ANSWERS
Math 345
Homework 11
11/22/2017

Exercise 42. Recall, for an integer a with ged(a,n) = 1, the order of a (mod n), written |a| or
|al,, is the smallest positive integer k such that a* =1 (mod n). We call a a primitive root (mod

n) if |al, = ¢(n).

(a) Compute the orders of a for 1 < a < n with ged(a,n) =1, for n = 4,8, and 13.

Answers. Computing a’ (mod n):

n=238,¢(n)=4
n=4,¢(n)=2 ‘ Hl 2‘3‘4“01“der‘

’ “1‘ 2“order‘ 11]1]1]1 1

1)1 1 313[1]3]1 2

3131 2 5151 ]5]1 2

771171 2

n=13,¢(n) =12
1234567 [s8]9]10][11]12] order|

1 11,1 (1{1}|1 1 f(1}j1 1|11 1
20121418136 (121195 |10 1 12
30131911 1(3[/911]3]9]1]39]1 3
4 141311219101 |4 |3|12]9 10| 1 6
5 5112 8|15 (12| 8 |15 128 |1 4
6 ||l 610 819 12| 7135|4111 12
7T 711005 (911|12|6 |38 4] 2|1 12
8|12 5 |18 |12 5 |1|8 |12 5|1 4
9191311931193 1]9 3|1 3
10|10} 9 (123| 4| 11]10|9|12 3 |41 6
1114|537 (1122|9810 6 |1 12
12121121121 121|121 |12] 1 2




(b) Define ¢, (k) = #{1 < a <p | |a| = k} (as in class). Compute ), (k) for 1 < k < ¢ for p =13
and p = 37 (use a computer to generate data).

Answer. By part (a), for n = 13, we have the following.

k

2

3

415

6|7

Y13 (k)

1

2

210

210

For for n = 13, see the table below to compute

(c) Prove that

Proof. If a
wn(k) = 0.

(d) List the primitive roots modulo 13.
For each primitive root &, for which k is &*

Proof.

k
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Va7(k)

4 5 6 7 8 9 10 11
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are 0 elements of order k. So
O

also a primitive root (mod 13)?

k s.t. ¥ is primitive
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1,5,7,11
1,5,7,11
1,5,7,11
1,5,7,11



(e) List the primitive roots modulo 37.
For each primitive root &, for which k is ¢* also a primitive root? (mod 37)

Answer. See the table below. The primitive roots are 3,5,13,15,17,18, 19,20, 22, 24,32, and
35, and for each root &, €F is also a primitive root for k = 1,5,7,11,13,17,19, 23,25, 29, 31, and
35.
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(f) For each of n =8, 10, and 12, answer the following: Are there any primitive roots modulo n?
If so, list them. If not, what is the largest order occurring modulo n?

Answer. n = 8: no, the smallest order is 2.
n = 10: yes, 3 and 7 have order ¢(10) = 4.
n = 12: no, the smallest order is 2.



Exercise 43. A function f(n) that satisfies the multiplication formula f(mn) = f(m)f(n) for all
numbers m and n with ged(m, n) = 1 is called a multiplicative function. For example, we have seen
that Eulers phi function ¢(n) is multiplicative and that F(n) = >_,, ¢(n) is multiplicative. Now
suppose that f(n) is any multiplicative function, and define a new function

g(n) = f(dv) + f(d2) + -+ f(d;),
where 1 = dy <dy < --- <d,_1 < d, =n are the divisors of n.

Prove that g(n) is a multiplicative function.

Proof. If ged(m,n) = 1, and
the divisors of m are aq,...,a,
and
the divisors of n are by, ..., by,
then ged(a;, bj) = 1 for all ¢, j, and the divisors of mn are a;b; fori =1,...,kand j=1,...,¢. So

g(mn) = Z flaibs) = Z flai) f(b;)

Exercise 44. Define A(n) by factoring n into a product of primes,
k
n=py'pst - py,
with p; < p2 < --- < py prime, and then setting
A(n) = (=1)ltketthe o with A1) = 1.

For example, since 1728 = 20 - 33, we have A\(1728) = (—1)"3 = (-1)? = —1.
(a) Compute A(30) and A\(504).
We have 30 =2 %3 %5 and 504 = 23 %32 % 7, so

A30) = (—DMMH = 1 and  A(504) = (—1)3TF = 1.

(b) Prove that A(n) is a multiplicative function.

Proof. Write m =)
0. Then

and n =) 7, where all but finitely many ky, and j, are

kp
p prime p p prime

Am)A(n) = (=1)%0 (= 1) P = (=1)2 800 = ().

(Note there’s no requirement that m and n are relatively prime!) 0



(c) We now define a new function G(n) by the formula

G(n) = Xd1) + A(dg) + -+ + \(d,),

where 1 =dy <dy < --- <d,_1 < d, =n are the divisors of n.

Explicitly compute G(n) for each 1 <n < 18.

n | A(n) | G(n)
1 1 1
2| -1 0
3| -1 0
4 1 1
o | —1 0
6 1 0
7T -1 0
8| —1 0
9 1 1
10 0
11| —1 0
12| -1 0
13| -1 0
14 0
15 0
16 1 1
17| -1 0
18| —1 0

It looks like G(n) =1 if n is a perfect square, and 0 otherwise.

