Relations

A binary relation on a set A is a subset $R \subseteq A \times A$, where elements (a, b) are written as $a \sim b$.

Example: $A=\mathbb{Z}$ and $R=\{a \sim b \mid a<b\}$.
In words:
Let \sim be the relation on \mathbb{Z} given by $a \sim b$ if $a<b$.
(Note that we use language like in definitions, where "if" actually means "if and only if".)
Example: $A=\mathbb{R}$ and $R=\{a \sim b \mid a=b\}$.
In words:
Let \sim be the relation on \mathbb{R} given by $a \sim b$ if $a=b$.
Example: $A=\mathbb{Z}$ and $R=\{a \sim b \mid a \equiv b(\bmod 3)\}$.
In words:
Let \sim be the relation on \mathbb{Z} given by $a \sim b$ if $a \equiv b(\bmod 3)$.

More examples of (binary) relations:

1. For A a number system, let $a \sim b$ if $a=b$. R, S, T
2. For A a number system, let $a \sim b$ if $a<b$. not R , not S, T
3. For $A=\mathbb{R}$, let $a \sim b$ if $a b=0$. not R, S, not T
4. For A a set of people, let $a \sim b$ if a is a (full) sibling of b. not R, S, T
5. For A a set of people, let $a \sim b$ if a and b speak a common language. R, S, not T

A binary relation on a set A is...
(R) reflexive if $a \sim a$ for all $a \in A$;
(S) symmetric if $a \sim b$ implies $b \sim a$;
(T) transitive if $a \sim b$ and $b \sim c$ implies $a \sim c$, i.e.

$$
(a \sim b \wedge b \sim c) \Rightarrow a \sim c
$$

An equivalence relation on a set A is a binary relation that is reflexive, symmetric, and transitive. (Only \#1)

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
" a \sim b \quad \text { if } a \equiv b \quad(\bmod n) . "
$$

Is \sim is an equivalence relation?
Check: we have $a \equiv b(\bmod n)$ if and only if $a-b=k n$ for some $k \in \mathbb{Z}$.
reflexivity: $\quad a-a=0=0 \cdot n \checkmark$
symmetry: If $a-b=k n$, then $b-a=-k n=(-k) n$. \checkmark
transitivity: If $a-b=k n$ and $b-c=\ell n$, then

$$
a-c=(a-b)+(b-c)=k n+\ell n=(k+\ell) n \cdot \checkmark
$$

Yes! This is an equivalence relation!

Let A be a set. Consider the relation on $\mathcal{P}(A)$ by

$$
S \sim T \quad \text { if } \quad S \subseteq T
$$

Is \sim is an equivalence relation?
Check: This is reflexive and transitive, but not symmetric.
So no, it is not an equivalence relation.
Is

$$
S \sim T \quad \text { if } \quad S \subseteq T \text { or } S \subseteq T
$$

an equivalence relation on $\mathcal{P}(A)$?
Check: This is reflexive and symmetric, but not transitive.
So still no, it is not an equivalence relation.

Is

$$
S \sim T \quad \text { if } \quad|S|=|T|
$$

an equivalence relation on $\mathcal{P}(A)$?
Read: Why reflexivity doesn't follow from symmetry and transitivity.

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Example: Consider the equivalence relation on $A=\{a, b, c\}$ given by

$$
a \sim a, \quad b \sim b, \quad c \sim c, \quad a \sim c, \quad \text { and } \quad c \sim a .
$$

Then

$$
\begin{gathered}
{[a]=\{a, c\}=[c], \quad \text { and }} \\
{[b]=\{b\}}
\end{gathered}
$$

are the two equivalence classes in A (with respect to this relation). (We say there are two, not three, since "the equivalence classes" refers to the sets themselves, not to the elements that generate them.)

