Note: brief answers are given in places instead of full solutions.

Exercise 37. For each odd prime p, we consider the two numbers

 $A = \text{sum of all } 1 \leq a ,$

 $B = \text{ sum of all } 1 \leq a$

For example, if p = 11, then the quadratic residues are

$$1^2 \equiv 1 \pmod{11}, \quad 2^2 \equiv 4 \pmod{11}, \quad 3^2 \equiv 9 \pmod{11},$$

 $4^2 \equiv 5 \pmod{11}, \quad \text{and} \quad 5^2 \equiv 3 \pmod{11}.$

So

A = 1 + 4 + 9 + 5 + 3 = 22 and B = 2 + 6 + 7 + 8 + 10 = 33.

(a) Make a list of the quadratic residues for all odd primes p < 20

See below.

(b) Add to your list A, B, and A + B for all odd primes p < 20.

p	residues	A	B	A + B
3	1	1	2	3
5	1,4	5	5	10
7	1, 2, 4	7	14	21
11	1, 3, 4, 5, 9	11	44	55
13	1, 3, 4, 9, 10, 12	39	39	78
17	1, 2, 4, 8, 9, 13, 15, 16	68	68	136
19	1, 4, 5, 6, 7, 9, 11, 16, 17	76	95	171

(c) What is the value of A + B in general?

We have

$$A + B \equiv_p \sum_{k=1}^{p-1} k = \frac{(p-1)p}{2}.$$

Note that this is a multiple of p (since p-1 is even, so that $(p-1)/2 \in \mathbb{Z}$). Therefore A+B is always congruent to 0 (mod p).

(d) Use induction on positive integers n to prove that

$$1^{2} + 2^{2} + \dots + n^{2} = n(n+1)(2n+1)/6.$$

Proof. For n = 1, we have $1(1+1)(2*1+1)/6 = 1*2*3/6 = 1 = 1^2$, as desired. Now fix n, and assume $1^2 + 2^2 + \cdots + n^2 = n(n+1)(2n+1)/6$. Then

$$1^{2} + 2^{2} + \dots + n^{2} + (n+1)^{2} = \frac{n(n+1)(2n+1)}{6} + (n+1)^{2}$$
$$= \frac{2n^{3} + 3n^{2} + n + 6(n^{2} + 2n + 1)}{6}$$
$$= \frac{2n^{3} + 9n^{2} + 13n + 6)}{6}$$
$$= \frac{(n+1)(n+2)(2n+3)}{6}$$
$$= \frac{(n+1)((n+1)+1)(2(n+1)+1)}{6}$$

as desired. So our equality holds for $n \ge 1$ by induction.

(e) Compute $A \pmod{p}$ and $B \pmod{p}$. Find a pattern and use the previous part to prove that it is correct.

Answer. By the previous part, we have

$$A \equiv_p 1^2 + 2^2 + \dots + \left(\frac{p-1}{2}\right)^2 \equiv_p \frac{1}{6} \frac{p-1}{2} \left(\frac{p+1}{2}\right) p.$$

For p > 3, gcd(6, p) = 1, so that $\frac{1}{6} \frac{p-1}{2} \left(\frac{p+1}{2}\right) \in \mathbb{Z}$, and A is a multiple of p. So $A \equiv_p 0$. For p = 3, we already computed A = 1 (which matches our formula here too).

Now, since $A + B \equiv_p 0$ (seen above), this means that B must also be congruent to 0 mod p (except of course when p = 3, which is computed explicitly above).

(f) Show that if $p \equiv_4 1$, and n_1, \ldots, n_r are the numbers between 1 and (p-1)/2 that are residues modulo p, then $n_1, \ldots, n_r, p - n_r, \ldots, p - n_1$ is the complete set of residues modulo p.

