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Note: brief answers are given in places instead of full solutions.

Exercise 37. For each odd prime p, we consider the two numbers

A = sum of all 1 ≤ a < p such that a is a quadratic residue modulo p,

B = sum of all 1 ≤ a < p such that a is a nonresidue modulo p.

For example, if p = 11, then the quadratic residues are

12 ≡ 1 (mod 11), 22 ≡ 4 (mod 11), 32 ≡ 9 (mod 11),

42 ≡ 5 (mod 11), and 52 ≡ 3 (mod 11).

So
A = 1 + 4 + 9 + 5 + 3 = 22 and B = 2 + 6 + 7 + 8 + 10 = 33.

(a) Make a list of the quadratic residues for all odd primes p < 20

See below.

(b) Add to your list A, B, and A+B for all odd primes p < 20.

p residues A B A+B

3 1 1 2 3

5 1, 4 5 5 10

7 1, 2, 4 7 14 21

11 1, 3, 4, 5, 9 11 44 55

13 1, 3, 4, 9, 10, 12 39 39 78

17 1, 2, 4, 8, 9, 13, 15, 16 68 68 136

19 1, 4, 5, 6, 7, 9, 11, 16, 17 76 95 171

(c) What is the value of A+B in general?

We have

A+B ≡p

p−1∑
k=1

k =
(p− 1)p

2
.

Note that this is a multiple of p (since p− 1 is even, so that (p− 1)/2 ∈ Z). Therefore A+ B
is always congruent to 0 (mod p).

(d) Use induction on positive integers n to prove that

12 + 22 + · · ·+ n2 = n(n+ 1)(2n+ 1)/6.



Proof. For n = 1, we have 1(1 + 1)(2 ∗ 1 + 1)/6 = 1 ∗ 2 ∗ 3/6 = 1 = 12, as desired.
Now fix n, and assume 12 + 22 + · · ·+ n2 = n(n+ 1)(2n+ 1)/6. Then

12 + 22 + · · ·+ n2 + (n+ 1)2 =
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2

=
2n3 + 3n2 + n+ 6(n2 + 2n+ 1)

6

=
2n3 + 9n2 + 13n+ 6)

6

=
(n+ 1)(n+ 2)(2n+ 3)

6

=
(n+ 1)((n+ 1) + 1)(2(n+ 1) + 1)

6
,

as desired. So our equality holds for n ≥ 1 by induction. �

(e) Compute A (mod p) and B (mod p). Find a pattern and use the previous part to prove that
it is correct.

Answer. By the previous part, we have

A ≡p 12 + 22 + · · ·+
(
p− 1

2

)2

≡p
1

6

p− 1

2

(
p+ 1

2

)
p.

For p > 3, gcd(6, p) = 1, so that 1
6
p−1
2

(
p+1
2

)
∈ Z, and A is a multiple of p. So A ≡p 0.

For p = 3, we already computed A = 1 (which matches our formula here too).
Now, since A+B ≡p 0 (seen above), this means that B must also be congruent to 0 mod p

(except of course when p = 3, which is computed explicitly above). �

(f) Show that if p ≡4 1, and n1, . . . , nr are the numbers between 1 and (p− 1)/2 that are residues
modulo p, then n1, . . . , nr, p− nr, . . . , p− n1 is the complete set of residues modulo p.

Proof. If a is a quadratic residue, then a ≡p b2 for some b. Also, if p ≡4 1, then −1 is a
quadratic residue, i.e. there is some ε for which ε2 ≡p −1. So

p− a ≡p −a ≡p ε
2b2 = (εb)2.

So p − a is also a quadratic residue. In particular, the map x 7→ p − x gives a bijection
between the numbers between 1 and (p − 1)/2 that are residues modulo p and the numbers
between (p+1)/2 and p that are residues modulo p (it is bijective because it is its own inverse).
So if n1, . . . , nr are the numbers between 1 and (p − 1)/2 that are residues modulo p, then
n1, . . . , nr, p− nr, . . . , p− n1 is the complete set of residues modulo p. �

(g) Use the previous parts to show that if p ≡4 1, then A = B.

Proof. If p ≡4 1, then

A = n1 + · · ·+ nr + (p− nr) + · · ·+ (p− n1) =

(
p− 1

4

)
p =

1

2

(
(p− 1)p

2

)
=
A+B

2
.

So A = B.
�



Exercise 38. Determine whether each of the following congruences has a solution. (All of the
moduli are primes.)

(a) x2 ≡ −1 (mod 5987) 5987 ≡4 −1, so there is no solution.
(b) x2 ≡ 6780 (mod 6781)

Note 6780 ≡ −1 (mod 6781). There is a solution, since 6781 ≡ 1 (mod 4). The solutions
are x ≡ 995 and x ≡ 5786 modulo 6781.

(c) x2 + 14x− 35 ≡ 0 (mod 337)

Using the quadratic formula, the solutions are x ≡ 1
2(−14±

√
336). We know 2 is invertible,

since it’s relatively prime to 337. So we just need to know if 336 (i.e. −1) has a square root
modulo 337. It does, since 337 ≡ 1 (mod 4), and so there is a solution. In fact, 1482 ≡ −1
(mod 337) and 1892 ≡ −1 (mod 337), so the original problem has solutions x ≡ 67 (mod 337)
and x ≡ 256 (mod 337).

(d) x2 − 64x+ 943 ≡ 0 (mod 3011)

This time the quadratic formula gives x ≡ 1
2(64 ±

√
324. Here, 324 = 182 (as integers!), so

x = 23 and 41 are actually roots of the polynomial x2 − 64x+ 943 (not just modulo 3011).

Exercise 39. Use the Law of Quadratic Reciprocity to decide whether a is a square mod b.

(a) a = 85, b = 101 Yes
(b) a = 29, b = 541 No
(c) a = 101, b = 1987 Yes
(d) a = 31706, b = 43789 No

Exercise 40. Does the congruence

x2 − 3x− 1 ≡ 0 (mod 31957)

have any solutions?

Yes, since (−3)2 − 4(1)(−1) = 13, and ( 13
31957) = 1.

Exercise 41. Let p be a prime satisfying p ≡ −1 (mod 4) and suppose that a is a quadratic residue
modulo p.

(a) Show that x = a(p+1)/4 is a solution to the congruence x2 ≡ a (mod p).
(This gives an explicit way to find square roots modulo p for primes congruent to −1 (mod 4).)

We have
x2 = (a(p+1)/4)2 = a(p+1)/2 = a(a(p−1)/2) ≡p a(

a

p
) = a,

where the second to last equality is by Euler’s critereon, and the last is because a is a QR.

(b) Find a solution to the congruence x2 ≡ 7 (mod 787).
(Your answer should lie between 1 and 786.)

By the previous part, one solution is x = 7(787+1)/4 = 7197. To reduce this, we can use the
method of successive squaring to get x ≡787 105.


