
Review: relations

A binary relation on a set A is a subset R Ď AˆA, where
elements pa, bq are written as a „ b.

Example: A “ Z and R “ ta „ b | a ” b pmod nqu.

A binary relation on a set A is. . .

(R) reflexive if a „ a for all a P A;

(S) symmetric if a „ b implies b „ a;

(T) transitive if a „ b and b „ c implies a „ c, i.e.

pa „ b^ b „ cq ñ a „ c

An equivalence relation on a set A is a binary relation that is
reflexive, symmetric, and transitive.



Review: set theoretic definition of the numbers.
Natural numbers:
Let 0 “ H.
Given n, define the successor to n as Spnq “ nY tnu.

(By “successor to n” we basically mean n` 1.)
Let Zě0 be the set of all sets generated by 0 and S.

Integers:
Define Z by formally letting

´Zě0 “ t´n | n P Zě0u, where ´ 0 “ 0;

and Z “ Zě0 Y´Zě0. Extend S : ZÑ Z by defining Sp´aq for
any ´a P ´N´ t0u as

Sp´aq “ ´b, where Spbq “ a.

Some operations:

˝ Define ` : Nˆ NÑ N by, for all a, b P N, by

a` 0 “ a and a` Spbq “ Spa` bq.

˝ Define ¨ : Nˆ NÑ N by, for all a, b P N,

n ¨ 0 “ 0 and a ¨ Spbq “ pa ¨ bq ` a.



Review:
Some properties of ` and ¨ (we present without proof):

1. Addition and multiplication satisfy commutativity,
associativity, and distributivity.

2. We still have a` 0 “ a “ 0` a (additive identity) and
a ¨ 1 “ a “ 1 ¨ a (multiplicative identity) for all a P Z.

3. We also have a` p´aq “ 0 (prove). (additive inverses)

We call any number system that has an addition and multiplication
that satisfy all these properties a (commutative) ring.

Order: For a, b P Z, we say a ď b if b “ SpSp¨ ¨ ¨Spaq ¨ ¨ ¨ qq.

Properties of order (we present without proof):

(i) For all a, b P N, we have a ď b or b ď a.

(ii) If a ď b and b ď a, then a “ b.

(iii) If a ď b and b ď c, then a ď c.

(iv) If a ď b then a` c ď b` c.

(v) If a ď b then a ¨ c ď b ¨ c.



Rational numbers

Let

Q “ Zˆ pZ´ t0uq,
and define an equivalence relation on Q by

pa, bq „ px ¨ a, x ¨ bq for all x P Z´ t0u.

Under this equivalence relation, write
a

b
“ rpa, bqs.

Then rational numbers are

Q “
!a

b

ˇ

ˇ

ˇ
a, b P Z, b ‰ 0

)

.

(Note that we get lazy, and write a
1 “ a.)

Define ` : QˆQÑ Q and ¨ : QˆQÑ Q by
a

b
`
c

d
“
a ¨ d` b ¨ c

b ¨ d
and

a

b
¨
c

d
“
a ¨ c

b ¨ d
.
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Let Q “ Zˆ pZ´ t0uq and define an equivalence relation on Q by

pa, bq „ px ¨ a, x ¨ bq for all x P Z´ t0u.
Under this equivalence relation, write a

b “ rpa, bqs (writing a
1 “ a). Then

rational numbers are
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!a

b
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.
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Again. . .

1. Addition and multiplication still satisfy commutativity,
associativity, and distributivity.

2. We still have x` 0 “ x (additive identity) and x ¨ 1 “ x
(multiplicative identity) for all x P Q.

3. We also have that x` p´xq “ 0. (additive inverses)

So Q is also a (commutative) ring.

In addition, for all a{b P Q with a ‰ 0,

a

b
¨
b

a
“ 1 (multiplicative inverses).

This makes Q a field (again, modern algebra).
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Order on Q

Define ´a
b “

´a
b (you can show ´a

b “
a
´b).

We define ď on Q by the following: for a, b, c, d P N, we have

1. a
b ď

c
d whenever a ¨ d ď b ¨ c;

2. ´a
b ď

c
d ; and

3. ´a
b ď ´

c
d whenever c

d ď
a
b .

Then, again,

(i) For all a, b P N, we have a ď b or b ď a.

(ii) If a ď b and b ď a, then a “ b.

(iii) If a ď b and b ď c, then a ď c.

(iv) If a ď b then a` c ď b` c.

(v) If a ď b and 0 ď c, then ac ď bc.

This makes Q into an ordered field.
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Let X be an ordered set of numbers (think N, Z, Q, and,
eventually, R), and let S be a nonempty subset of X.

(a) If S contains a largest element x (x P S and for all y P S,
y ď x), then we call x “ maxpSq the maximum if S.

Careful writing note: Compare to, “The maximum of S is an

element x P S satisfying y ď x for all y P S. What’s wrong ?

(b) If S contains a smallest element x (x P S and for all y P S,
y ě x), then we call x “ minpSq the minimum of S.

Ex: If S “ t´2, 1{2, 100{3u, then minpSq “ ´2, maxpSq “ 100{3.

Ex: If S Ď Zě0 is finite, then

maxpSq “
ď

sPS

s and minpSq “
č

sPS

s.

Ex: If S is finite, then maxpSq and minpSq exist.

Ex: For S “ Zą0, minpSq “ 1 and maxpSq does not exist.
Ex: For S “ Qą0, minpSq and maxpSq do not exist.

Note: Min/max don’t depend on the set X!
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Let X be an ordered set of numbers (think N, Z, Q, and,
eventually, R), and let S be a nonempty subset of X.

(a) If there exists u P X such that s ď u for all s P S, then u is
called an upper bound of S and the set S is said to be
bounded above (by u).

Ex: S “ Qă0 Ď Q doesn’t have a maximal element, but it
does have an upper bound: u “ 0. In fact, it has lots of upper
bounds: u “ 1, u “ 100, u “ 101{15, etc. But u “ ´1 is not
an upper bound since ´1{2 P S and ´1{2 ą ´1.

Ex: S “ Qą0 Ď Q doesn’t have any upper bounds.

Ex: As a subset of X “ Qą0, S “ Qą0 doesn’t have an upper
bound.

(b) Similarly, if there exists ` P X such that s ě ` for all s P S,
then ` is called a lower bound of S and the set S is said to be
bounded below (by `).

Note: Upper and lower bounds do depend on the set X.



Let X be an ordered set of numbers (think N, Z, Q, and,
eventually, R), and let S be a nonempty subset of X.

(a) If there exists u P X such that s ď u for all s P S, then u is
called an upper bound of S and the set S is said to be
bounded above (by u).

Ex: S “ Qă0 Ď Q doesn’t have a maximal element, but it
does have an upper bound: u “ 0.

In fact, it has lots of upper
bounds: u “ 1, u “ 100, u “ 101{15, etc. But u “ ´1 is not
an upper bound since ´1{2 P S and ´1{2 ą ´1.

Ex: S “ Qą0 Ď Q doesn’t have any upper bounds.

Ex: As a subset of X “ Qą0, S “ Qą0 doesn’t have an upper
bound.

(b) Similarly, if there exists ` P X such that s ě ` for all s P S,
then ` is called a lower bound of S and the set S is said to be
bounded below (by `).

Note: Upper and lower bounds do depend on the set X.



Let X be an ordered set of numbers (think N, Z, Q, and,
eventually, R), and let S be a nonempty subset of X.

(a) If there exists u P X such that s ď u for all s P S, then u is
called an upper bound of S and the set S is said to be
bounded above (by u).

Ex: S “ Qă0 Ď Q doesn’t have a maximal element, but it
does have an upper bound: u “ 0. In fact, it has lots of upper
bounds: u “ 1, u “ 100, u “ 101{15, etc.

But u “ ´1 is not
an upper bound since ´1{2 P S and ´1{2 ą ´1.

Ex: S “ Qą0 Ď Q doesn’t have any upper bounds.

Ex: As a subset of X “ Qą0, S “ Qą0 doesn’t have an upper
bound.

(b) Similarly, if there exists ` P X such that s ě ` for all s P S,
then ` is called a lower bound of S and the set S is said to be
bounded below (by `).

Note: Upper and lower bounds do depend on the set X.



Let X be an ordered set of numbers (think N, Z, Q, and,
eventually, R), and let S be a nonempty subset of X.

(a) If there exists u P X such that s ď u for all s P S, then u is
called an upper bound of S and the set S is said to be
bounded above (by u).

Ex: S “ Qă0 Ď Q doesn’t have a maximal element, but it
does have an upper bound: u “ 0. In fact, it has lots of upper
bounds: u “ 1, u “ 100, u “ 101{15, etc. But u “ ´1 is not
an upper bound since ´1{2 P S and ´1{2 ą ´1.

Ex: S “ Qą0 Ď Q doesn’t have any upper bounds.

Ex: As a subset of X “ Qą0, S “ Qą0 doesn’t have an upper
bound.

(b) Similarly, if there exists ` P X such that s ě ` for all s P S,
then ` is called a lower bound of S and the set S is said to be
bounded below (by `).

Note: Upper and lower bounds do depend on the set X.



Let X be an ordered set of numbers (think N, Z, Q, and,
eventually, R), and let S be a nonempty subset of X.

(a) If there exists u P X such that s ď u for all s P S, then u is
called an upper bound of S and the set S is said to be
bounded above (by u).

Ex: S “ Qă0 Ď Q doesn’t have a maximal element, but it
does have an upper bound: u “ 0. In fact, it has lots of upper
bounds: u “ 1, u “ 100, u “ 101{15, etc. But u “ ´1 is not
an upper bound since ´1{2 P S and ´1{2 ą ´1.

Ex: S “ Qą0 Ď Q doesn’t have any upper bounds.

Ex: As a subset of X “ Qą0, S “ Qą0 doesn’t have an upper
bound.

(b) Similarly, if there exists ` P X such that s ě ` for all s P S,
then ` is called a lower bound of S and the set S is said to be
bounded below (by `).

Note: Upper and lower bounds do depend on the set X.



Let X be an ordered set of numbers (think N, Z, Q, and,
eventually, R), and let S be a nonempty subset of X.

(a) If there exists u P X such that s ď u for all s P S, then u is
called an upper bound of S and the set S is said to be
bounded above (by u).

Ex: S “ Qă0 Ď Q doesn’t have a maximal element, but it
does have an upper bound: u “ 0. In fact, it has lots of upper
bounds: u “ 1, u “ 100, u “ 101{15, etc. But u “ ´1 is not
an upper bound since ´1{2 P S and ´1{2 ą ´1.

Ex: S “ Qą0 Ď Q doesn’t have any upper bounds.

Ex: As a subset of X “ Qą0, S “ Qą0 doesn’t have an upper
bound.

(b) Similarly, if there exists ` P X such that s ě ` for all s P S,
then ` is called a lower bound of S and the set S is said to be
bounded below (by `).

Note: Upper and lower bounds do depend on the set X.



Let X be an ordered set of numbers (think N, Z, Q, and,
eventually, R), and let S be a nonempty subset of X.

(a) If there exists u P X such that s ď u for all s P S, then u is
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does have an upper bound: u “ 0. In fact, it has lots of upper
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Consider X “ Q and

S “ tx P Q | x2 ` x´ 1 ď 0u

x

y
y “ x2 ` x´ 1

S´3 ´2 ´1 1 2

Math Oracle: “We can compute

x2 ` x´ 1 “ 0 ô x “
1

2
p´1˘

?
5q R Q.

So S doesn’t have a minimum or a maximum.”

But S is bounded above and below,

e.g. u “ 1 and ` “ ´2; or u “ .62 and ` “ ´1.62; or. . .

But what is the “best” bound? Does it even have a “best” bound?

Oracle: “In R, the ‘best’ bounds are
` “ 1

2p´1´
?
5q and u “ 1

2p´1`
?
5q.”
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Let X be an ordered set of numbers (think N, Z, Q, and,
eventually, R), and let S be a nonempty subset of X.

From before: If there exists u P X such that s ď u for all s P S, then u is

called an upper bound of S and the set S is said to be bounded above (by u).

Similarly, a lower bound is a number ` P X such that s ě ` for all s P S; if `

exists, we say S is bounded below.

(a) If S is bounded above, we call an upper bound U satisfying

U ď u for all upper bounds u

the least upper bound or supremum of S, denoted by supS.

supS “ min ptu P X | u ě s for all s P Suq

(b) If S is bounded below, we call a lower bound L satisfying

L ě ` for all lower bounds `

the greatest lower bound or infimum of S, denoted by inf S.

inf S “ max pt` P X | ` ď s for all s P Suq



Back to X “ Q and S “ tx P Q | x2 ` x´ 1 ď 0u.

x

y
y “ x2 ` x´ 1

S

lower bounds upper bounds

supSinf S

Oracle: “In R,
inf S “ 1

2p´1´
?
5q and supS “ 1

2p´1`
?
5q.

Therefore, even though

t` P X | ` ď s for all s P Su and tu P X | u ě s for all s P Su

are non-empty, inf S and supS don’t exist in Q.

Thm. The rational numbers are incomplete in the sense that there
exist bounded subsets that do not have infimums or supremums.