Proof. If a is a quadratic residue, then $a \equiv_p b^2$ for some b. Also, if $p \equiv_4 1$, then -1 is a quadratic residue, i.e. there is some ϵ for which $\epsilon^2 \equiv_p -1$. So

$$p-a \equiv_p -a \equiv_p \epsilon^2 b^2 = (\epsilon b)^2.$$

So p - a is also a quadratic residue. In particular, the map $x \mapsto p - x$ gives a bijection between the numbers between 1 and (p - 1)/2 that are residues modulo p and the numbers between (p+1)/2 and p that are residues modulo p (it is bijective because it is its own inverse). So if n_1, \ldots, n_r are the numbers between 1 and (p - 1)/2 that are residues modulo p, then $n_1, \ldots, n_r, p - n_r, \ldots, p - n_1$ is the complete set of residues modulo p.

(g) Use the previous parts to show that if $p \equiv_4 1$, then A = B.

Proof. If $p \equiv_4 1$, then

$$A = n_1 + \dots + n_r + (p - n_r) + \dots + (p - n_1) = \left(\frac{p - 1}{4}\right)p = \frac{1}{2}\left(\frac{(p - 1)p}{2}\right) = \frac{A + B}{2}.$$

So $A = B$.

Exercise 38. Determine whether each of the following congruences has a solution. (All of the moduli are primes.)

(a) $x_{\perp}^2 \equiv -1 \pmod{5987}$ 5987 $\equiv_4 -1$, so there is no solution.

(b) $x^2 \equiv 6780 \pmod{6781}$

Note $6780 \equiv -1 \pmod{6781}$. There is a solution, since $6781 \equiv 1 \pmod{4}$. The solutions are $x \equiv 995$ and $x \equiv 5786 \mod 6781$.

(c) $x^2 + 14x - 35 \equiv 0 \pmod{337}$

Using the quadratic formula, the solutions are $x \equiv \frac{1}{2}(-14 \pm \sqrt{336})$. We know 2 is invertible, since it's relatively prime to 337. So we just need to know if 336 (i.e. -1) has a square root modulo 337. It does, since $337 \equiv 1 \pmod{4}$, and so there is a solution. In fact, $148^2 \equiv -1 \pmod{337}$ and $189^2 \equiv -1 \pmod{337}$, so the original problem has solutions $x \equiv 67 \pmod{337}$ and $x \equiv 256 \pmod{337}$.

(d) $x^2 - 64x + 943 \equiv 0 \pmod{3011}$

This time the quadratic formula gives $x \equiv \frac{1}{2}(64 \pm \sqrt{324})$. Here, $324 = 18^2$ (as integers!), so x = 23 and 41 are actually roots of the polynomial $x^2 - 64x + 943$ (not just modulo 3011).

Exercise 39. Use the Law of Quadratic Reciprocity to decide whether *a* is a square mod *b*.

(a) a = 85, b = 101 Yes (b) a = 29, b = 541 No (c) a = 101, b = 1987 Yes (d) a = 31706, b = 43789 No

Exercise 40. Does the congruence

$$x^2 - 3x - 1 \equiv 0 \pmod{31957}$$

have any solutions?

Yes, since $(-3)^2 - 4(1)(-1) = 13$, and $(\frac{13}{31957}) = 1$.

Exercise 41. Let p be a prime satisfying $p \equiv -1 \pmod{4}$ and suppose that a is a quadratic residue modulo p.

(a) Show that $x = a^{(p+1)/4}$ is a solution to the congruence $x^2 \equiv a \pmod{p}$.

(This gives an explicit way to find square roots modulo p for primes congruent to $-1 \pmod{4}$.)

We have

$$x^{2} = (a^{(p+1)/4})^{2} = a^{(p+1)/2} = a(a^{(p-1)/2}) \equiv_{p} a(\frac{a}{p}) = a$$

where the second to last equality is by Euler's critereon, and the last is because a is a QR.

(b) Find a solution to the congruence $x^2 \equiv 7 \pmod{787}$. (Your answer should lie between 1 and 786.)

By the previous part, one solution is $x = 7^{(787+1)/4} = 7^{197}$. To reduce this, we can use the method of successive squaring to get $x \equiv_{787} 105$.