

Proof. The last two digits of a are by definition the remainder r of a modulo 100:

a = 100 ∗ q + r, 0 ≤ r < 100.

That’s equivalent to r = a− 100 ∗ q. So since 4|100, we have
4|a if and only if 4|a− 100q = r.

�



(b) The number a ∈ Z>0 is divisible by 3 if and only if the sum of its digits is divisible by 3.
[Hint: Express a number as integral combination of powers of 10, and reduce modulo 3.]

Proof. We can express a uniquely as a linear combination of powers of 10:

a = a0 + a1 ∗ 10 + a2 ∗ 102 + · · ·+ a` ∗ 10`, with a` 6= 0.

So since 10 ≡3 1, we have 10k ≡3 1k = 1 for all k. So

a ≡3 a0 + a1 ∗ 1 + a2 ∗ 1 + · · ·+ a` ∗ 1 = a0 + a1 + a2 + · · ·+ a`.

�

(c) The number a ∈ Z>0 is divisible by 9 if and only if the sum of its digits is divisible by 9.
[Hint: Express a number as integral combination of powers of 10, and reduce modulo 9.]

Proof. Again, we can express a uniquely as a linear combination of powers of 10:

a = a0 + a1 ∗ 10 + a2 ∗ 102 + · · ·+ a` ∗ 10`, with a` 6= 0.

So since 10 ≡9 1, we have 10k ≡9 1k = 1 for all k. So

a ≡9 a0 + a1 ∗ 1 + a2 ∗ 1 + · · ·+ a` ∗ 1 = a0 + a1 + a2 + · · ·+ a`.

�

Exercise 20.

(a) Use a computer to compute a maximal set of (non-congruent) solutions to the following.
(i) x2 ≡ 1 (mod 8)

Answer. x = 1, 3, 5, 7 (see speadsheet).

(ii) x2 ≡ 2 (mod 7) Answer. x = 3, 4 (see speadsheet).

(iii) x2 ≡ 3 (mod 7) Answer. No solutions.

(iv) x4 + 5x3 + 4x2 − 6x = 4 ≡ 0 (mod 11) Answer. x = 1, 9 (see speadsheet).

(b) For x2 ≡ 1 (mod 8), you should have gotten more than 2 solutions. Note that these are all
solutions to x2 − 1 ≡ 0 (mod 8). Why isn’t this a contradiction to the Polynomial Roots Mod
p Theorem?

Answer. 8 is not prime.

(c) Let p and q be distinct primes. What is the maximum number of possible non-congruent
solutions to a congruence of the form x2 − a ≡ 0 (mod pq).

Proof. The maximum is four solutions. Suppose that r1, . . . , r5 are five distinct solutions.
Reducing modulo p, we see that they are solutions to x2−a ≡ 0 (mod p). This last congruence
has at most two solutions, since p is prime, say s1 and s2. Each of r1, . . . , r5 must be congruent
modulo p to one of s1 and s2, so since there are five ri values and only two sj values, it
follows that at least three of the ris are the same modulo p. Relabeling, we may assume that
r1 ≡p r2 ≡p r3. Next reducing modulo q, we know that x2 − a ≡q 0 has at most two solutions,
say t1 and t2. So the three ris are each congruent to one of the two tjs, so at least two of the ris
are congruent modulo q. Again relableing, we may assume that r1 ≡ r2 (mod q). Thus r1 and
r2 are congruent both modulo p and modulo q, so they are congruent modulo pq, contradicting
the assumption that they are distinct modulo pq. Hence there cannot be five solutions. �



Exercise 21. Use Fermat’s Little Theorem to do the following without the use of a computer
(show your work!).

(a) Find the least residue of 9794 (mod 73).

Answer. Since 73 is prime and 73 - 9, we have 972 ≡ 1 (mod 73). So since 794 ≡ 2
(mod 72), we have

9794 ≡73 92 = 81 ≡73 8.

(b) Solve x86 ≡ 6 (mod 29).

Answer. Since 6 is relatively prime to 29, we have x86 ≡ 6 (mod 29) implies x is relatively
prime to 29. So x28 ≡ 1 (mod 29). So since 86 ≡ 2 (mod 28), we have 6 ≡29 x

86 ≡29 x
2, which

has solutions x = 8 and 21.

(c) Solve x39 ≡ 3 (mod 13).

Answer. Since 3 is relatively prime to 13, we have x39 ≡ 3 (mod 13) implies x is relatively
prime to 13. So x12 ≡ 1 (mod 13). So since 39 ≡ 3 (mod 12), we have 3 ≡13 x86 ≡13 x3. But
this has no solutions.

Exercise 22. Recall the quantity (p−1)! (mod p) appeared in our proof of Fermats Little Theorem
(without actually having to compute it).

(a) Use a computer to calculate (p− 1)! (mod p) for primes p up to 13.

Answer.
p 2 3 5 7 11 13

(p− 1)! (mod p) 1 −1 −1 −1 −1 −1

(b) Make a conjecture for what (p− 1)! (mod p) is in general, and prove it.
[Hint: Do a few examples by hand – say for p = 2, 3, and 5, and try to discover why (p − 1)!
(mod p) has the value it does. Then generalize your observation to prove the formula for all
values of p.]

Answer. We have (p− 1)! ≡ −1 (mod p), unless p = 2 (in which case it is equivalent to 1).
This is because every number 1 ≤ a ≤ p − 1 has a multiplicative inverse (something that you
can multiply them by to get 1 mod p). For p ≥ 3, there are exactly two values that are their
own inverses (i.e. solutions to a2 ≡p 1), which are 1 and p− 1 ≡p −1. So all the other numbers
pair up to multiply by 1. For example,

1 ∗ 2 ∗ 3 ∗ 4 ∗ 5 ∗ 6 = 1 ∗ (2 ∗ 4) ∗ (3 ∗ 5) ∗ 6 ≡7 1 ∗ 1 ∗ 1 ∗ (−1) = −1.

So

(p− 1)! = 1 ∗ 2 ∗ 3 ∗ · · · ∗ (p− 2) ∗ (p− 1) ≡p 1 ∗ 1 ∗ · · · ∗ 1 ∗ (−1) = −1.

Otherwise, for p = 2, we have (p− 1)! = 1! = 1.

(c) Compute the value of (m− 1)! (mod m) for some small values of m that are not prime (m =
4, 6, . . . ). Do you find the same pattern as you found for primes? Do you see any pattern?

Answer. For most values, (m − 1)! ≡ 0 (mod m). This is because if m is composite, and
not a prime power, there are a and b less than m that are relatively prime that satisfy ab = m.
So m = ab|(m − 1)!. If m is a prime power, with m = pk, then pk−1 is one of the factors of
(pk − 1)!; and as long as p > 2 or k > 2, then there is a distinct factor in (pk − 1)! that is a



multiple of p. So p ∗ pk−1|(pk − 1)!. The only exception, therefore, is m = 4, in which case
(m− 1)! = 3! = 6 ≡4 2.


