Exercise 13. Consider positive integers a, b, and c.
(a) Suppose $\operatorname{gcd}(a, b)=1$.
(i) Show that if a divides the product $b c$, then a must divide c.

I give two proofs here, to illustrate the different methods.
Proof 1: Using only ch. 6 results. Since $\operatorname{gcd}(a, b)=1$, we have

$$
a x+b y=1 \quad \text { for some } x, y \in \mathbb{Z}
$$

Multiplying both sides by c gives

$$
a c x+b c y=c .
$$

Since $a \mid a c x$ (by observation) and $a \mid b c y$ (because $a \mid b c$), we must have that $a \mid c$.

Proof 2: using ch. 7 results. If $a \nmid c$, then there is some prime p and positive integer n with

$$
p^{n} \mid a \quad \text { and } \quad p^{n} \nmid c
$$

Let m be the largest integer such that $p^{m} \mid c$, so that $c=c^{\prime} p^{m}$ and $p \nmid c^{\prime}$. Since $m<n$, we also have

$$
a^{\prime}=a / p^{m} \in \mathbb{Z} .
$$

Claim 1: $a^{\prime} \nmid c^{\prime}$.
This is because otherwise, there would be some k such that $a^{\prime} k=c^{\prime}$. So $a k=p^{m} a^{\prime} k=$ $p^{m} c^{\prime}=c$, a contradiction.
Claim 2: $a^{\prime} \mid b c^{\prime}$.
Since $a \mid b c$, there is some integer ℓ satisfying $a \ell=b c$. Dividing both sides by p^{m} gives $a^{\prime} \ell=c^{\prime} b$, verifying our claim.//
Claim 3: $\operatorname{gcd}\left(a^{\prime}, b\right)=1$
Since $a^{\prime} \mid a$, any common divisor to a^{\prime} and b would have to be a common divisor of a and b. So our claim follows from $\operatorname{gcd}(a, b)=1$. //
Putting these all together, we have

$$
p \mid a^{\prime} \quad \text { and } \quad a^{\prime} \mid b c^{\prime}, \quad \text { so } \quad p \mid b c^{\prime}
$$

Therefore, either $p \mid c^{\prime}$ (which it doesn't) or $p \mid b$ (implying that a^{\prime} and b have a non-trivial common factor, which they don't). This is a contradiction, implying that $a \mid c$ after all.
(ii) Show that if a and b both divide c, then $a b$ must also divide c.

Again, I give multiple proofs here, to illustrate the different methods.

Proof 1: Using only ch. 6 results. Since $\operatorname{gcd}(a, b)=1$, we have $\operatorname{lcm}(a, b)=a b / 1=a b$. So since c is a common multiple of a and b, we have $a b=\operatorname{lcm}(a, b) \mid c$.

Proof 2: Using only ch. 6 results. Since $a \mid c$ and $b \mid c$ there are $k, \ell \in \mathbb{Z}$ satisfying $a k=c$ and $b \ell=c$. And since $\operatorname{gcd}(a, b)=1$, we have an integer solution to $a x+b y=1$. Multiplying both sides by k, we get

$$
\begin{array}{rlr}
k & =a k x+b k y \\
& =c x+b k y & \\
& =b \ell x+b k y & \text { since } a k=c, \\
& =b(\ell x+k y) . & \text { since } c=b \ell,
\end{array}
$$

So

$$
c=a k=a b(\ell x+k y) .
$$

Therefore, since $\ell x+k y \in \mathbb{Z}$, we have $a b \mid c$.

Proof 3: using ch. 7 results. If $a b \nmid c$, then there is some prime p and positive integer n such that p^{n} that divides $a b$ but not c. Since $\operatorname{gcd}(a, b)=1$, using the fundamental theorem of arithmetic, we must have p^{n} divides a or b (otherwise, p would divide both). Without loss of generality, suppose $p^{n} \mid a$. But then, since $a \mid c$, we have $p^{n} \mid c$, a contradiction.
(b) Give examples of a, b, and c where $\operatorname{gcd}(a, b) \neq 1$ and. ..
(i) a divides the product $b c$, but a does not divide c :

Answer. Let $a=6, b=3, c=2$.
(ii) a and b both divide c, but $a b$ does not divide c :

Answer. Let $a=6, b=9, c=\operatorname{lcm}(a, b)=6 * 9 / 3=18$.

Exercise 14. Let s and t be odd integers with $s>t \geq 1$ and $\operatorname{gcd}(s, t)=1$. Prove that the three numbers

$$
\begin{equation*}
s t, \quad \frac{s^{2}-t^{2}}{2}, \quad \text { and } \quad \frac{s^{2}+t^{2}}{2} \tag{*}
\end{equation*}
$$

are pairwise relatively prime (i.e. each pair of them is relatively prime). This fact was needed to complete the proof of the Pythagorean triples theorem (Theorem 2.1 on page 17). [Hint. Assume that there is a common prime factor and use the fact (Lemma 7.1) that if a prime divides a product, then it divides one of the factors.]
Answer. We showed that a Pythagorean triple (a, b, c) is primitive if and only if $\operatorname{gcd}(a, b)=1$ (i.e. there is no need to check the pairs a and c or b and c, since any pairwise common divisor will imply the others). So since (??) forms a Pythagorean triple, we analyze $\operatorname{gcd}\left(s t,\left(s^{2}-t^{2}\right) / 2\right)$.

Suppose for the sake of contradiction that $\operatorname{gcd}\left(s t,\left(s^{2}-t^{2}\right) / 2\right)>1$. Then consider a prime divisor p that they have in common (since $\operatorname{gcd}\left(s t,\left(s^{2}-t^{2}\right) / 2\right)$ has a prime factorization, such a p exists). Then since $p \mid s t$, we have $p \mid s$ or $p \mid t$.

Now using $p \mid\left(s^{2}-t^{2}\right) / 2$ to write $\left(s^{2}-t^{2}\right) / 2=p b^{\prime}$ with $b^{\prime} \in \mathbb{Z}$, we have

$$
2 p b^{\prime}=s^{2}-t^{2}=(s+t)(s-t) .
$$

So $p \mid(s+t)(s-t)$, which implies $p \mid(s+t)$ or $p \mid(s-t)$. Either way, since $p \mid s$, this implies that $p \mid t$. But that implies that p is a common divisor of s and t, contradicting $\operatorname{gcd}(s, t)=1$.

A similar argument follows for $p \mid t$. Thus (??) forms a PPT.

Exercise 15. Group the numbers $-10 \leq i \leq 10$ into sets according to which numbers are pairwise congruent modulo 4 . [You should have 4 sets of roughly the same size.]
Answer. Denoting

$$
[r]=\left\{i \in\{-10, \ldots, 9,10\} \mid i \equiv_{4} r\right\},
$$

we have

$$
\begin{aligned}
& {[0]=\{-8,-4,0,4,8\},} \\
& {[1]=\{-7,-3,1,5,9\},} \\
& {[2]=\{-10,-6,-2,2,6,10\},} \\
& {[3]=\{-9,-5,3,7\} .}
\end{aligned}
$$

Exercise 16. Fix $n \geq 1$.
(a) Prove that congruence is an equivalence relation by showing
(i) reflexivity: $a \equiv a(\bmod n)$ for all $a \in \mathbb{Z}$;
(ii) symmetry: if $a \equiv b(\bmod n)$, then $b \equiv a(\bmod n)$; and
(iii) transitivity: if $a \equiv b(\bmod n)$ and $b \equiv c(\bmod n)$, then $a \equiv c(\bmod n)$.

Proof. Recall that $a \equiv b(\bmod n)$ if and only if $n \mid(a-b)$, i.e. there is some $k \in \mathbb{Z}$ satisfying $n k=a-b$.
(i) Reflexivity: $a \in \mathbb{Z}$, we have $a-a=0=0 \cdot n$. So $a \equiv_{n} a$.
(ii) Symmetry: If $a \equiv b(\bmod n)$, then there is a $k \in \mathbb{Z}$ satisfying $n k=a-b$. So $n(-k)=b-a$. Thus, since $-k \in \mathbb{Z}$, we have $b \equiv a(\bmod n)$.
(iii) Transitivity: If $a \equiv b(\bmod n)$ and $b \equiv c(\bmod n)$, then there are $k, \ell \in \mathbb{Z}$ satisfying

$$
n k=a-b \quad \text { and } \quad n \ell=b-c .
$$

Therefore

$$
a-c=(a-b)+(b-c)=n k+n \ell=n(k+\ell) .
$$

So since $k+\ell \in \mathbb{Z}$, we have $a \equiv c(\bmod n)$.
(b) Suppose $a_{1} \equiv b_{1}(\bmod n)$ and $a_{2} \equiv b_{2}(\bmod n)$.
(i) Show that $a_{1}+a_{2} \equiv b_{1}+b_{2}(\bmod n)$ and $a_{1}-a_{2} \equiv b_{1}-b_{2}(\bmod n)$
(ii) Show that $a_{1} a_{2} \equiv b_{1} b_{2}(\bmod n)$.

Proof. Since $a_{1} \equiv b_{1}(\bmod n)$ and $a_{2} \equiv b_{2}(\bmod n)$, we have $k_{1}, k_{2} \in \mathbb{Z}$ satisfying

$$
\begin{equation*}
n k_{1}=a_{1}-b_{1} \quad \text { and } \quad n k_{2}=a_{2}-b_{2} . \tag{**}
\end{equation*}
$$

(i) Using (??), we have

$$
\begin{aligned}
\left(a_{1}+a_{2}\right)-\left(b_{1}+b_{2}\right) & =\left(a_{1}-b_{1}\right)+\left(a_{2}-b_{2}\right) \\
& =n k_{1}+n k_{2}=n\left(k_{1}+k_{2}\right), \quad \text { and }\left(a_{1}-a_{2}\right)-\left(b_{1}-b_{2}\right)=\left(a_{1}-b_{1}\right)-\left(a_{2}-b_{2}\right) \\
& =n k_{1}-n k_{2}=n\left(k_{1}-k_{2}\right) .
\end{aligned}
$$

So since $k_{1} \pm k_{2} \in \mathbb{Z}$, we have $a_{1}+a_{2} \equiv b_{1}+b_{2}(\bmod n)$ and $a_{1}-a_{2} \equiv b_{1}-b_{2}(\bmod n)$
(ii) Rearranging (??), we have

$$
a_{1}=n k_{1}+b_{1} \quad \text { and } \quad a_{2}=n k_{2}+b_{2} .
$$

So

$$
\begin{aligned}
a_{1} a_{2} & =\left(n k_{1}+b_{1}\right)\left(n k_{2}+b_{2}\right) \\
& =n^{2} k_{1} k_{2}+n\left(k_{1} b_{2}+k_{2} b_{1}\right)+b_{1} b_{2} \\
& =n\left(n k_{1} k_{2}+k_{1} b_{2}+k_{2} b_{1}\right)+b_{1} b_{2},
\end{aligned}
$$

giving

$$
a_{1} a_{2}-b_{1} b_{2}=n\left(n k_{1} k_{2}+k_{1} b_{2}+k_{2} b_{1}\right) .
$$

Therefore, since $\left(n k_{1} k_{2}+k_{1} b_{2}+k_{2} b_{1}\right) \in \mathbb{Z}$, we have $a_{1} a_{2} \equiv b_{1} b_{2}(\bmod n)$.
(c) Division.
(i) Give an example of a, b, c, and n, with $c \not \equiv 0(\bmod n)$, where

$$
a c \equiv b c \quad(\bmod n), \quad \text { but } \quad a \not \equiv b \quad(\bmod n) .
$$

Example. Let $a=c=2, b=7$, and $n=10$: we have $2 \not \equiv 7(\bmod 10)$, but

$$
\begin{aligned}
& 2 * 2=4 \equiv 4 \quad(\bmod 10), \quad \text { and } \\
& 2 * 7=14 \equiv 4 \quad(\bmod 10)
\end{aligned}
$$

(ii) Show that if $\operatorname{gcd}(c, n)=1$, then

$$
a c \equiv b c \quad(\bmod n) \quad \text { implies } \quad a \equiv b \quad(\bmod n) .
$$

Proof. If $a c \equiv b c(\bmod n)$, then $n \mid a c-b c=(a-b) c$. So, since $\operatorname{gcd}(c, n)=1$, by Exercise 13(a)(i), we have $n \mid(a-b)$. Thus $a \equiv b(\bmod n)$.

