SOLUTIONS

Math 345
Homework 5
10/4/2017
Exercise 17. Prove the following.
(a) If z = x is a solution to a + x = b (mod n), then so is x = z¢ + kn for all k € Z.
Proof. If a + x¢9 = b (mod n) and x = x¢ + kn, then
a+zr=a+z0+kn=0+0 (modn)=>b.
O
(b) If x = z¢ is a solution to ax = b (mod n), then so is x = z¢ + kn for all k € Z.
Proof. If axg = b (mod n) and x = z¢ + kn, then
ar = a(xg + kn) = arg +akn=b+0 (mod n) ="b.
U

Exercise 18. For each of the following congruences, decide if there are any solutions. If there are,
give a maximal set of distinct (non-congruent) solutions.

[For examples involving numbers larger than 20, use a computer to calculate relevant data to start
the problem. For example, in problem (e), you’ll use a computer to calculate ged(21,91), as well
as one example of u € Z such that 21u = ged(21,91) (mod 91). Use functions that allow you to
reduce modulo n easily.]

(a) 7z =3 (mod 15)
Answer. Since ged(7,15) = 1, there is one answer: since 7 % 13 =15 1, we have
r=13-Tr =13 - 3.

(b) 62 =5 (mod 15)
Answer. Since ged(6,15) = 3, but 315, so there are no solutions.
(¢c) 8 =6 (mod 14)
Answer. Since ged(8,14) = 2 and 2|6, there are 2 answers. First, 8%13 ==14 8% (—1) =14 6,

so one solution is . Then the other solution is z = 13 — 14/2 = @

(d) 66z =100 (mod 121)
Answer. Since ged(66,121) = 11 and 11 1 100, there are no solutions.
(e) 21z = 14 (mod 91)
Answer. Since ged(21,91) = 7 and 7 | 14, there are 7 solutions. First, since
21 % 87 =91 21 * (—4) = —84 =¢; 14,
we have z = 87 is one answer. The other 6 are

87 —i(91/7), fori=1,...,6.



(f) 722 =47 (mod 200)
Answer. Since ged(72,200) = 8 and 8 147, there are no solutions.
(g) 4183z = 5781 (mod 15087)

Answer.  Since ged(4183,15087) = 47 and 47 1 5781, there are 47 solutions. First, we use
the Euclidean algorithm to solve for v and v such that 4183w + 15087v = 47:

15087 = 4183 % 3 + 2538,
4183 = 2538 * 1 + 1645,
2538 = 1645 % 1 + 893,
1645 = 893 * 1 + 752,
893 = 752 % 1 + 141,
752 = 141 % 5 + 4T;
SO
A7 =752 — 141 % 5 = (1645 — 893 % 1) — (893 — 752 % 1) % 5
= 1645 + (—6) * 893 + 5 * 752
= (4183 — 2538 % 1) + (—6)(2538 — 1645 = 1) + 5 % (1645 — 893 % 1)
— 4183 + (—7) * 2538 4 11 % 1645 + (—5) * 893
= 4183 + (—7) * (15087 — 4183 % 3) + 11 % (4183 — 2538 * 1) + (—5) * (2538 — 1645 * 1)
— 33 % 4183 + (—7) * 15087 + (—16) % 2538 + 5 % 1645
=33 %4183 + (—7) * 15087 + (—16) % (15087 — 4183  3) + 5 (4183 — 2538 % 1)
= 86 4183 + (—23) * 15087 + (—5) * 2538
= 86 4183 + (—23) * 15087 4 (—5) * (15087 — 4183 % 3)
= 101 % 4183 4 (—28) * 15087.

—_ — — —

Therefore one solution is # = 101. The others are

101 + i(15087/47), fori=1,...,46.

(h) 1537z = 2863 (mod 6731)
Answer. Since ged(1537,6731) = 53 and 53 1 2863, there are no solutions.

Exercise 19. (a) Show that a € Z~ is divisible by 4 if and only if its last two digits are divisible
by 4. [Hint: consider an equivalence modulo 100.]

Proof. The last two digits of a are by definition the remainder r of a modulo 100:
a=100xqg+r, 0 <r <100.

That’s equivalent to r = a — 100 * g. So since 4[100, we have
4|a if and only if 4|a — 100q = r.



(b)

()

The number a € Z~g is divisible by 3 if and only if the sum of its digits is divisible by 3.
[Hint: Express a number as integral combination of powers of 10, and reduce modulo 3.]

Proof. We can express a uniquely as a linear combination of powers of 10:
a=ayg+a 10+ as * 10> + - + ag * 10°, with ay # 0.
So since 10 =3 1, we have 10* =3 1¥ = 1 for all k. So

a=3ag+ar*x1l+asx1l+---4+arx1l=ap+a1+as+- -+ ay.

The number a € Z¢ is divisible by 9 if and only if the sum of its digits is divisible by 9.
[Hint: Express a number as integral combination of powers of 10, and reduce modulo 9.]

Proof. Again, we can express a uniquely as a linear combination of powers of 10:
a=ag+ar %10+ as x10%> 4+ - + ap * 10°,  with ay # 0.
So since 10 =g 1, we have 10* =¢ 1¥ = 1 for all k. So

a=gag+ar*1l+as*x1l+---+ax1l=a9g+a +as+ -+ ay.

Exercise 20.

(a)

(b)

Use a computer to compute a maximal set of (non-congruent) solutions to the following.
(i) 22 =1 (mod 8)
Answer. x =1,3,5,7 (see speadsheet).
(ii) 22 =2 (mod 7) Answer. x = 3,4 (see speadsheet).
(iii) 22 =3 (mod 7) Answer. No solutions.
(iv) 2* + 523 + 422 — 62 =4 =0 (mod 11) Answer. x = 1,9 (see speadsheet).

For 22 = 1 (mod 8), you should have gotten more than 2 solutions. Note that these are all
solutions to 22 — 1 =0 (mod 8). Why isn’t this a contradiction to the Polynomial Roots Mod
p Theorem?

Answer. 8 is not prime.
Let p and g be distinct primes. What is the maximum number of possible non-congruent
solutions to a congruence of the form 22 —a =0 (mod pq).

Proof. The maximum is four solutions. Suppose that ri,...,r5 are five distinct solutions.
Reducing modulo p, we see that they are solutions to 22> —a = 0 (mod p). This last congruence
has at most two solutions, since p is prime, say s; and ss. Each of r1,...,r5 must be congruent

modulo p to one of s; and s2, so since there are five r; values and only two s; values, it
follows that at least three of the r;s are the same modulo p. Relabeling, we may assume that
r1 =p r2 =p 3. Next reducing modulo ¢, we know that 2 —a =, 0 has at most two solutions,
say t1 and t2. So the three 7;s are each congruent to one of the two t;s, so at least two of the r;s
are congruent modulo ¢. Again relableing, we may assume that r; = r2 (mod ¢). Thus r; and
ro are congruent both modulo p and modulo ¢, so they are congruent modulo pq, contradicting
the assumption that they are distinct modulo pq. Hence there cannot be five solutions. ]



Exercise 21. Use Fermat’s Little Theorem to do the following without the use of a computer
(show your work!).

(a) Find the least residue of 9% (mod 73).

Answer.  Since 73 is prime and 73 1 9, we have 97> = 1 (mod 73). So since 794 = 2
(mod 72), we have

9794 =73 92 =381 =73 8.

(b) Solve 286 = 6 (mod 29).
Answer. Since 6 is relatively prime to 29, we have 2% = 6 (mod 29) implies z is relatively
prime to 29. So 2?8 =1 (mod 29). So since 86 = 2 (mod 28), we have 6 =29 250 =29 22, which
has solutions x = 8 and 21.

(c) Solve 3% = 3 (mod 13).
Answer. Since 3 is relatively prime to 13, we have 23 = 3 (mod 13) implies z is relatively

prime to 13. So 2! =1 (mod 13). So since 39 = 3 (mod 12), we have 3 =3 2% =3 23. But
this has no solutions.

Exercise 22. Recall the quantity (p—1)! (mod p) appeared in our proof of Fermats Little Theorem
(without actually having to compute it).

(a) Use a computer to calculate (p — 1)! (mod p) for primes p up to 13.

Answer.

P ol 35 [ 71113
(p—1)! (modp)|1l|—-1|—-1|—-1|—-1|-1

(b) Make a conjecture for what (p — 1)! (mod p) is in general, and prove it.

[Hint: Do a few examples by hand — say for p = 2,3, and 5, and try to discover why (p — 1)!
(mod p) has the value it does. Then generalize your observation to prove the formula for all
values of p.]

Answer. We have (p —1)! = —1 (mod p), unless p = 2 (in which case it is equivalent to 1).
This is because every number 1 < a < p — 1 has a multiplicative inverse (something that you
can multiply them by to get 1 mod p). For p > 3, there are exactly two values that are their
own inverses (i.e. solutions to a? =, 1), which are 1 and p — 1 =, —1. So all the other numbers
pair up to multiply by 1. For example,

1%2%3%4%x5%6=1%(2%4)*(3x5)*6=71x1x1x(—1)=—1.
So
Pp—1)!=1%2%3%---x(p—2)x(p—1)=p 1xlx---x1x(—1)=—1
Otherwise, for p = 2, we have (p — 1) = 1! = 1.
(c) Compute the value of (m — 1)! (mod m) for some small values of m that are not prime (m =
4,6,...). Do you find the same pattern as you found for primes? Do you see any pattern?

Answer. For most values, (m — 1)l = 0 (mod m). This is because if m is composite, and
not a prime power, there are a and b less than m that are relatively prime that satisfy ab = m.
So m = ab|(m — 1)!. If m is a prime power, with m = p*, then p*~! is one of the factors of
(p* —1)!; and as long as p > 2 or k > 2, then there is a distinct factor in (p* — 1)! that is a



multiple of p. So p * p*~1|(p¥ — 1)!. The only exception, therefore, is m = 4, in which case
(m—-1)1=31=6=42.



