SOLUTIONS

Math 345
Homework 4
9/27/2017
Exercise 13. Consider positive integers a, b, and c.
(a) Suppose ged(a,b) = 1.
(i) Show that if a divides the product be, then a must divide c.
I give two proofs here, to illustrate the different methods.
Proof 1: Using only ch. 6 results. Since ged(a,b) = 1, we have
axr +by=1 for some x,y € Z.
Multiplying both sides by ¢ gives
acx + bey = c.
Since alacz (by observation) and albcy (because a|bc), we must have that alc. O

Proof 2: using ch. 7 results. If a 1 ¢, then there is some prime p and positive integer n
with

p'la and p"fc
Let m be the largest integer such that p™|c, so that ¢ = ¢/p™ and p 1 ¢/. Since m < n, we
also have

ad=a/p™ €.

Claim 1: a' 1 ¢.
This is because otherwise, there would be some & such that a’k = ¢. So ak = p™d'k =
p"c = ¢, a contradiction.
Claim 2: a'[bc’.
Since albc, there is some integer ¢ satisfying af = be. Dividing both sides by p™ gives
a'l = b, verifying our claim.//
Claim 3: ged(a’,b) =1
Since d'|a, any common divisor to a’ and b would have to be a common divisor of a and
b. So our claim follows from ged(a,b) =1. //

Putting these all together, we have

pld’  and  d/|bc, so  p|bc.
Therefore, either p|¢’ (which it doesn’t) or p|b (implying that o’ and b have a non-trivial
common factor, which they don’t). This is a contradiction, implying that a|c after all. [




(ii) Show that if a and b both divide ¢, then ab must also divide c.

Again, I give multiple proofs here, to illustrate the different methods.

Proof 1: Using only ch. 6 results. Since ged(a,b) = 1, we have lem(a, b) = ab/1 = ab. So
since ¢ is a common multiple of a and b, we have ab = lem(a, b)|c. O

Proof 2: Using only ch. 6 results. Since a|c and b|c there are k,{ € 7Z satisfying ak = ¢

and b/ = c¢. And since ged(a,b) = 1, we have an integer solution to ax + by = 1.
Multiplying both sides by k, we get
k = akx + bky
= cx + bky since ak = c,
= blx + bky since ¢ = b/,
= b(lx + ky).
So

¢ = ak = ab(lx + ky).
Therefore, since fx + ky € Z, we have ablc. O

Proof 3: using ch. 7 results. If ab 1 ¢, then there is some prime p and positive integer n
such that p™ that divides ab but not ¢. Since ged(a,b) = 1, using the fundamental theorem
of arithmetic, we must have p" divides a or b (otherwise, p would divide both). Without

loss of generality, suppose p”|a. But then, since a|c, we have p"|c, a contradiction.
O

(b) Give examples of a, b, and ¢ where ged(a,b) # 1 and. ..
(i) a divides the product bc, but a does not divide ¢:

Answer. Let a =6,b=3, ¢ = 2. O
(ii) a and b both divide ¢, but ab does not divide ¢:
Answer. Let a =6,b=9, ¢ = lem(a,b) =6 %9/3 = 18. O



Exercise 14. Let s and ¢ be odd integers with s > ¢ > 1 and ged(s,t) = 1. Prove that the three
numbers 2y 2 p

i 5 and 5 5 (%)
are pairwise relatively prime (i.e. each pair of them is relatively prime). This fact was needed to
complete the proof of the Pythagorean triples theorem (Theorem 2.1 on page 17). [Hint. Assume
that there is a common prime factor and use the fact (Lemma 7.1) that if a prime divides a product,

then it divides one of the factors.]

st,

Answer. We showed that a Pythagorean triple (a, b, ¢) is primitive if and only if ged(a,b) =1 (i.e.
there is no need to check the pairs a and ¢ or b and ¢, since any pairwise common divisor will imply
the others). So since (??) forms a Pythagorean triple, we analyze ged(st, (s? — t2)/2).

Suppose for the sake of contradiction that ged(st, (s> —2)/2) > 1. Then consider a prime divisor
p that they have in common (since ged(st, (s? —¢2)/2) has a prime factorization, such a p exists).
Then since p|st, we have p|s or p|t.

Now using p|(s? — t?)/2 to write (s? —t2)/2 = pb’ with b’ € Z, we have

2 = 5% — 12 = (s +t)(s — 1).

So p|(s +t)(s — t), which implies p|(s + t) or p|(s — t). Either way, since pl|s, this implies that p|t.
But that implies that p is a common divisor of s and ¢, contradicting ged(s,t) = 1.

A similar argument follows for p|¢t. Thus (??) forms a PPT.
U

Exercise 15. Group the numbers —10 < ¢ < 10 into sets according to which numbers are pairwise
congruent modulo 4. [You should have 4 sets of roughly the same size.]

Answer. Denoting

[r] ={i € {-10,...,9,10} | i =4 7},

we have
[0] = {-8,—4,0,4,8},
1] ={-7,-3,1,5,9},
2] = {-10,-6,—-2,2,6,10},
3] ={-9,-5,3,7}.



Exercise 16. Fix n > 1.
(a) Prove that congruence is an equivalence relation by showing
(i) reflexivity: a = a (mod n) for all a € Z;
(ii) symmetry: if a = b (mod n), then b = a (mod n); and
(iii) transitivity: if a = b (mod n) and b = ¢ (mod n), then a = ¢ (mod n).
Proof. Recall that a = b (mod n) if and only if n|(a — b), i.e. there is some k € Z satisfying
nk =a—0b.
(i) Reflexivity: a € Z, we havea —a=0=0-n. So a =, a.
(ii) Symmetry: If a = b (mod n), then there is a k € Z satisfying nk = a—b. So n(—k) = b—a.
Thus, since —k € Z, we have b = a (mod n).
(iii) Transitivity: If a = b (mod n) and b = ¢ (mod n), then there are k, ¢ € Z satisfying
nk=a—-b and nl=>b-c
Therefore
a—c=(a—b)+(b—c)=nk+nl =n(k+1).
So since k + ¢ € Z, we have a = ¢ (mod n).

g
(b) Suppose a1 = b; (mod n) and ag = be (mod n).
(i) Show that a; + a2 = by + b2 (mod n) and a; — ag = by — by (mod n)
(ii) Show that ajas = b1by (mod n).
Proof. Since a1 = b; (mod n) and ag = b (mod n), we have ki, ks € Z satisfying
nk:l = ay — b1 and nkg = ag — b2. (**)

(i) Using (??), we have
(a1 +az) — (b1 +b2) = (a1 — b1) + (a2 — b2)
= nky +nke = n(ky + ko), and (a1 —ag) — (by —ba) = (a1 —b1) — (ag — b2)
= nk; — nke = n(k1 — k2).
So since k1 + ko € Z, we have a1 + az = by + by (mod n) and a3 — az = by — be (mod n)
(ii) Rearranging (?7), we have

a1 =nky + by and a9 = nky + bs.

So
ayay = (nky + b1)(nke + ba)
= n?kikg + n(kiby + kaby) + bibo
= n(nkiky + k1by + kaby) + b1bo,
giving

aijas — biby = n(nk:lkg + k1by + kgbl).
Therefore, since (nkiks + k1by + kob1) € Z, we have ajas = biby (mod n).



(c) Division.
(i) Give an example of a,b, ¢, and n, with ¢ # 0 (mod n), where

ac=bc (modn), but a#b (modn).
Ezample. Let a =c=2,b="7, and n = 10: we have 2 # 7 (mod 10), but
2¥2=4=4 (mod 10), and
2%7=14=4 (mod 10).

(ii) Show that if ged(c,n) = 1, then
ac=bc (modn) implies a=b (modn).

Proof. If ac = be (mod n), then nlac — bc = (a — b)e. So, since ged(e,n) = 1, by Exercise
13(a)(i), we have n|(a —b). Thus a = b (mod n).
O



