Exercise 6. Recall, we get every Pythagorean triple (a, b, c) with b even from the formula

$$
(a, b, c)=\left(u^{2}-v^{2}, 2 u v, u^{2}+v^{2}\right)
$$

by substituting in different integers for u and v. For example, $(u, v)=(2,1)$ gives the smallest triple $(3,4,5)$.
(a) If u and v have a common factor, explain why (a, b, c) will not be a primitive Pythagorean triple.

Answer. If $u=d n$ and $v=d m$,

$$
\begin{aligned}
& a=u^{2}-v^{2}=(d n)^{2}-(d m)^{2}=d^{2}\left(n^{2}-m^{2}\right) ; \\
& b=2 u v=2(d n)(d m)=d^{2}(2 n m) ; \\
& c=u^{2}+v^{2}=(d n)^{2}+(d m)^{2}=d^{2}\left(n^{2}+m^{2}\right) .
\end{aligned}
$$

So a, b, and b are all be divisible by d^{2}, so the triple will not be primitive.
(b) Find an example of integers $u>v>0$ that do not have a common factor, yet the Pythagorean triple $\left(u^{2}-v^{2}, 2 u v, u^{2}+v^{2}\right)$ is not primitive.

Answer. Take $(u, v)=(3,1)$, so that $(a, b, c)=(8,6,10)$, which is not primitive.
(c) Make a table of the Pythagorean triples that arise when you substitute in all values of u and v with $1 \leq v<u \leq 10$.

Answer.

u	v	a	b	c	u	v	a	b	c
2	1	3	4	5	8	1	63	16	65
3	1	8	6	10	8	2	60	32	68
3	2	5	12	13	8	3	55	48	73
4	1	15	8	17	8	4	48	64	80
4	2	12	16	20	8	5	39	80	89
4	3	7	24	25	8	6	28	96	100
5	1	24	10	26	8	7	15	112	113
5	2	21	20	29	9	1	80	18	82
5	3	16	30	34	9	2	77	36	85
5	4	9	40	41	9	3	72	54	90
6	1	35	12	37	9	4	65	72	97
6	2	32	24	40	9	5	56	90	106
6	3	27	36	45	9	6	45	108	117
6	4	20	48	52	9	7	32	126	130
6	5	11	60	61	9	8	17	144	145
7	1	48	14	50	10	1	99	20	101
7	2	45	28	53	10	2	96	40	104
7	3	40	42	58	10	3	91	60	109
7	4	33	56	65	10	4	84	80	116
7	5	24	70	74	10	5	75	100	125
7	6	13	84	85	10	6	64	120	136
10 7 51 140 149 10 8 36 160 164 10 9 19 180 181									

(d) Using your table from (c), find some simple conditions on u and v that ensure that the Pythagorean triple ($u^{2}-v^{2}, 2 u v, u^{2}+v^{2}$) is primitive.

Answer. It looks like (a, b, c) will be primitive if and only if $u>v$ and u and v have no common factor and one of u or v is even.
(e) Prove that your conditions in (d) really work.

Answer. If both u and v are both odd or both even, then all three of a, b, and c are even (and therefore divisible by 2), so the triple is not primitive. And we already saw that if u and v have a common factor, then the triple is not primitive. And if we're only looking for positive values of a, then we must have $u>v$. This proves one direction.

To prove the other direction, suppose that the triple is not primitive, so there is a number $d \geq 2$ that divides all three terms. Then d divides

$$
\left(u^{2}-v^{2}\right)+\left(u^{2}+v^{2}\right)=2 u^{2} \quad \text { and } \quad\left(u^{2}-v^{2}\right)-\left(u^{2}+v^{2}\right)=2 v^{2},
$$

so either $d=2$ or else d divides both u and v. In the latter case we are done, since u and v have a common factor. On the other hand, if $d=2$ and u and v have no common factor, then at least one of them is odd. So the fact that 2 divides $u^{2}-v^{2}$ tells us that they are both odd.

Exercise 7. Rational points on other curves.
(a) Use the lines through the point $(1,1)$ to describe all the points on the circle $x^{2}+y^{2}=2$ whose coordinates are rational numbers. Be sure to draw pictures.

Answer. Take the line L with slope m through $P=(1,1)$, where m is a rational number:

$$
L: y=m(x-1)+1
$$

Then let (x, y) be the other point where L intersects the circle. Solving for x we have

$$
2=x^{2}+y^{2}=x^{2}+(m(x-1)+1)^{2}=x^{2}+m^{2}\left(x^{2}-2 x+1\right)+2 m(x-1)+1,
$$

so that

$$
0=\left(1+m^{2}\right) x^{2}+(-2 m(m-1)) x+\left(m^{2}-2 m-1\right) .
$$

Then, letting $A=1+m^{2}, B=-2 m(m-1)$, and $C=m^{2}-2 m-1$, we have

$$
\begin{aligned}
B^{2}-4 A C & =(-2 m(m-1))^{2}-4\left(1+m^{2}\right)\left(m^{2}-2 m-1\right) \\
& =4 m^{2}\left(m^{2}-2 m+1\right)-4\left(m^{2}-2 m-1\right)-4 m^{2}\left(m^{2}-2 m-1\right) \\
& =4 m^{2}+8 m+4 \\
& =4(m+1)^{2} .
\end{aligned}
$$

So

$$
x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}=\frac{2 m(m-1) \pm 2(m+1)}{2\left(1+m^{2}\right)}=1 \text { or } \frac{m^{2}-2 m-1}{1+m^{2}} .
$$

The solution $x=1$ is the expected point P; the other gives

$$
y=m\left(\frac{m^{2}-2 m-1}{1+m^{2}}-1\right)+1=\frac{-m^{2}-2 m+1}{1+m^{2}} .
$$

So since m is a rational number, so are x and y.
(b) Provide 2 illustrative examples of the results you acquired in part (a).

Answer. For example, if $m=1 / 2$, then

$$
x=\frac{(1 / 2)^{2}-2(1 / 2)-1}{1+(1 / 2)^{2}}=-1.4 \quad \text { and } \quad y=\frac{-(1 / 2)^{2}-2(1 / 2)+1}{1+(1 / 2)^{2}}=-0.2:
$$

And if $m=3 / 4$, then

$$
x=\frac{(3 / 4)^{2}-2(3 / 4)-1}{1+(3 / 4)^{2}}=-1.24 \quad \text { and } \quad y=\frac{-(3 / 4)^{2}-2(3 / 4)+1}{1+(3 / 4)^{2}}=-0.68:
$$

$$
L: y=\frac{3}{4}(x-1)+1
$$

(c) What goes wrong if you try to apply the same procedure to find all the points on the circle $x^{2}+y^{2}=3$ with rational coordinates?

Answer. There are no rational points on $x^{2}+y^{2}=3$
Proof: Suppose $x=a / b, y=c / d$ with $a, b, c, d \in \mathbb{Z}$ with no common divisors between a and b or c and d. Then

$$
3=\frac{a^{2}}{b^{2}}+\frac{c^{2}}{d^{2}}=\frac{(a d)^{2}+(b c)^{2}}{(b d)^{2}} .
$$

So $(a d)^{2}+(b c)^{2}$ is a multiple of 3 . But we saw on HW 1 that this means that both $a d$ and $b c$ are multiples of 3 . Since $x=a / b$ and $y=c / d$ were in lowest terms, that means that either a and c are multiples of 3 but not b or d, or vice versa. Either way, 3 will divide $(a d)^{2}+(b c)^{2}$ exactly as many times as $c^{2} d^{2}$ will, which is a contradiction.

