Note: brief answers are given in places instead of full solutions.
Exercise 37. For each odd prime p, we consider the two numbers

$$
\begin{gathered}
A=\text { sum of all } 1 \leq a<p \text { such that } a \text { is a quadratic residue modulo } p, \\
B=\text { sum of all } 1 \leq a<p \text { such that } a \text { is a nonresidue modulo } p .
\end{gathered}
$$

For example, if $p=11$, then the quadratic residues are

$$
\begin{gathered}
1^{2} \equiv 1 \quad(\bmod 11), \quad 2^{2} \equiv 4 \quad(\bmod 11), \quad 3^{2} \equiv 9 \quad(\bmod 11), \\
4^{2} \equiv 5 \quad(\bmod 11), \quad \text { and } \quad 5^{2} \equiv 3 \quad(\bmod 11) .
\end{gathered}
$$

So

$$
A=1+4+9+5+3=22 \quad \text { and } \quad B=2+6+7+8+10=33
$$

(a) Make a list of the quadratic residues for all odd primes $p<20$

See below.
(b) Add to your list A, B, and $A+B$ for all odd primes $p<20$.

p	residues	A	B	$A+B$
3	1	1	2	3
5	1,4	5	5	10
7	$1,2,4$	7	14	21
11	$1,3,4,5,9$	11	44	55
13	$1,3,4,9,10,12$	39	39	78
17	$1,2,4,8,9,13,15,16$	68	68	136
19	$1,4,5,6,7,9,11,16,17$	76	95	171

(c) What is the value of $A+B$ in general?

We have

$$
A+B \equiv_{p} \sum_{k=1}^{p-1} k=\frac{(p-1) p}{2} .
$$

Note that this is a multiple of p (since $p-1$ is even, so that $(p-1) / 2 \in \mathbb{Z})$. Therefore $A+B$ is always congruent to $0(\bmod p)$.
(d) Use induction on positive integers n to prove that

$$
1^{2}+2^{2}+\cdots+n^{2}=n(n+1)(2 n+1) / 6
$$

Proof. For $n=1$, we have $1(1+1)(2 * 1+1) / 6=1 * 2 * 3 / 6=1=1^{2}$, as desired.
Now fix n, and assume $1^{2}+2^{2}+\cdots+n^{2}=n(n+1)(2 n+1) / 6$. Then

$$
\begin{aligned}
1^{2}+2^{2}+\cdots+n^{2}+(n+1)^{2} & =\frac{n(n+1)(2 n+1)}{6}+(n+1)^{2} \\
& =\frac{2 n^{3}+3 n^{2}+n+6\left(n^{2}+2 n+1\right)}{6} \\
& =\frac{\left.2 n^{3}+9 n^{2}+13 n+6\right)}{6} \\
& =\frac{(n+1)(n+2)(2 n+3)}{6} \\
& =\frac{(n+1)((n+1)+1)(2(n+1)+1)}{6}
\end{aligned}
$$

as desired. So our equality holds for $n \geq 1$ by induction.
(e) Compute $A(\bmod p)$ and $B(\bmod p)$. Find a pattern and use the previous part to prove that it is correct.

Answer. By the previous part, we have

$$
A \equiv_{p} 1^{2}+2^{2}+\cdots+\left(\frac{p-1}{2}\right)^{2} \equiv_{p} \frac{1}{6} \frac{p-1}{2}\left(\frac{p+1}{2}\right) p
$$

For $p>3, \operatorname{gcd}(6, p)=1$, so that $\frac{1}{6} \frac{p-1}{2}\left(\frac{p+1}{2}\right) \in \mathbb{Z}$, and A is a multiple of p. So $A \equiv p 0$.
For $p=3$, we already computed $A=1$ (which matches our formula here too).
Now, since $A+B \equiv_{p} 0$ (seen above), this means that B must also be congruent to 0 mod p (except of course when $p=3$, which is computed explicitly above).
(f) Show that if $p \equiv_{4} 1$, and n_{1}, \ldots, n_{r} are the numbers between 1 and $(p-1) / 2$ that are residues modulo p, then $n_{1}, \ldots, n_{r}, p-n_{r}, \ldots, p-n_{1}$ is the complete set of residues modulo p.