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by [a].
Example: We showed that

$$
" a \sim b \quad \text { if } a \equiv b(\bmod 5) "
$$

is an equivalence relation on \mathbb{Z}. Then

$$
\begin{gathered}
{[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z} \quad[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1} \\
{[2]=\{5 n+2 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+2 \quad[3]=\{5 n+3 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+3} \\
{[4]=\{5 n+4 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+4} \\
{[5]=\{5 n+5 \mid n \in \mathbb{Z}\}=\{5 m \mid m \in \mathbb{Z}\}=[0]=[-5]=[10]=\cdots} \\
{[6]=\{5 n+6 \mid n \in \mathbb{Z}\}=\{5 m+1 \mid m \in \mathbb{Z}\}=[1]=[-4]=[11]=\cdots}
\end{gathered}
$$

In general, if $x \in[y]$, that means $y \sim x$.
So $x \sim y$. So $y \in[x]$.
Claim: $x \in[y]$ if and only if $[x]=[y]$.
We call any element a of a class C representative of C (since we can write $C=[a]$ for any $a \in C$).

Theorem. The equivalence classes of A partition A into subsets, meaning

1. the equivalence classes are subsets of A :

$$
[a] \subseteq A \text { for all } a \in A ;
$$

2. any two equivalence classes are either equal or disjoint:
for all $a, b \in A$, either $[a]=[b]$ or $[a] \cap[b]=\varnothing$; and
3. the union of all the equivalence classes is all of A :

$$
A=\bigcup_{a \in A}[a] .
$$

We say that A is the disjoint union of equivalency classes, written

$$
A=\bigsqcup_{a \in A}[a], \quad \text { AT } \mathrm{EX}: \backslash \text { bigsqcup, } \backslash \text { sqcup }
$$

For example, in our last example, there are exactly 5 equivalence classes: [0], [1], [2], [3], and [4]. Any other seemingly different class is actually one of these (for example, [5] = [0]). And

$$
[0] \cup[1] \cup[2] \cup[3] \cup[4]=\mathbb{Z} .
$$

So $\mathbb{Z}=[0] \sqcup[1] \sqcup[2] \sqcup[3] \sqcup[4]$.

Ok, so what are numbers, anyway?
Recall from the homework, the Zermelo-Fraenkel axioms of set theory, which tells us how to compare sets, put sets in other sets, and to take unions, intersection, and power sets of sets. \checkmark

Set theoretic definition of the natural numbers. ($\mathbb{Z}_{\geqslant 0}$)
Let $0=\varnothing$.
Given n, define the successor to n as $S(n)=n \cup\{n\}$.
(By "successor to n " we basically mean $n+1$.)
Let \mathbb{N} be the set of all sets generated by 0 and S.
For example,

$$
\begin{aligned}
1= & 0 \cup\{0\}=\varnothing \cup\{\varnothing\}=\{\varnothing\}, \\
2= & 1 \cup\{1\}=\{\varnothing\} \cup\{\{\varnothing\}\}=\{\varnothing,\{\varnothing\}\}, \\
3= & 2 \cup\{2\}=\{\varnothing,\{\varnothing\}\} \cup\{\{\varnothing,\{\varnothing\}\}\} \\
& =\{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\}\},
\end{aligned}
$$

and so on. (Note that we identified n with $|n|$.) Compute 4.
Think: Given $n, m \in \mathbb{N}$, are $n \cup m$ and/or $n \cap m$ elements of \mathbb{N} ? If so, what elements are they?

Set theoretic definition of the natural numbers. $\left(\mathbb{Z}_{\geqslant 0}\right)$
Let $0=\varnothing$.
Given n, define the successor to n as $S(n)=n \cup\{n\}$. Let \mathbb{N} be the set of all sets generated by 0 and S.
For example,

$$
\begin{aligned}
& 1=\{\varnothing\}, \quad 2=\{\varnothing,\{\varnothing\}\}, \quad 3=\{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\}\} \\
& 4=\{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\},\{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\}\}\}
\end{aligned}
$$

and so on. (Note that we identified n with $|n|$.)
Addition: Define $+: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ by, for all $a, b \in \mathbb{N}$,

1. $a+0=a$; and
2. $a+S(b)=S(a+b)$.

