Exercise 6. Recall, we get every Pythagorean triple (a, b, c) with b even from the formula

$$(a, b, c) = (u^2 - v^2, 2uv, u^2 + v^2)$$

by substituting in different integers for u and v. For example, (u, v) = (2, 1) gives the smallest triple (3, 4, 5).

(a) If u and v have a common factor, explain why (a, b, c) will not be a primitive Pythagorean triple.

Answer. If u = dn and v = dm,

$$a = u^{2} - v^{2} = (dn)^{2} - (dm)^{2} = d^{2}(n^{2} - m^{2});$$

$$b = 2uv = 2(dn)(dm) = d^{2}(2nm);$$

$$c = u^{2} + v^{2} = (dn)^{2} + (dm)^{2} = d^{2}(n^{2} + m^{2}).$$

So a, b, and b are all be divisible by d^2 , so the triple will not be primitive.

(b) Find an example of integers u > v > 0 that do not have a common factor, yet the Pythagorean triple $(u^2 - v^2, 2uv, u^2 + v^2)$ is not primitive.

Answer. Take
$$(u, v) = (3, 1)$$
, so that $(a, b, c) = (8, 6, 10)$, which is not primitive.

(c) Make a table of the Pythagorean triples that arise when you substitute in all values of u and v with $1 \le v < u \le 10$.

Answer.

u	v	a	b	c	
2	1	3	4	5	
3	1	8	6	10	
3	2	5	12	13	
4	1	15	8	17	
4	2	12	16	20	
4	3	7	24	25	
5	1	24	10	26	
5	2	21	20	29	
5	3	16	30	34	
5	4	9	40	41	
6	1	35	12	37	
6	2	32	24	40	
6	3	27	36	45	
6	4	20	48	52	
6	5	11	60	61	
7	1	48	14	50	
7	2	45	28	53	
7	3	40	42	58	
7	4	33	56	65	
7	5	24	70	74	
7	6	13	84	85	

u	v	a	0	c
8	1	63	16	65
8	2	60	32	68
8	3	55	48	73
8	4	48	64	80
8	5	39	80	89
8	6	28	96	100
8	7	15	112	113
9	1	80	18	82
9	2	77	36	85
9	3	72	54	90
9	4	65	72	97
9	5	56	90	106
9	6	45	108	117
9	7	32	126	130
9	8	17	144	145
10	1	99	20	101
10	2	96	40	104
10	3	91	60	109
10	4	84	80	116
10	5	75	100	125
10	6	64	120	136
10	7	51	140	149
10	8	36	160	164
10	9	19	180	181

(d) Using your table from (c), find some simple conditions on u and v that ensure that the Pythagorean triple $(u^2 - v^2, 2uv, u^2 + v^2)$ is primitive.

Answer. It looks like (a, b, c) will be primitive if and only if u > v and u and v have no common factor and one of u or v is even.

(e) Prove that your conditions in (d) really work.

Answer. If both u and v are both odd or both even, then all three of a, b, and c are even (and therefore divisible by 2), so the triple is not primitive. And we already saw that if u and v have a common factor, then the triple is not primitive. And if we're only looking for positive values of a, then we must have u > v. This proves one direction.

To prove the other direction, suppose that the triple is not primitive, so there is a number $d \ge 2$ that divides all three terms. Then d divides

$$(u^2 - v^2) + (u^2 + v^2) = 2u^2$$
 and $(u^2 - v^2) - (u^2 + v^2) = 2v^2$,

so either d = 2 or else d divides both u and v. In the latter case we are done, since u and v have a common factor. On the other hand, if d = 2 and u and v have no common factor, then at least one of them is odd. So the fact that 2 divides $u^2 - v^2$ tells us that they are both odd. \Box

Exercise 7. Rational points on other curves.

(a) Use the lines through the point (1,1) to describe all the points on the circle $x^2 + y^2 = 2$ whose coordinates are rational numbers. Be sure to draw pictures.

Answer. Take the line L with slope m through P = (1, 1), where m is a rational number:

Then let (x, y) be the other point where L intersects the circle. Solving for x we have

$$2 = x^{2} + y^{2} = x^{2} + (m(x-1)+1)^{2} = x^{2} + m^{2}(x^{2} - 2x + 1) + 2m(x-1) + 1,$$

so that

$$0 = (1 + m^2)x^2 + (-2m(m-1))x + (m^2 - 2m - 1).$$

Then, letting $A = 1 + m^2$, B = -2m(m-1), and $C = m^2 - 2m - 1$, we have

$$B^{2} - 4AC = (-2m(m-1))^{2} - 4(1+m^{2})(m^{2} - 2m - 1)$$

= $4m^{2}(m^{2} - 2m + 1) - 4(m^{2} - 2m - 1) - 4m^{2}(m^{2} - 2m - 1)$
= $4m^{2} + 8m + 4$
= $4(m+1)^{2}$.

 \mathbf{So}

$$x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A} = \frac{2m(m-1) \pm 2(m+1)}{2(1+m^2)} = 1 \text{ or } \frac{m^2 - 2m - 1}{1+m^2}.$$

The solution x = 1 is the expected point P; the other gives

$$y = m\left(\frac{m^2 - 2m - 1}{1 + m^2} - 1\right) + 1 = \frac{-m^2 - 2m + 1}{1 + m^2}.$$

So since m is a rational number, so are x and y.

(b) Provide 2 illustrative examples of the results you acquired in part (a).

Answer. For example, if m = 1/2, then

$$x = \frac{(1/2)^2 - 2(1/2) - 1}{1 + (1/2)^2} = -1.4$$
 and $y = \frac{-(1/2)^2 - 2(1/2) + 1}{1 + (1/2)^2} = -0.2$:

And if m = 3/4, then

$$x = \frac{(3/4)^2 - 2(3/4) - 1}{1 + (3/4)^2} = -1.24 \text{ and } y = \frac{-(3/4)^2 - 2(3/4) + 1}{1 + (3/4)^2} = -0.68 :$$

(c) What goes wrong if you try to apply the same procedure to find all the points on the circle $x^2 + y^2 = 3$ with rational coordinates?

Answer. There are no rational points on $x^2 + y^2 = 3$ Proof: Suppose x = a/b, y = c/d with $a, b, c, d \in \mathbb{Z}$ with no common divisors between a and b or c and d. Then

$$3 = \frac{a^2}{b^2} + \frac{c^2}{d^2} = \frac{(ad)^2 + (bc)^2}{(bd)^2}$$

So $(ad)^2 + (bc)^2$ is a multiple of 3. But we saw on HW 1 that this means that both ad and bc are multiples of 3. Since x = a/b and y = c/d were in lowest terms, that means that either a and c are multiples of 3 but not b or d, or vice versa. Either way, 3 will divide $(ad)^2 + (bc)^2$ exactly as many times as c^2d^2 will, which is a contradiction.