(d) Use your computations to make a guess as to the value of G(n). Use your guess to find the
value of G(62141689) and G(60119483). (You can find the factorizations of these large numbers
on wolframalpha.com.)

It looks like G(n) = 1 if n is a perfect square, and 0 otherwise. IF this is the case, then since
62141689 is a perfect square, but 60119483 is not, G(62141689) should be 1, and G(60119483)
should be 0.



(e) Prove that your guess in (d) is correct. (Use Exercise [43])

Proof. Since A(n) is multiplicative, so is G(n). Soif n =3 , then

k
p prime P

Gm)y=G| Y | = [ ¢t

p prime p prime

Now,

1 if k£ is even.

k k ‘ ‘
G(pk) = Z)\(pi) — Z(_l)i _ {O if k£ is odd,

So G (Zp prime pki’> is 0 whenever at least one kj, is odd (i.e. when n is note a perfect square)

and is 1 otherwise (when n is a perfect square). O

Exercise 45. Let p be an odd prime.

(a) If a = b? is a perfect square, explain why it is impossible for a to be a primitive root modulo p.

Proof. Since p is odd, the number (p — 1)/2 is an integer, so we can compute
a2 = (p?)P=D/2 = pp=1 =1 (mod p).

So |al, < (p—1)/2 < p—1, giving that a is not a primitive root modulo p. O

(b) Let g be a primitive root modulo p. Prove that ¢* is a quadratic residue modulo p if and only
if k is even.

Proof. The list

p—3 p—2 _p—1
) M

9.9%,9%, ..., 9" g g

gives all of the nonzero numbers modulo p. The even powers are residues, since g?* = (g¥)2.
But this is exactly half of the list, so the others are all non-residues. O

(c) If k divides p — 1, show that the congruence ¥ = 1 (mod p) has exactly k distinct solutions
modulo p.

Proof. We have z¥ = 1 (mod p) if and only if |z, divides k. So the number of solutions is

> (k) =D ¢(k) =k

d|k d|k



Exercise 46. Use the discrete logarithm table for p = 37 to find all solutions to the following
congruences.

(a) 122 =23 (mod 37)
We have 12x =37 23 if and only if
dlogy(23) =36 dlogy(12x) =36 dlogy(12) + dlogy ().
So
dlogy () =36 dlogy(23) — dlogy(12) =36 15 — 28 =34 23.
Thus = =37 223 =37 5.
(b) 5223 = 18 (mod 37)
We have 5222 =37 18 if and only if
dlog, (18) =3¢ dlogy (522%) =36 dlog,(5) + 23dlog, (z).
So
23dlogy () =36 dlogy(18) — dlogy(5) =36 17 — 23 =36 30.
So since ged(23,36) = 1, there is one solution. Namely, since
23x11+36%(—7) =1,

we have
dlogy () =36 30 % 11 = 330 =34 6.
So x =37 26 =3, 27.
(c) 2 =11 (mod 37)
We have 22 =37 11 if and only if
dlog,(11) =36 dlogy (x'?) =36 12dlog, ().
So since ged(12,36) = 12, which does not divide dlog,(11) = 30, there are no solutions.
(d) 72?0 =34 (mod 37)
We have 7220 =37 34 if and only if
dlog,(34) =36 dlogy(722°) =36 dlog,(7) + 20dlog, (z).
So
20dlogy () =36 dlogy(34) — dlogy(7) =36 8 — 32 =36 12.
Since ged(20,36) = 4, which divides 12, there are four solutions. First,
20 %2+ 36 % (—1) = 4,

SO
20%2%x3=354%3=12.

Thus dlog,(z) = 60 =36 24 is one solution. The others are
36 36 36
24—|—ZE:;6 33, 24+2*Z536 6, and 24+3*ZE36 15.
So

Tr =37 224 =37 10, Tr =37 233 =37 14, Tr =37 26 =37 27, or r =37 215 =37 23.



Exercise 47. Create a discrete logarithm table for p = 17, and use it to find all solutions to
525 =7 (mod 17).

For the base, you must choose a primitive root. So, in particular, 2 won’t work in this example!
However, 3 will, so that’s what I'm going to use.
The exponential table modulo 17 is

k1234|567 |89 10|11|12|13]14]15|16
3131911013 |5(15(11[16[14| 8 |7 |4 (122 |6 |1
so the logarithmic table is

b 112]3[4]s]6]7]8]ol10]11]12]13]14]15]16
dlogg(b) |[16 [14 1] 12]5|15|11[10]2] 3 |7 [13[ 4] 9|6 |8

Now, 52% =7 7 if and only if
dlogs(7) =16 dlogs(52°) =16 dlogs(5) + 6dlogs(x).
So
6dlogs(z) =16 dlogs(7) — dlogs(5) =16 11 — 5 =16 6.
Since ged (6, 16) = 2, which divides 6, there are two solutions: dlogs(x) =161 or 1 +16/2 =9. So

Tr =17 31 = 3, or Tr =17 39 =17 14.