For example,

$$
\begin{gathered}
a+1=a+S(0)=S(a+0)=S(a) \\
a+2=a+S(1)=S(a+1)=S(S(a))
\end{gathered}
$$

Check that $a+3=S(S(S(a)))=S^{3}(a)$. Think: $a+b=S^{b}(a)$.

Given n, define the successor to n as $S(n)=n \cup\{n\}$. Let \mathbb{N} be the set of all sets generated by 0 and S.
For example,

$$
\begin{aligned}
& 1=\{\varnothing\}, \quad 2=\{\varnothing,\{\varnothing\}\}, \quad 3=\{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\}\} \\
& 4=\{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\},\{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\}\}\}
\end{aligned}
$$

and so on. (Note that we identified n with $|n|$.)
Addition: Define $+: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ by, for all $a, b \in \mathbb{N}$,

$$
\begin{aligned}
& \text { 1. } a+0=a ; \quad \text { and } \quad \text { 2. } a+S(b)=S(a+b) . \\
& \text { Think: } a+b=S^{b}(a)=S^{a+b}(0) .
\end{aligned}
$$

Multiplication: Define $\cdot: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ by, for all $a, b \in \mathbb{N}$,

$$
\text { 1. } n \cdot 0=0 ; \quad \text { and } \quad \text { 2. } \quad a \cdot S(b)=(a \cdot b)+a \text {. }
$$

For example,

$$
\begin{gathered}
a \cdot 1=a \cdot S(0)=a \cdot 0+a=0+a=a ; \\
a \cdot 2=a \cdot S(1)=a \cdot 1+a=a+a .
\end{gathered}
$$

Check that $a+3=a+a+a$.
Think: $a \cdot b=S^{a b}(0)$.

Addition: Define $+: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ by, for all $a, b \in \mathbb{N}$,

1. $a+0=a$; and 2. $a+S(b)=S(a+b)$.

Think: $a+b=S^{b}(a)=S^{a+b}(0)$.
Multiplication: Define $\cdot: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ by, for all $a, b \in \mathbb{N}$,

1. $n \cdot 0=0 ; \quad$ and 2. $a \cdot S(b)=(a \cdot b)+a$.

Think: $a \cdot b=S^{a b}(0)$.

Properties:

1. Addition is commutative, i.e. $a+b=b+a$ for all $a, b \in \mathbb{N}$.
2. Addition is associative, i.e. $a+(b+c)=(a+b)+c$ for all $a, b, c \in \mathbb{N}$.
3. Multiplication is commutative, i.e. $a \cdot b=b \cdot a$ for all $a, b \in \mathbb{N}$.
4. Multiplication is associative, i.e. $a \cdot(b \cdot c)=(a \cdot b) \cdot c$ for all $a, b, c \in \mathbb{N}$.
5. Multiplication is distributive across addition, i.e. $a \cdot(b+c)=(a \cdot b)+(a \cdot c)$ for all $a, b, c \in \mathbb{N}$.
(These all follow from the definitions, but we'll skip proofs for the sake of time.)

Peano axioms

The natural numbers \mathbb{N} are defined by the following axioms.

1. We have $0 \in \mathbb{N}$.
(technically, $0=\varnothing$)
2. There exists an a successor function $S: \mathbb{N} \rightarrow \mathbb{N}$ (namely, if $n \in \mathbb{Z}$, then $S(n) \in \mathbb{N}$) satisfying
(i) $0 \notin S(\mathbb{N})$;
(ii) S is injective (if $S(n)=S(m)$, then $n=m$); and
(iii) if $X \subseteq \mathbb{N}$ satisfies $n_{0} \in X$ and $S(X) \subseteq X$, we have $X=\mathbb{N}$.

Note:

(a) We have not assumed that 0 is the only element that is no one's successor (but it follows, in part from 1(iii)).
(b) By changing 0 out for something else (like 1), or changing $S(n)$ to something else (like $n-1$), we can generate other sets that are basically the natural numbers all over again. This is why we're not fussy about whether \mathbb{N} is $\mathbb{Z}_{\geqslant 0}$ or $\mathbb{Z}_{>0}$.
(c) The last axiom (1(iii)) is the basis of proof by induction.

The natural numbers \mathbb{N} are defined by the following axioms.

1. We have $0 \in \mathbb{N}$.
2. There exists an a successor function $S: \mathbb{N} \rightarrow \mathbb{N}$ (namely, if $n \in \mathbb{Z}$, then $S(n) \in \mathbb{N}$) satisfying
(i) $0 \notin S(\mathbb{N})$;
(ii) S is injective (if $S(n)=S(m)$, then $n=m$); and
(iii) if $X \subseteq \mathbb{N}$ satisfies $n_{0} \in X$ and $S(X) \subseteq X$, we have $X=\mathbb{N}$.

Order on \mathbb{N}.
For $a, b \in \mathbb{N}$, we say $a \leqslant b$ if $b=S(S(\cdots S(a) \cdots))$.
Properties:
(i) For all $a, b \in \mathbb{N}$, we have $a \leqslant b$ or $b \leqslant a$.
(ii) If $a \leqslant b$ and $b \leqslant a$, then $a=b$.
(iii) If $a \leqslant b$ and $b \leqslant c$, then $a \leqslant c$.
(iv) If $a \leqslant b$ then $a+c \leqslant b+c$.
(v) If $a \leqslant b$ then $a c \leqslant b c$.
(These all follow from the axioms, but we'll skip proofs for the sake of time.)

Integers

Now that we have \mathbb{N}, we can define \mathbb{Z} by formally letting

$$
-\mathbb{N}=\{-n \mid n \in \mathbb{N}\}, \quad \text { where }-0=0
$$

and $\mathbb{Z}=\mathbb{N} \cup-\mathbb{N}$.
Extend $S: \mathbb{Z} \rightarrow \mathbb{Z}$ by defining $S(-a)$ for any $-a \in-\mathbb{N}-\{0\}$ as

$$
S(-a)=-b, \quad \text { where } S(b)=a .
$$

We can define the predecessor function $P: \mathbb{Z} \rightarrow \mathbb{Z}$ by $P(x)=y$ whenever $S(y)=x$. Letting $-(-x)=x$, this says that

$$
S(x)=y \quad \text { if and only if } \quad P(y)=x .
$$

We can also extend our definitions of + and \cdot to \mathbb{Z}.

Properties:

1. Addition and multiplication still satisfy commutativity, associativity, and distributivity.
2. We still have $a+0=a$ (additive identity) and $a \cdot 1=a$ (multiplicative identity) for all $a \in \mathbb{Z}$.
3. We also have that $a+(-a)=0$ (prove). (additive inverses) We call any number system that has an addition and multiplication that satisfy all these properties a ring (modern algebra).

Integers

Now that we have \mathbb{N}, we can define \mathbb{Z} by formally letting

$$
-\mathbb{N}=\{-n \mid n \in \mathbb{N}\}, \quad \text { where }-0=0
$$

and $\mathbb{Z}=\mathbb{N} \cup-\mathbb{N}$. Extend $S: \mathbb{Z} \rightarrow \mathbb{Z}$ by defining $S(-a)$ for any $-a \in-\mathbb{N}-\{0\}$ as

$$
S(-a)=-b, \quad \text { where } S(b)=a .
$$

We can define the predecessor function $P: \mathbb{Z} \rightarrow \mathbb{Z}$ by $P(x)=y$ whenever $S(y)=x$. Letting $-(-x)=x$, this says that

$$
S(x)=y \quad \text { if and only if } \quad P(y)=x .
$$

We can also extend our definition of order to \mathbb{Z}. The only modification is:
(i) For all $a, b \in \mathbb{N}$, we have $a \leqslant b$ or $b \leqslant a$.
(ii) If $a \leqslant b$ and $b \leqslant a$, then $a=b$.
(iii) If $a \leqslant b$ and $b \leqslant c$, then $a \leqslant c$.
(iv) If $a \leqslant b$ then $a+c \leqslant b+c$.
(v) If $a \leqslant b$ and $c \in \mathbb{N}$, then $a c \leqslant b c$.