Goal: Define the completion of Q—the smallest set containing Q
so that every set that’s bounded above/below has a sup/inf. (R)
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Completeness Axiom: Every non-empty subset of R that is
bounded above has a least upper bound, i.e. for all S Ď R, if S is
bounded above, then supS exists and is in R.
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The real numbers
Let R be the set of subsets of Q that satisfy the following:
C P R whenever

1. C Ĺ Q and C ‰ H (C is a proper, non-empty subset of Q);

2. for all x P C, if y P Q satisfies y ď x, then y P C
(if x P C, then everything less than x is also in C);

3. maxC does not exist.
(Recall, in contrast to upper bounds, maxC has to be an element of C.)

Oracle: “ R consists entirely of sets of the form

a˚ “ tx P Q | x ă au “ p´8, aq for some fixed a P R.”

Sets in R are called Dedekind cuts,
and R “ R is the set of real numbers.

Intuition: identify a P R with the cut a˚ “ tx P Q | x ă au P R.

Thm. The completeness axiom holds.
(This should feel uncomfortable. . . an axiom shouldn’t have to be proven!

Whether this is an axiom or a theorem depends on your perspective. . . )
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Operations
Intuition: R consists entirely of sets of the form

a˚
“ tx P Q | x ă au “ p´8, aq for some fixed a P R.

x

a˚

a

For α, β P R, define

α` β “ ta` b | a P α, b P βu.

Careful: we do not want to define α ¨ β by ta ¨ b | a P α, b P βu!

Example: Consider p´1q˚ ¨ p´1q˚.
We certainly need this to be 1˚ “ tx P Q | x ă 1u.
Compare to

ta ¨ b | a, b P p´1q˚u.

This latter set contains, for example, p´2qp´3q “ 6 R 1˚.

Instead: for non-negative α, β P R (i.e. αě0, βě0 ‰ H), define

1. α ¨ β “ ta ¨ b | a P αě0, b P βě0u YQă0;
2. ´α “ t´x P Q | x ą a for all a P αu;
3. ´α ¨ β “ ´pα ¨ βq; and
4. p´αq ¨ p´βq “ α ¨ β.
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Addition: For α, β P R, define
α` β “ ta` b | a P α, b P βu.

Multiplication: For non-negative α, β P R (i.e. αě0, βě0 ‰ H), define
α ¨ β “ ta ¨ b | a P αě0, b P βě0u YQă0;
´α “ t´x P Q | x ą a for all a P αu;

´α ¨ β “ ´pα ¨ βq; and p´αq ¨ p´βq “ α ¨ β.

Again. . .

1. Addition and multiplication still satisfy commutativity,
associativity, and distributivity.

2. We still have α` 0˚ “ x (additive identity) and α ¨ 1˚ “ α
(multiplicative identity) for all α P R.

3. We also have that α` p´αq “ 0˚. (additive inverses)

4. Dor all α P R with α ‰ 0˚, there exists α´1 P R that satisfies

α ¨ α´1 “ 1˚ (multiplicative inverses).

So R a field (again, modern algebra).



Intuition: R consists entirely of sets of the form

a˚
“ tx P Q | x ă au “ p´8, aq for some fixed a P R.

x

a˚

a

For all a P Q, we can concretely identify a with
a˚ “ tx P Q | x ă au P R. Namely,

QÑ R defined by a ÞÑ a˚

is an injective map, which will respect addition, multiplication, and
order (once we define them).

Comparisons:
For α, β P R, define

α ď β whenever α Ď β.

Thm. (Archimedean property) If a˚, b˚ ą 0˚, then there exists
n P N such that a˚ ¨ n˚ ą b˚.

Thm. (Denseness of Q) If a˚ ă b˚, then there exists c P Q such
that a˚ ă c˚ ă b˚.
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Wrapping up
1. Context is king!

You can do most math at any level of abstraction.

For example, there’s a huge difference between what you can

assume when working in set theory versus calculus.

2. Go slowly when reading/writing new math.
Pay attention to details! For example, the simple inversion of

quantifiers can mess a whole statement up.

3. Always do examples!
Illustrative examples can help you understand the big picture;

extreme examples help you understand the details. And if you don’t

know where to start, then do an example!

4. Revise, revise, revise.
When solving math problems, a lot goes on behind the scenes.
Don’t be afraid to write down logical fallacies (like starting with the
conclusion, or “proof by example”) in the privacy of your own home.
Just don’t stop there!

Tip: Keep old ideas or notes to yourself in your .tex file,

commented out with %’s, in case you need them again later.

5. Math isn’t linear; math is fractal.
While a logical argument needs to come in a logical order, there

isn’t just one good order to explain all of math. In particular, every

good answer spins off many good questions!

6. You can do it!!
Be kind to yourself! If you don’t get something right away, that

doesn’t mean you’re stupid, or that you can’t get there. Math is

hard, but doable; and the struggle is what makes the breakthroughs

so fun!
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