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Exercise 13. Consider positive integers a, b, and c.

(a) Suppose gcd(a, b) = 1.
(i) Show that if a divides the product bc, then a must divide c.

I give two proofs here, to illustrate the different methods.

Proof 1: Using only ch. 6 results. Since gcd(a, b) = 1, we have

ax + by = 1 for some x, y ∈ Z.
Multiplying both sides by c gives

acx + bcy = c.

Since a|acx (by observation) and a|bcy (because a|bc), we must have that a|c. �

Proof 2: using ch. 7 results. If a - c, then there is some prime p and positive integer n
with

pn|a and pn - c
Let m be the largest integer such that pm|c, so that c = c′pm and p - c′. Since m < n, we
also have

a′ = a/pm ∈ Z.
Claim 1: a′ - c′.
This is because otherwise, there would be some k such that a′k = c′. So ak = pma′k =
pmc′ = c, a contradiction.

Claim 2: a′|bc′.
Since a|bc, there is some integer ` satisfying a` = bc. Dividing both sides by pm gives
a′` = c′b, verifying our claim.//

Claim 3: gcd(a′, b) = 1
Since a′|a, any common divisor to a′ and b would have to be a common divisor of a and
b. So our claim follows from gcd(a, b) = 1. //

Putting these all together, we have
p|a′ and a′|bc′, so p|bc′.

Therefore, either p|c′ (which it doesn’t) or p|b (implying that a′ and b have a non-trivial
common factor, which they don’t). This is a contradiction, implying that a|c after all. �



(ii) Show that if a and b both divide c, then ab must also divide c.

Again, I give multiple proofs here, to illustrate the different methods.

Proof 1: Using only ch. 6 results. Since gcd(a, b) = 1, we have lcm(a, b) = ab/1 = ab. So
since c is a common multiple of a and b, we have ab = lcm(a, b)|c. �

Proof 2: Using only ch. 6 results. Since a|c and b|c there are k, ` ∈ Z satisfying ak = c
and b` = c. And since gcd(a, b) = 1, we have an integer solution to ax + by = 1.
Multiplying both sides by k, we get

k = akx + bky

= cx + bky since ak = c,

= b`x + bky since c = b`,

= b(`x + ky).

So
c = ak = ab(`x + ky).

Therefore, since `x + ky ∈ Z, we have ab|c. �

Proof 3: using ch. 7 results. If ab - c, then there is some prime p and positive integer n
such that pn that divides ab but not c. Since gcd(a, b) = 1, using the fundamental theorem
of arithmetic, we must have pn divides a or b (otherwise, p would divide both). Without
loss of generality, suppose pn|a. But then, since a|c, we have pn|c, a contradiction.

�

(b) Give examples of a, b, and c where gcd(a, b) 6= 1 and. . .
(i) a divides the product bc, but a does not divide c:

Answer. Let a = 6, b = 3, c = 2. �

(ii) a and b both divide c, but ab does not divide c:

Answer. Let a = 6, b = 9, c = lcm(a, b) = 6 ∗ 9/3 = 18. �



Exercise 14. Let s and t be odd integers with s > t ≥ 1 and gcd(s, t) = 1. Prove that the three
numbers

st,
s2 − t2

2
, and

s2 + t2

2
(∗)

are pairwise relatively prime (i.e. each pair of them is relatively prime). This fact was needed to
complete the proof of the Pythagorean triples theorem (Theorem 2.1 on page 17). [Hint. Assume
that there is a common prime factor and use the fact (Lemma 7.1) that if a prime divides a product,
then it divides one of the factors.]

Answer. We showed that a Pythagorean triple (a, b, c) is primitive if and only if gcd(a, b) = 1 (i.e.
there is no need to check the pairs a and c or b and c, since any pairwise common divisor will imply
the others). So since (??) forms a Pythagorean triple, we analyze gcd(st, (s2 − t2)/2).

Suppose for the sake of contradiction that gcd(st, (s2− t2)/2) > 1. Then consider a prime divisor
p that they have in common (since gcd(st, (s2 − t2)/2) has a prime factorization, such a p exists).
Then since p|st, we have p|s or p|t.

Now using p|(s2 − t2)/2 to write (s2 − t2)/2 = pb′ with b′ ∈ Z, we have

2pb′ = s2 − t2 = (s + t)(s− t).