These properties make \mathbb{Z} an ordered ring.

Rational numbers

Let

$$
Q=\mathbb{Z} \times(\mathbb{Z}-\{0\}),
$$

and define an equivalence relation on Q by

$$
(a, b) \sim(x \cdot a, x \cdot b) \quad \text { for all } \quad x \in \mathbb{Z}-\{0\} .
$$

Under this equivalence relation, write

$$
\frac{a}{b}=[(a, b)] .
$$

Then rational numbers are

$$
\mathbb{Q}=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}, b \neq 0\right\} .
$$

(Note that we get lazy, and write $\frac{a}{1}=a$.)
Define $+: \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{Q}$ and $\cdot: \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{Q}$ by

$$
\frac{a}{b}+\frac{c}{d}=\frac{a \cdot d+b \cdot c}{b \cdot d} \quad \text { and } \quad \frac{a}{b} \cdot \frac{c}{d}=\frac{a \cdot c}{b \cdot d} .
$$

Let $Q=\mathbb{Z} \times(\mathbb{Z}-\{0\})$ and define an equivalence relation on Q by

$$
(a, b) \sim(x \cdot a, x \cdot b) \quad \text { for all } \quad x \in \mathbb{Z}-\{0\}
$$

Under this equivalence relation, write $\frac{a}{b}=[(a, b)]$ (writing $\frac{a}{1}=a$). Then rational numbers are

$$
\mathbb{Q}=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}, b \neq 0\right\}
$$

Define $+: \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{Q}$ and $\cdot: \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{Q}$ by

$$
\frac{a}{b}+\frac{c}{d}=\frac{a \cdot d+b \cdot c}{b \cdot d} \quad \text { and } \quad \frac{a}{b} \cdot \frac{c}{d}=\frac{a \cdot c}{b \cdot d}
$$

Again...

1. Addition and multiplication still satisfy commutativity, associativity, and distributivity.
2. We still have $x+0=x$ (additive identity) and $x \cdot 1=x$ (multiplicative identity) for all $x \in \mathbb{Q}$.
3. We also have that $x+(-x)=0$. (additive inverses)

So \mathbb{Q} is also a ring. In addition, for all $a / b \in \mathbb{Q}$,

$$
\frac{a}{b} \cdot \frac{b}{a}=1 \quad \text { (multiplicative inverses). }
$$

This makes \mathbb{Q} a field (again, modern algebra).

Order on \mathbb{Q}

Define $-\frac{a}{b}=\frac{-a}{b}$ (you can show $\frac{-a}{b}=\frac{a}{-b}$).
We define \leqslant on \mathbb{Q} by the following: for $a, b, c, d \in \mathbb{N}$, we have

1. $\frac{a}{b} \leqslant \frac{c}{d}$ whenever $a \cdot d \leqslant b \cdot c$;
2. $-\frac{a}{b} \leqslant \frac{c}{d}$; and
3. $-\frac{a}{b} \leqslant-\frac{c}{d}$ whenever $\frac{c}{d} \leqslant \frac{a}{b}$.

Then, again,
(i) For all $a, b \in \mathbb{N}$, we have $a \leqslant b$ or $b \leqslant a$.
(ii) If $a \leqslant b$ and $b \leqslant a$, then $a=b$.
(iii) If $a \leqslant b$ and $b \leqslant c$, then $a \leqslant c$.
(iv) If $a \leqslant b$ then $a+c \leqslant b+c$.
(v) If $a \leqslant b$ and $0 \leqslant c$, then $a c \leqslant b c$.

This makes \mathbb{Q} into an ordered field.