Proof. If a is a quadratic residue, then $a \equiv_{p} b^{2}$ for some b. Also, if $p \equiv_{4} 1$, then -1 is a quadratic residue, i.e. there is some ϵ for which $\epsilon^{2} \equiv_{p}-1$. So

$$
p-a \equiv_{p}-a \equiv_{p} \epsilon^{2} b^{2}=(\epsilon b)^{2}
$$

So $p-a$ is also a quadratic residue. In particular, the map $x \mapsto p-x$ gives a bijection between the numbers between 1 and $(p-1) / 2$ that are residues modulo p and the numbers between $(p+1) / 2$ and p that are residues modulo p (it is bijective because it is its own inverse). So if n_{1}, \ldots, n_{r} are the numbers between 1 and $(p-1) / 2$ that are residues modulo p, then $n_{1}, \ldots, n_{r}, p-n_{r}, \ldots, p-n_{1}$ is the complete set of residues modulo p.
(g) Use the previous parts to show that if $p \equiv_{4} 1$, then $A=B$.

Proof. If $p \equiv{ }_{4} 1$, then

$$
A=n_{1}+\cdots+n_{r}+\left(p-n_{r}\right)+\cdots+\left(p-n_{1}\right)=\left(\frac{p-1}{4}\right) p=\frac{1}{2}\left(\frac{(p-1) p}{2}\right)=\frac{A+B}{2}
$$

So $A=B$.

Exercise 38. Determine whether each of the following congruences has a solution. (All of the moduli are primes.)
(a) $x^{2} \equiv-1(\bmod 5987) \quad 5987 \equiv_{4}-1$, so there is no solution.
(b) $x^{2} \equiv 6780(\bmod 6781)$

Note $6780 \equiv-1(\bmod 6781)$. There is a solution, since $6781 \equiv 1(\bmod 4)$. The solutions are $x \equiv 995$ and $x \equiv 5786$ modulo 6781 .
(c) $x^{2}+14 x-35 \equiv 0(\bmod 337)$

Using the quadratic formula, the solutions are $x \equiv \frac{1}{2}(-14 \pm \sqrt{336})$. We know 2 is invertible, since it's relatively prime to 337 . So we just need to know if 336 (i.e. -1) has a square root modulo 337. It does, since $337 \equiv 1(\bmod 4)$, and so there is a solution. In fact, $148^{2} \equiv-1$ $(\bmod 337)$ and $189^{2} \equiv-1(\bmod 337)$, so the original problem has solutions $x \equiv 67(\bmod 337)$ and $x \equiv 256(\bmod 337)$.
(d) $x^{2}-64 x+943 \equiv 0(\bmod 3011)$

This time the quadratic formula gives $x \equiv \frac{1}{2}\left(64 \pm \sqrt{324}\right.$. Here, $324=18^{2}$ (as integers!), so $x=23$ and 41 are actually roots of the polynomial $x^{2}-64 x+943$ (not just modulo 3011).

Exercise 39. Use the Law of Quadratic Reciprocity to decide whether a is a square $\bmod b$.
(a) $a=85, b=101 \quad$ Yes
(b) $a=29, b=541$ No
(c) $a=101, b=1987$ Yes
(d) $a=31706, b=43789$ No

Exercise 40. Does the congruence

$$
x^{2}-3 x-1 \equiv 0 \quad(\bmod 31957)
$$

have any solutions?
Yes, since $(-3)^{2}-4(1)(-1)=13$, and $\left(\frac{13}{31957}\right)=1$.
Exercise 41. Let p be a prime satisfying $p \equiv-1(\bmod 4)$ and suppose that a is a quadratic residue modulo p.
(a) Show that $x=a^{(p+1) / 4}$ is a solution to the congruence $x^{2} \equiv a(\bmod p)$.
(This gives an explicit way to find square roots modulo p for primes congruent to $-1(\bmod 4)$.)
We have

$$
x^{2}=\left(a^{(p+1) / 4}\right)^{2}=a^{(p+1) / 2}=a\left(a^{(p-1) / 2}\right) \equiv_{p} a\left(\frac{a}{p}\right)=a,
$$

where the second to last equality is by Euler's critereon, and the last is because a is a QR.
(b) Find a solution to the congruence $x^{2} \equiv 7(\bmod 787)$.
(Your answer should lie between 1 and 786 .)
By the previous part, one solution is $x=7^{(787+1) / 4}=7^{197}$. To reduce this, we can use the method of successive squaring to get $x \equiv_{787} 105$.