So p|(s + t)(s− t), which implies p|(s + t) or p|(s− t). Either way, since p|s, this implies that p|t.
But that implies that p is a common divisor of s and t, contradicting gcd(s, t) = 1.

A similar argument follows for p|t. Thus (??) forms a PPT.
�

Exercise 15. Group the numbers −10 ≤ i ≤ 10 into sets according to which numbers are pairwise
congruent modulo 4. [You should have 4 sets of roughly the same size.]

Answer. Denoting
[r] = {i ∈ {−10, . . . , 9, 10} | i ≡4 r},

we have

[0] = {−8,−4, 0, 4, 8},
[1] = {−7,−3, 1, 5, 9},
[2] = {−10,−6,−2, 2, 6, 10},
[3] = {−9,−5, 3, 7}.

�



Exercise 16. Fix n ≥ 1.

(a) Prove that congruence is an equivalence relation by showing
(i) reflexivity: a ≡ a (mod n) for all a ∈ Z;

(ii) symmetry: if a ≡ b (mod n), then b ≡ a (mod n); and
(iii) transitivity: if a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n).

Proof. Recall that a ≡ b (mod n) if and only if n|(a − b), i.e. there is some k ∈ Z satisfying
nk = a− b.

(i) Reflexivity: a ∈ Z, we have a− a = 0 = 0 · n. So a ≡n a.
(ii) Symmetry: If a ≡ b (mod n), then there is a k ∈ Z satisfying nk = a−b. So n(−k) = b−a.

Thus, since −k ∈ Z, we have b ≡ a (mod n).
(iii) Transitivity: If a ≡ b (mod n) and b ≡ c (mod n), then there are k, ` ∈ Z satisfying

nk = a− b and n` = b− c.

Therefore
a− c = (a− b) + (b− c) = nk + n` = n(k + `).

So since k + ` ∈ Z, we have a ≡ c (mod n).
�

(b) Suppose a1 ≡ b1 (mod n) and a2 ≡ b2 (mod n).
(i) Show that a1 + a2 ≡ b1 + b2 (mod n) and a1 − a2 ≡ b1 − b2 (mod n)

(ii) Show that a1a2 ≡ b1b2 (mod n).

Proof. Since a1 ≡ b1 (mod n) and a2 ≡ b2 (mod n), we have k1, k2 ∈ Z satisfying

nk1 = a1 − b1 and nk2 = a2 − b2. (∗∗)
(i) Using (??), we have

(a1 + a2)− (b1 + b2) = (a1 − b1) + (a2 − b2)

= nk1 + nk2 = n(k1 + k2), and (a1 − a2)− (b1 − b2) = (a1 − b1)− (a2 − b2)

= nk1 − nk2 = n(k1 − k2).

So since k1 ± k2 ∈ Z, we have a1 + a2 ≡ b1 + b2 (mod n) and a1 − a2 ≡ b1 − b2 (mod n)
(ii) Rearranging (??), we have

a1 = nk1 + b1 and a2 = nk2 + b2.

So

a1a2 = (nk1 + b1)(nk2 + b2)

= n2k1k2 + n(k1b2 + k2b1) + b1b2

= n(nk1k2 + k1b2 + k2b1) + b1b2,

giving
a1a2 − b1b2 = n(nk1k2 + k1b2 + k2b1).

Therefore, since (nk1k2 + k1b2 + k2b1) ∈ Z, we have a1a2 ≡ b1b2 (mod n).
�



(c) Division.
(i) Give an example of a, b, c, and n, with c 6≡ 0 (mod n), where

ac ≡ bc (mod n), but a 6≡ b (mod n).

Example. Let a = c = 2, b = 7, and n = 10: we have 2 6≡ 7 (mod 10), but

2 ∗ 2 = 4 ≡ 4 (mod 10), and

2 ∗ 7 = 14 ≡ 4 (mod 10).

�

(ii) Show that if gcd(c, n) = 1, then

ac ≡ bc (mod n) implies a ≡ b (mod n).

Proof. If ac ≡ bc (mod n), then n|ac− bc = (a− b)c. So, since gcd(c, n) = 1, by Exercise
13(a)(i), we have n|(a− b). Thus a ≡ b (mod n).

�


