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Exercise 8. Set up a computer program or spreadsheet to compute the gcd(a, b) for any positive
integers a and b. To check that your answer is correct, plug in the values a = 100 and b = 36, and
compare your q and r values to those from lecture.

Now, compute the prime factorizations of the following a and b values (ok to use a calculator), and
use those to compute gcd(a, b). Then plug into your program/spreadsheet to verify your answer.
Report how many steps the Euclidean algorithm took in each example (i.e. what is n?)

(a) a = 242, b = 25;

Answer. We have 242 = 2·112 and 25 = 52, so gcd(242, 25) = 1. See spreadsheet for verification.
�

(b) a = 5390, b = 504.

Answer. We have 5390 = 2 · 5 · 72 · 11 and 504 = 23 · 32 · 7, so gcd(5390, 504) = 2 · 7. See
spreadsheet for verification.

�



Exercise 9. Recall from lecture that executing the Euclidean algorithm for a = 100 and b = 36
gives the following equations:

100 = 36 ∗ 2 + 28, (E1)

36 = 28 ∗ 1 + 8, (E2)

28 = 8 ∗ 3 + 4, (E3)

8 = 4 ∗ 2 + 0. (E4)

(a) Follow these steps to express 4 as an integer combination of 100 and 36, i.e., find (possibly
negative) integers x and y such that 100x + 36y = 4:

(i) Use equation (E3) to express 4 as an integer combination of 8 and 28 (find integers x and
y such that 8x + 28y = 4).

(ii) Use equation (E2) to express 8 as an integer combination of 28 and 36 (find integers x
and y such that 28x + 36y = 8).

(iii) Use equation (E1) to express 28 as an integer combination of 36 and 100 (find integers x
and y such that 36x + 100y = 28).

(iv) Plug your equation from part (ii) into your equation in part (i), expanding and simplifying,
to express 4 as an integer combination of 28 and 36 (find integers x and y such that
36x + 28y = 4).

(v) Plug your equation from part (iii) into your equation in part (iv), expanding and simpli-
fying, to express 4 as an integer combination of 36 and 100 (find integers x and y such
that 100x + 36y = 4).

Answer. Following these steps, we get

4 = 28− 8 ∗ 3, 8 = 36− 28 ∗ 1, and 28 = 100− 36 ∗ 2,

so that

4 = 28− 8 ∗ 3

= (100− 36 ∗ 2)− (36− 28 ∗ 1) ∗ 3

= 100− 36 ∗ 2− 36 ∗ 3 + (100− 36 ∗ 2) ∗ 3

= 100(1 + 3) + 36(−2− 3− 2 ∗ 3)

= 100(4) + 36(−11).

So x = 4 and y = −11 is one integer solution to 100x + 36y = 4 (checked on a calculator). �

(b) Use your computer calculations from Exercise 8(b) to write out the equations for the Euclidean
algorithm (like those in (E1)–(E4)). Then use those to write gcd(242, 25) as an integer combi-
nation of 242 and 25, using the same strategy as in part (a).

Answer. The Euclidean algorithm for a = 242, b = 25 is

242 = 25 ∗ 9 + 17, (0.1)

25 = 17 ∗ 1 + 8, (0.2)

17 = 8 ∗ 2 + 1. (0.3)

So

1 = 17− 8 ∗ 2, 8 = 25− 17 ∗ 1, and 17 = 242− 25 ∗ 9.



Therefore,

1 = 17− 8 ∗ 2

= 17− (25− 17 ∗ 1) ∗ 2

= (242− 25 ∗ 9)− (25− (242− 25 ∗ 9) ∗ 1) ∗ 2

= 242− 25 ∗ 9− 25 ∗ 2 + 242 ∗ 2− 25 ∗ 9 ∗ 2

= 242(1 + 2) + 25(−9− 2− 18)

= 242(3) + 25(−29).

�

(c) Make an argument justifying the following claim:
For any positive integers a and b, there exist integers x and y satisfying gcd(a, b) = ax + by.

Proof. The Euclidean algorithm gives

a = b ∗ q1 + r1
b = r1 ∗ q2 + r2
r1 = r2 ∗ q3 + r3

...
rn−4 = rn−3 ∗ qn−2 + rn−2
rn−3 = rn−2 ∗ qn−1 + rn−1 ← gcd(a, b)
rn−2 = rn−1 ∗ qn + 0 ← rn.

Rewriting to solve for the ri’s we get

r1 = a− b ∗ q1
r2 = b− r1 ∗ q2
r3 = r1 − r2 ∗ q3

...

rn−2 = rn−4 − rn−3 ∗ qn−2
rn−1 = rn−3 − rn−2 ∗ qn−1.

Then starting from the end at rn−1 and working our way up, we see that we can plug in
successfully prior values of ri’s until we arrive at an expression in r0 = b, r−1 = a, and the q′is
alone:

rn−1 = rn−3 − rn−2 ∗ qn−1 = (rn−5 − rn−4 ∗ qn−3)− (rn−4 − rn−3 ∗ qn−2) ∗ qn−1 = · · · .
Noting that, at every step, we always get an integer combination of the ri’s, we find the desired
result by iteration. �



Exercise 10. A number ` is called a common multiple of positive integers a and b if a|` and b|`.
The smallest (positive) such ` is called the least common multiple of a and b, denoted lcm(a, b).
For example, lcm(3, 7) = 21 and lcm(12, 66) = 132.

(a) Complete the following table of values (using your program/spreadsheet to compute the gcd)...
Try to surmise a relationship between a, b, gcd(a, b), and lcm(a, b).

Answer.
a b ab gcd(a, b) lcm(a, b)

12 8 96 4 24
30 20 600 10 60
68 51 3468 17 204
23 18 414 1 414

It appears that we keep getting ab = gcd(a, b)lcm(a, b). �

(b) Give an argument proving that the relationship you found at the end of part (a) is correct for
all a and b.

Proof. We claim that ab = gcd(a, b)lcm(a, b).

To see why this is true, consider L = ab/ gcd(a, b). We will try to show that this is, indeed, the
least common multiple of a and b.

Let g = gcd(a, b). Then since g is a divisor of both a and b, we have (a/g), (b/g) ∈ Z, so that

L = a(b/g) is an integer multiple of a,

and
L = b(a/g) is an integer multiple of b.

So L is a common multiple of a and b.

To see that it is the least such multiple, let m be a positive common multiple; it will suffice to
show that L|m:

Let u, v ∈ Z satisfy g = ua+ vb (which we know exist by exercise 9). Since a|m and b|m, we
have

m = ak and m = b` for some k, ` ∈ Z.
Therefore,

m = (m/g)g = (m/g)ua + (m/g)vb

= (b`/g)ua + (ak/g)vb = `u

(
ab

g

)
+ kv

(
ab

g

)
= (`u + kv)

(
ab

g

)
= (`u + kv)L.

So since `u + kv ∈ Z, we have L|m.

Therefore, L = lcm(a, b). �



(c) Use your result in (b), along with your gcd calculator to lcm(301337, 307829).

Answer. We have gcd(301337, 307829) = 541 (see spreadsheet). So

lcm(301337, 307829) = 301337 ∗ 307829/541 = 171, 460, 753 .

�

(d) Suppose that gcd(a, b) = 18 and lcm(a, b) = 720. What are the possibilities for the values of a
and b?

Answer. If gcd(a, b) = 18, then we must have

a = 18adiv and b = 18bdiv for adiv, bdiv ∈ Z with gcd(adiv, bdiv) = 1.

And since lcm(a, b) = 720, we must have

720 = a · amult and 720 = b · bmult for amult, bmult ∈ Z with gcd(amult, bmult) = 1.

Then since
ab = gcd(a, b)lcm(a, b) = (a/adiv)(b · bmult),

we have
1 = bmult/adiv, so that adiv = bmult.

Similarly, amult = bdiv. Basically, whatever you have to multiply b by to get 720 is what you
have to multiply 18 by to get a. (Informally, think of a prime factorization as a (multi)set
of primes dividing a number. Then gcd(a, b) is the intersection of these multisets, lcm(a, b)
is the union, and ab is the disjoint union. We are essentially looking for two multisets whose
intersection and unions are defined, and then moving elements outside of the intersection from
one set to the other.)

So, in short, we’re looking to set adiv to any of the divisors of 720/18 = 40 = 23 · 5 (of which
there are 4 ∗ 2 = 8), and then letting

a = 18amult, and b = 18bmult = 18adiv = 18(720/amult).

Doing this, we get

a 2 · 32 22 · 32 22 · 32 24 · 32

b 24 · 32 · 5 23 · 32 · 5 22 · 32 · 5 2 · 32 · 5

a 24 · 32 · 5 23 · 32 · 5 22 · 32 · 5 2 · 32 · 5

b 2 · 32 22 · 32 22 · 32 24 · 32

Now, restricting to the cases where 720/a and 720/b are relatively prime, we have, finally,

a 2 · 32 24 · 32 24 · 32 · 5 2 · 32 · 5

b 24 · 32 · 5 2 · 32 · 5 2 · 32 24 · 32

�



Exercise 11.

(a) Describe all integer solutions to each of the following equations:

105x + 121y = 1 and 12345x + 67890y = gcd(12345, 67890)

(first find one solution, and go from there).

Answer. Reversing the Euclidean algorithm (see spreadsheet), we get

1 = 7− 2 ∗ 3

= (16− 9 ∗ 1)− (9− 7) ∗ 3 = 16− 9 ∗ 4 + 7 ∗ 3

= (121− 105)− (105− 16 ∗ 6) ∗ 4 + (16− 9) ∗ 3 = 121− 5 ∗ 105 + 16 ∗ 27− 9 ∗ 3

= 121− 105 ∗ 5 + (121− 105) ∗ 27− (105− 16 ∗ 6) ∗ 3 = 121 ∗ 28− 105 ∗ 35 + 16 ∗ 18

= 121 ∗ 28− 105 ∗ 35 + (121− 105) ∗ 18 = 121 ∗ 46 + 105 ∗ (−53)

Then all solutions to 105x + 121y = 1 are of the form

x = −53 + 121k and y = 46− 105k k ∈ Z.
We have gcd(12345, 67890) = 15. Again, reversing the Euclidean algorithm (see spreadsheet),

we get

15 = 12345− 6165 ∗ 2

= 12345− (67890− 12345 ∗ 5) ∗ 2

= 12345 ∗ (11)− 67890 ∗ 2.

Then all solutions to 12345x + 67890y = 15 are of the form

x = 11 + 67890k and y = −2− 12345k k ∈ Z.
�

(b) Show that, for a, b ∈ Z6=0, and any x, y ∈ Z, that

if d|a and d|b then d|(ax + by).

(Do not assume that ax + by = gcd(a, b). There are lots of other integral combinations of a
and b.)

Proof. If d|a and d|b then there are k, ` ∈ Z satisfying a = kd and b = `d. So

ax + by = kdx + `dy = d(kx + `y).

So since (kx + `y) ∈ Z, we have d|(ax + by).
�

(c) Suppose that gcd(a, b) = 1. Prove that for every integer c, the equation ax + by = c has a
solution in integers x and y.

Proof. If gcd(a, b) = 1, then there are u, v ∈ Z satisfying au + bv = 1. Multiplying both sides
by c we get

c = a(cu) + b(cv).

So since cu, cv ∈ Z, setting x = cu and y = cv give us the desired result. �

(d) Now, in general, if gcd(a, b) = g, what integers c come in the form c = ax + by?
(See the spreadsheet from lecture–try plugging in different values for a and b and observing
which values appear in the table. Then answer in general, and prove your claim.)



Proof. If gcd(a, b) = g, then there are u, v ∈ Z satisfying au + bv = g. Further, we showed
that if c = ax + by, then g|c. So if c is not a multiple of g, there are no integer solutions to
c = ax + by. Otherwise c/g ∈ Z, and so

c = (c/g)g = a(cu/g) + b(cv/g)

shows that x = (cu/g) and y = (cv/g) gives an integer solution to c = ax + by. �

Exercise 12.

(a) Find integers x, y, and z that satisfy the equation

6x + 15y + 20z = 1.

Answer. First, by the last problem, we know that 6x+15y must be a multiple of gcd(6, 15) = 3,
and can be any multiple of 3. In particular,

3 ∗ 6− 15 = 3, so that 3(6 ∗ 7) + 15(−7) = 3 ∗ 7 = 21.

So
3(6 ∗ 7) + 15(−7) + 20(−1) = 1.

�

(b) Under what conditions on a, b, c is it true that the equation

ax + by + cz = 1

has an integer solution? (So that x, y, z ∈ Z.)
Describe a general method of finding a solution when one exists.

Answer. As hinted at in the previous problem, ax + by = u if and only if u = w gcd(a, b) for
w ∈ Z. And u gcd(a, b) + cz = 1 has a solution if and only if 1 = gcd(gcd(a, b), c) = gcd(a, b, c).
We can then find it by first finding X and Y such that Xa + Y b = gcd(a, b), and then finding
U and V such that U gcd(a, b) + V c = 1. Then set x = XU , y = Y U , z = V . �

(c) Use your method from (b) to find a solution in integers to the equation

155x + 341y + 385z = 1.

Answer. First,
31 = gcd(155, 341) = 341− 2 ∗ 155.

Then reversing the Euclidean algorithm for 31 and 385, we get

1 = 3− 2 = (13− 5 ∗ 2)− (5− 3) = 13− 5 ∗ 3 + 3

= 385− 31 ∗ 12− (31− 13 ∗ 2) ∗ 3 + 13− 5 ∗ 2 = 385− 31 ∗ 15 + 13 ∗ 7− 5 ∗ 2

= 385− 31 ∗ 15 + (385− 31 ∗ 12) ∗ 7− (31− 13 ∗ 2) ∗ 2 = 385 ∗ 8− 31 ∗ 101 + 13 ∗ 4

= 385 ∗ 8− 31 ∗ 101 + (385− 31 ∗ 12) ∗ 4 = 385 ∗ 12 + 31 ∗ (−149).

So 155x + 341y + 385z = 1 has solution

x = (−149)(−2), y = (−149)(1), z = 12.

�


