Exercise 13. Consider positive integers a, b, and c.

(a) Suppose gcd(a, b) = 1.

(i) Show that if a divides the product bc, then a must divide c.

I give two proofs here, to illustrate the different methods.

Proof 1: Using only ch. 6 results. Since gcd(a, b) = 1, we have

ax + by = 1 for some $x, y \in \mathbb{Z}$.

Multiplying both sides by c gives

acx + bcy = c.

Since a|acx (by observation) and a|bcy (because a|bc), we must have that a|c.

Proof 2: using ch. 7 results. If $a \nmid c$, then there is some prime p and positive integer n with

$$p^n | a$$
 and $p^n \nmid c$

Let m be the largest integer such that $p^m | c$, so that $c = c'p^m$ and $p \nmid c'$. Since m < n, we also have

$$a' = a/p^m \in \mathbb{Z}$$

<u>Claim 1:</u> $a' \nmid c'$.

This is because otherwise, there would be some k such that a'k = c'. So $ak = p^m a'k = p^m c' = c$, a contradiction.

<u>Claim 2:</u> a'|bc'.

Since a|bc, there is some integer ℓ satisfying $a\ell = bc$. Dividing both sides by p^m gives $a'\ell = c'b$, verifying our claim.//

<u>Claim 3:</u> gcd(a', b) = 1

Since a'|a, any common divisor to a' and b would have to be a common divisor of a and b. So our claim follows from gcd(a, b) = 1. //

Putting these all together, we have

p|a' and a'|bc', so p|bc'.

Therefore, either p|c' (which it doesn't) or p|b (implying that a' and b have a non-trivial common factor, which they don't). This is a contradiction, implying that a|c after all. \Box

(ii) Show that if a and b both divide c, then ab must also divide c.

Again, I give multiple proofs here, to illustrate the different methods.

Proof 1: Using only ch. 6 results. Since gcd(a,b) = 1, we have lcm(a,b) = ab/1 = ab. So since c is a common multiple of a and b, we have ab = lcm(a,b)|c.

Proof 2: Using only ch. 6 results. Since a|c and b|c there are $k, \ell \in \mathbb{Z}$ satisfying ak = c and $b\ell = c$. And since gcd(a, b) = 1, we have an integer solution to ax + by = 1. Multiplying both sides by k, we get

k = akx + bky = cx + bky $= b\ell x + bky$ $= b(\ell x + ky).$ $c = ak = ab(\ell x + ky).$

Therefore, since $\ell x + ky \in \mathbb{Z}$, we have ab|c.

So

Proof 3: using ch. 7 results. If $ab \nmid c$, then there is some prime p and positive integer n such that p^n that divides ab but not c. Since gcd(a, b) = 1, using the fundamental theorem of arithmetic, we must have p^n divides a or b (otherwise, p would divide both). Without loss of generality, suppose $p^n|a$. But then, since a|c, we have $p^n|c$, a contradiction.

(b) Give examples of a, b, and c where $gcd(a, b) \neq 1$ and...

(i) a divides the product bc, but a does not divide c:

Answer. Let a = 6, b = 3, c = 2.

(ii) a and b both divide c, but ab does not divide c:

Answer. Let a = 6, b = 9, c = lcm(a, b) = 6 * 9/3 = 18.

Exercise 14. Let s and t be odd integers with $s > t \ge 1$ and gcd(s,t) = 1. Prove that the three numbers

$$st, \qquad \frac{s^2 - t^2}{2}, \qquad \text{and} \qquad \frac{s^2 + t^2}{2}$$
 (*)

are pairwise relatively prime (i.e. each pair of them is relatively prime). This fact was needed to complete the proof of the Pythagorean triples theorem (Theorem 2.1 on page 17). [Hint. Assume that there is a common prime factor and use the fact (Lemma 7.1) that if a prime divides a product, then it divides one of the factors.]

Answer. We showed that a Pythagorean triple (a, b, c) is primitive if and only if gcd(a, b) = 1 (i.e. there is no need to check the pairs a and c or b and c, since any pairwise common divisor will imply the others). So since (??) forms a Pythagorean triple, we analyze $gcd(st, (s^2 - t^2)/2)$.

Suppose for the sake of contradiction that $gcd(st, (s^2 - t^2)/2) > 1$. Then consider a prime divisor p that they have in common (since $gcd(st, (s^2 - t^2)/2)$ has a prime factorization, such a p exists). Then since p|st, we have p|s or p|t.

Now using
$$p|(s^2 - t^2)/2$$
 to write $(s^2 - t^2)/2 = pb'$ with $b' \in \mathbb{Z}$, we have $2pb' = s^2 - t^2 = (s+t)(s-t).$

So p|(s+t)(s-t), which implies p|(s+t) or p|(s-t). Either way, since p|s, this implies that p|t. But that implies that p is a common divisor of s and t, contradicting gcd(s,t) = 1.

A similar argument follows for p|t. Thus (??) forms a PPT.

Exercise 15. Group the numbers $-10 \le i \le 10$ into sets according to which numbers are pairwise congruent modulo 4. [You should have 4 sets of roughly the same size.]

Answer. Denoting

$$[r] = \{i \in \{-10, \dots, 9, 10\} \mid i \equiv_4 r\},\$$

we have

$$0] = \{-8, -4, 0, 4, 8\},\$$

$$1] = \{-7, -3, 1, 5, 9\},\$$

$$2] = \{-10, -6, -2, 2, 6, 10\},\$$

$$3] = \{-9, -5, 3, 7\}.$$

Exercise 16. Fix $n \ge 1$.

(a) Prove that congruence is an equivalence relation by showing

- (i) reflexivity: $a \equiv a \pmod{n}$ for all $a \in \mathbb{Z}$;
- (ii) symmetry: if $a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$; and
- (iii) transitivity: if $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$.

Proof. Recall that $a \equiv b \pmod{n}$ if and only if n|(a-b), i.e. there is some $k \in \mathbb{Z}$ satisfying nk = a - b.

- (i) Reflexivity: $a \in \mathbb{Z}$, we have $a a = 0 = 0 \cdot n$. So $a \equiv_n a$.
- (ii) Symmetry: If $a \equiv b \pmod{n}$, then there is a $k \in \mathbb{Z}$ satisfying nk = a-b. So n(-k) = b-a. Thus, since $-k \in \mathbb{Z}$, we have $b \equiv a \pmod{n}$.
- (iii) Transitivity: If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then there are $k, \ell \in \mathbb{Z}$ satisfying

$$nk = a - b$$
 and $n\ell = b - c$.

Therefore

$$a - c = (a - b) + (b - c) = nk + n\ell = n(k + \ell)$$

So since $k + \ell \in \mathbb{Z}$, we have $a \equiv c \pmod{n}$.

_	
_	

- (b) Suppose $a_1 \equiv b_1 \pmod{n}$ and $a_2 \equiv b_2 \pmod{n}$.
 - (i) Show that $a_1 + a_2 \equiv b_1 + b_2 \pmod{n}$ and $a_1 a_2 \equiv b_1 b_2 \pmod{n}$
 - (ii) Show that $a_1a_2 \equiv b_1b_2 \pmod{n}$.

Proof. Since $a_1 \equiv b_1 \pmod{n}$ and $a_2 \equiv b_2 \pmod{n}$, we have $k_1, k_2 \in \mathbb{Z}$ satisfying

$$nk_1 = a_1 - b_1$$
 and $nk_2 = a_2 - b_2$. (**)

(i) Using (??), we have

$$(a_1 + a_2) - (b_1 + b_2) = (a_1 - b_1) + (a_2 - b_2)$$

= $nk_1 + nk_2 = n(k_1 + k_2)$, and $(a_1 - a_2) - (b_1 - b_2) = (a_1 - b_1) - (a_2 - b_2)$
= $nk_1 - nk_2 = n(k_1 - k_2)$.

So since $k_1 \pm k_2 \in \mathbb{Z}$, we have $a_1 + a_2 \equiv b_1 + b_2 \pmod{n}$ and $a_1 - a_2 \equiv b_1 - b_2 \pmod{n}$ (ii) Rearranging (??), we have

$$a_1 = nk_1 + b_1$$
 and $a_2 = nk_2 + b_2$.

So

$$a_1a_2 = (nk_1 + b_1)(nk_2 + b_2)$$

= $n^2k_1k_2 + n(k_1b_2 + k_2b_1) + b_1b_2$
= $n(nk_1k_2 + k_1b_2 + k_2b_1) + b_1b_2$,

giving

 $a_1a_2 - b_1b_2 = n(nk_1k_2 + k_1b_2 + k_2b_1).$

Therefore, since $(nk_1k_2 + k_1b_2 + k_2b_1) \in \mathbb{Z}$, we have $a_1a_2 \equiv b_1b_2 \pmod{n}$.

(c) Division.

(i) Give an example of a, b, c, and n, with $c \not\equiv 0 \pmod{n}$, where

 $ac \equiv bc \pmod{n}$, but $a \not\equiv b \pmod{n}$. *Example.* Let a = c = 2, b = 7, and n = 10: we have $2 \not\equiv 7 \pmod{10}$, but $2 * 2 = 4 \equiv 4 \pmod{10}$, and $2 * 7 = 14 \equiv 4 \pmod{10}$.

(ii) Show that if gcd(c, n) = 1, then

 $ac \equiv bc \pmod{n}$ implies $a \equiv b \pmod{n}$.

Proof. If $ac \equiv bc \pmod{n}$, then n|ac - bc = (a - b)c. So, since gcd(c, n) = 1, by Exercise 13(a)(i), we have n|(a - b). Thus $a \equiv b \pmod{n}$.