Exercise 17. Prove the following.

(a) If
$$x = x_0$$
 is a solution to $a + x \equiv b \pmod{n}$, then so is $x = x_0 + kn$ for all $k \in \mathbb{Z}$.

Proof. If $a + x_0 \equiv b \pmod{n}$ and $x = x_0 + kn$, then

$$a + x = a + x_0 + kn \equiv b + 0 \pmod{n} = b.$$

(b) If $x = x_0$ is a solution to $ax \equiv b \pmod{n}$, then so is $x = x_0 + kn$ for all $k \in \mathbb{Z}$.

Proof. If
$$ax_0 \equiv b \pmod{n}$$
 and $x = x_0 + kn$, then
 $ax = a(x_0 + kn) = ax_0 + akn \equiv b + 0 \pmod{n} = b.$

Exercise 18. For each of the following congruences, decide if there are any solutions. If there are, give a maximal set of distinct (non-congruent) solutions.

[For examples involving numbers larger than 20, use a computer to calculate relevant data to start the problem. For example, in problem (e), you'll use a computer to calculate gcd(21,91), as well as one example of $u \in \mathbb{Z}$ such that $21u \equiv gcd(21,91) \pmod{91}$. Use functions that allow you to reduce modulo n easily.]

(a)
$$7x \equiv 3 \pmod{15}$$

Answer. Since $gcd(7, 15) = 1$, there is one answer: since $7 * 13 \equiv_{15} 1$, we have $x = 13 \cdot 7x \equiv 13 \cdot 3$.

(b) $6x \equiv 5 \pmod{15}$

Answer. Since gcd(6, 15) = 3, but $3 \nmid 5$, so there are no solutions.

(c) $8x \equiv 6 \pmod{14}$

Answer. Since gcd(8, 14) = 2 and 2|6, there are 2 answers. First, $8 * 13 = \equiv_{14} 8 * (-1) \equiv_{14} 6$, so one solution is x = 13. Then the other solution is x = 13 - 14/2 = 6.

(d) $66x \equiv 100 \pmod{121}$

Answer. Since gcd(66, 121) = 11 and $11 \nmid 100$, there are no solutions.

(e) $21x \equiv 14 \pmod{91}$

Answer. Since gcd(21,91) = 7 and $7 \mid 14$, there are 7 solutions. First, since

 $21 * 87 \equiv_{91} 21 * (-4) = -84 \equiv_{91} 14,$

we have x = 87 is one answer. The other 6 are

87 - i(91/7), for $i = 1, \dots, 6.$

(f) $72x \equiv 47 \pmod{200}$

Answer. Since gcd(72, 200) = 8 and $8 \nmid 47$, there are no solutions.

(g) $4183x \equiv 5781 \pmod{15087}$

Answer. Since gcd(4183, 15087) = 47 and $47 \nmid 5781$, there are 47 solutions. First, we use the Euclidean algorithm to solve for u and v such that 4183u + 15087v = 47:

$$\begin{split} 15087 &= 4183 * 3 + 2538, \\ 4183 &= 2538 * 1 + 1645, \\ 2538 &= 1645 * 1 + 893, \\ 1645 &= 893 * 1 + 752, \\ 893 &= 752 * 1 + 141, \\ 752 &= 141 * 5 + 47; \end{split}$$

 \mathbf{SO}

$$\begin{split} 47 &= 752 - 141 * 5 = (1645 - 893 * 1) - (893 - 752 * 1) * 5 \\ &= 1645 + (-6) * 893 + 5 * 752 \\ &= (4183 - 2538 * 1) + (-6)(2538 - 1645 * 1) + 5 * (1645 - 893 * 1) \\ &= 4183 + (-7) * 2538 + 11 * 1645 + (-5) * 893 \\ &= 4183 + (-7) * (15087 - 4183 * 3) + 11 * (4183 - 2538 * 1) + (-5) * (2538 - 1645 * 1) \\ &= 33 * 4183 + (-7) * 15087 + (-16) * 2538 + 5 * 1645 \\ &= 33 * 4183 + (-7) * 15087 + (-16) * (15087 - 4183 * 3) + 5 * (4183 - 2538 * 1) \\ &= 86 * 4183 + (-23) * 15087 + (-5) * 2538 \\ &= 86 * 4183 + (-23) * 15087 + (-5) * (15087 - 4183 * 3) \\ &= 101 * 4183 + (-28) * 15087. \end{split}$$

Therefore one solution is x = 101. The others are

101 + i(15087/47), for $i = 1, \dots, 46.$

(h) $1537x \equiv 2863 \pmod{6731}$

Answer. Since gcd(1537, 6731) = 53 and $53 \nmid 2863$, there are no solutions.

Exercise 19. (a) Show that $a \in \mathbb{Z}_{>0}$ is divisible by 4 if and only if its last two digits are divisible by 4. [Hint: consider an equivalence modulo 100.]

Proof. The last two digits of a are by definition the remainder r of a modulo 100:

 $a = 100 * q + r, \quad 0 \le r < 100.$

That's equivalent to r = a - 100 * q. So since 4|100, we have 4|a if and only if 4|a - 100q = r.

(b) The number $a \in \mathbb{Z}_{>0}$ is divisible by 3 if and only if the sum of its digits is divisible by 3. [Hint: Express a number as integral combination of powers of 10, and reduce modulo 3.]

Proof. We can express a uniquely as a linear combination of powers of 10: $a = a_0 + a_1 * 10 + a_2 * 10^2 + \dots + a_\ell * 10^\ell$, with $a_\ell \neq 0$. So since $10 \equiv_3 1$, we have $10^k \equiv_3 1^k = 1$ for all k. So $a \equiv_3 a_0 + a_1 * 1 + a_2 * 1 + \dots + a_\ell * 1 = a_0 + a_1 + a_2 + \dots + a_\ell$.

(c) The number $a \in \mathbb{Z}_{>0}$ is divisible by 9 if and only if the sum of its digits is divisible by 9. [Hint: Express a number as integral combination of powers of 10, and reduce modulo 9.]

Proof. Again, we can express a uniquely as a linear combination of powers of 10:

$$a = a_0 + a_1 * 10 + a_2 * 10^2 + \dots + a_\ell * 10^\ell$$
, with $a_\ell \neq 0$.

So since $10 \equiv_9 1$, we have $10^k \equiv_9 1^k = 1$ for all k. So

$$a \equiv_9 a_0 + a_1 * 1 + a_2 * 1 + \dots + a_\ell * 1 = a_0 + a_1 + a_2 + \dots + a_\ell$$

Exercise 20.

- (a) Use a computer to compute a maximal set of (non-congruent) solutions to the following.
 - (i) $x^2 \equiv 1 \pmod{8}$ Answer. x = 1, 3, 5, 7 (see speadsheet).
 - (ii) $x^2 \equiv 2 \pmod{7}$ Answer. x = 3, 4 (see speadsheet).
 - (iii) $x^2 \equiv 3 \pmod{7}$ Answer. No solutions.
 - (iv) $x^4 + 5x^3 + 4x^2 6x = 4 \equiv 0 \pmod{11}$ Answer. x = 1, 9 (see speadsheet).
- (b) For $x^2 \equiv 1 \pmod{8}$, you should have gotten more than 2 solutions. Note that these are all solutions to $x^2 1 \equiv 0 \pmod{8}$. Why isn't this a contradiction to the Polynomial Roots Mod p Theorem?

Answer. 8 is not prime.

(c) Let p and q be distinct primes. What is the maximum number of possible non-congruent solutions to a congruence of the form $x^2 - a \equiv 0 \pmod{pq}$.

Proof. The maximum is four solutions. Suppose that r_1, \ldots, r_5 are five distinct solutions. Reducing modulo p, we see that they are solutions to $x^2 - a \equiv 0 \pmod{p}$. This last congruence has at most two solutions, since p is prime, say s_1 and s_2 . Each of r_1, \ldots, r_5 must be congruent modulo p to one of s_1 and s_2 , so since there are five r_i values and only two s_j values, it follows that at least three of the r_i s are the same modulo p. Relabeling, we may assume that $r_1 \equiv_p r_2 \equiv_p r_3$. Next reducing modulo q, we know that $x^2 - a \equiv_q 0$ has at most two solutions, say t_1 and t_2 . So the three r_i s are each congruent to one of the two t_j s, so at least two of the r_i s are congruent modulo q. Again relableing, we may assume that $r_1 \equiv r_2 \pmod{q}$. Thus r_1 and r_2 are congruent both modulo p and modulo q, so they are congruent modulo pq, contradicting the assumption that they are distinct modulo pq. Hence there cannot be five solutions.

Exercise 21. Use Fermat's Little Theorem to do the following without the use of a computer (show your work!).

(a) Find the least residue of $9^{794} \pmod{73}$.

Answer. Since 73 is prime and 73 \nmid 9, we have $9^{72} \equiv 1 \pmod{73}$. So since 794 $\equiv 2 \pmod{72}$, we have

$$9^{794} \equiv_{73} 9^2 = 81 \equiv_{73} 8_1$$

(b) Solve $x^{86} \equiv 6 \pmod{29}$.

Answer. Since 6 is relatively prime to 29, we have $x^{86} \equiv 6 \pmod{29}$ implies x is relatively prime to 29. So $x^{28} \equiv 1 \pmod{29}$. So since $86 \equiv 2 \pmod{28}$, we have $6 \equiv_{29} x^{86} \equiv_{29} x^2$, which has solutions x = 8 and 21.

(c) Solve $x^{39} \equiv 3 \pmod{13}$.

Answer. Since 3 is relatively prime to 13, we have $x^{39} \equiv 3 \pmod{13}$ implies x is relatively prime to 13. So $x^{12} \equiv 1 \pmod{13}$. So since $39 \equiv 3 \pmod{12}$, we have $3 \equiv_{13} x^{86} \equiv_{13} x^3$. But this has no solutions.

Exercise 22. Recall the quantity $(p-1)! \pmod{p}$ appeared in our proof of Fermats Little Theorem (without actually having to compute it).

(a) Use a computer to calculate $(p-1)! \pmod{p}$ for primes p up to 13.

Answer.

p	2	3	5	7	11	13
$(p-1)! \pmod{p}$	1	-1	-1	-1	-1	-1

(b) Make a conjecture for what $(p-1)! \pmod{p}$ is in general, and prove it.

[Hint: Do a few examples by hand – say for p = 2, 3, and 5, and try to discover why (p - 1)! (mod p) has the value it does. Then generalize your observation to prove the formula for all values of p.]

Answer. We have $(p-1)! \equiv -1 \pmod{p}$, unless p = 2 (in which case it is equivalent to 1). This is because every number $1 \leq a \leq p-1$ has a multiplicative inverse (something that you can multiply them by to get $1 \mod p$). For $p \geq 3$, there are exactly two values that are their own inverses (i.e. solutions to $a^2 \equiv_p 1$), which are 1 and $p-1 \equiv_p -1$. So all the other numbers pair up to multiply by 1. For example,

$$1 * 2 * 3 * 4 * 5 * 6 = 1 * (2 * 4) * (3 * 5) * 6 \equiv_7 1 * 1 * 1 * (-1) = -1.$$

So

$$(p-1)! = 1 * 2 * 3 * \dots * (p-2) * (p-1) \equiv_p 1 * 1 * \dots * 1 * (-1) = -1.$$

Otherwise, for p = 2, we have (p - 1)! = 1! = 1.

(c) Compute the value of $(m-1)! \pmod{m}$ for some small values of m that are not prime (m = 4, 6, ...). Do you find the same pattern as you found for primes? Do you see any pattern?

Answer. For most values, $(m-1)! \equiv 0 \pmod{m}$. This is because if m is composite, and not a prime power, there are a and b less than m that are relatively prime that satisfy ab = m. So m = ab|(m-1)!. If m is a prime power, with $m = p^k$, then p^{k-1} is one of the factors of $(p^k - 1)!$; and as long as p > 2 or k > 2, then there is a distinct factor in $(p^k - 1)!$ that is a

multiple of p. So $p * p^{k-1} | (p^k - 1)!$. The only exception, therefore, is m = 4, in which case $(m-1)! = 3! = 6 \equiv_4 2$.