Relations

A binary relation on a set A is a subset R <€ A x A, where
elements (a,b) are written as a ~ b.

Example: A=Zand R={a ~b|a < b}
In words:
Let ~ be the relation on 7Z given by a ~ b if a < b.

means "“if and only if".)

Example: A=Rand R={a~b|a="0}.
In words:
Let ~ be the relation on R given by a ~ b if a = b.

Example: A=Zand R={a~b|a=b (mod 3)}.
In words:
Let ~ be the relation on 7 given by a ~ b ifa = b (mod 3).

More examples of (binary) relations:

1. For A a number system, leta ~bifa=5b. R, S, T

2. For A a number system, let a ~bifa <b. not R, not S, T
3. FrA=R,leta~bifab=0. not R, S, not T
4

. For A a set of people, let a ~ b if a is a (full) sibling of b.
notR,S, T

5. For A a set of people, let a ~ b if a and b speak a common
language. R, S, not T

A binary relation on a set A is. ..

(R) reflexive if a ~ a for all a € A;

(S) symmetric if a ~ b implies b ~ a;

(T) transitive if a ~ b and b ~ ¢ implies a ~ ¢, i.e.
(a~bAab~c)=a~c

An equivalence relation on a set A is a binary relation that is

reflexive, symmetric, and transitive. (Only #1)



Fix n € Z~¢ and define the relation on Z given by
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a~b ifa=b (modn)”
Is ~ is an equivalence relation?

Check: we have a = b (mod n) if and only if a — b = kn for some
keZ.

reflexivity: a—a=0=0-n v
symmetry: If a —b = kn, thenb—a = —kn = (—k)n. v
transitivity: If a —b = kn and b — ¢ = ¢n, then

a—c=(a—b)+(b—c)=kn+In=(k+Onv

Yes! This is an equivalence relation!

Let A be a set. Consider the relation on P(A) by
S~T if ScT

Is ~ is an equivalence relation?

Check: This is reflexive and transitive, but not symmetric.
So no, it is not an equivalence relation.

Is
S~T if ScToScT
an equivalence relation on P(A)?

Check: This is reflexive and symmetric, but not transitive.
So still no, it is not an equivalence relation.

Is
S~T if S| = |T|
an equivalence relation on P(A)?

Read: Why reflexivity doesn't follow from symmetry and
transitivity.



Let ~ be an equivalence relation on a set A, and let a € A. The
set of all elements b € A such that a ~ b is called the equivalence
class of a, denoted by [a].

Example: Consider the equivalence relation on A = {a, b, ¢} given
by
a~a, b~b c~c, a~c, and c~a.
Then
[a] = {a,c} =][c], and
[b] = {0}
are the two equivalence classes in A (with respect to this relation).

(We say there are two, not three, since “the equivalence classes”
refers to the sets themselves, not to the elements that generate
them.)

Let ~ be an equivalence relation on a set A, and let a € A. The

set of all elements b € A such that a ~ b is called the equivalence

class of a, denoted by [a].

Example: We showed that

“‘a~b ifa=b (mod5H)"
is an equivalence relation on Z. Then
[0] ={bn | neZ}=>5Z [1]={n+1|neZ}=5Z+1
2] ={hn+2|neZ} =57Z+2 [B]={hn+3|neZ}=5Z+3
[4] ={bn+4 | neZ} =5Z +4

[5] = {5n+5 | neZ} ={5m | meZ}=[0] =[-5] = [10] = --

[6] ={hn+6|neZ}={m+1 \ meZ} =[1] =[-4] = [11] =

In general, if x € [y], that means y ~ .
So x ~y. So y € [x].
Claim: z € [y] if and only if [z] = [y].

We call any element a of a class C' representative of C' (since we
can write C' = [a] for any a € C).



Theorem. The equivalence classes of A partition A into subsets,
meaning

1. the equivalence classes are subsets of A:
[a] < A for all a € A;

2. any two equivalence classes are either equal or disjoint:
for all a,b € A, either [a] = [b] or [a] N [b] = &; and

3. the union of all the equivalence classes is all of A:
A= U [a].
acA
We say that A is the disjoint union of equivalency classes, written
A= |_|[a], IATEX: \bigsqcup, \sqcup
aceA
For example, in our last example, there are exactly 5 equivalence
classes: [0], [1], [2], [3], and [4]. Any other seemingly different
class is actually one of these (for example, [5] = [0]). And
[0] u[1] v [2] U [3] v [4] = Z.

So|Z=[0]u([1]uw[2]u[3]ul4]]

Ok, so what are numbers, anyway?
Recall from the homework, the Zermelo-Fraenkel axioms of set
theory, which tells us how to compare sets, put sets in other sets,
and to take unions, intersection, and power sets of sets. v

Set theoretic definition of the natural numbers. (Zx¢)
Let 0 = .
Given n, define the successor to n as S(n) = n u {n}.
(By “successor to n" we basically mean n + 1.)
Let N be the set of all sets generated by 0 and S.
For example,

1=0u {0} = gu{d}={T},
2=1v {1} ={g} v {{d}} = {F,{T}},
3=2u{2} ={@,{d}} v {F,{T}}}

= {2, {0} (D, {1},

and so on. (Note that we identified n with [n|.) Compute 4.
Think: Given n,m € N, are n U m and/or n N m elements of N? If
so, what elements are they?



Set theoretic definition of the natural numbers. (Zx)

Let 0 = (.

Given n, define the successor to n as S(n) = n u {n}. Let N be
the set of all sets generated by 0 and S.

For example,

1={g}, 2={a,{g}}, 3={F{}{T,{T}}},
4 ={2. {0} (D, {o D, {1 D, {T}H}

and so on. (Note that we identified n with |n|.)

Addition: Define + : N x N — N by, for all a,b e N,
1. a+0=a; and
2. a+ S(b) =S(a+b).
For example,
a+1=a+5(0)=S(a+0)=S5(a);
a+2=a+S5(1)=S(a+1)=5(5(a)).
Check that a + 3 = S(S(S(a))) = S3(a). Think: a + b= S%(a).

Given n, define the successor to n as S(n) = n u {n}. Let N be
the set of all sets generated by 0 and S.
For example,

1={g}, 2={g,{g}}, 3={F{I}{T,{T}}},
4 = DAY ADADHAD A} AT AT

and so on. (Note that we identified n with |n|.)

Addition: Define + : N x N — N by, for all a,b e N,
1. a+0=a; and 2. a+S(0)=S(a+D).
Think: a4+ b = S%(a) = S4+%(0).
Multiplication: Define - : N x N — N by, for all a,b e N,
1. n-0=0; and 2. a-Sb)=(a-b)+a
For example,
a-1=a-50)=a-0+a=0+a = a;
a-2=a-S(1)=a-1+a=a+a.
Check that a +3 =a +a + a. Think: a-b = S%(0).



Addition: Define + : N x N — N by, for all a,b e N,

1. a+0=a; and 2. a+ S(b)=S(a+0D).
Think: a + b= S%(a) = S27(0).

Multiplication: Define - : N x N — N by, for all a,b e N,
1. n-0=0; and 2. a-S(b)=(a-b)+a.
Think: a-b = 5%(0).

Properties:
1. Addition is commutative, i.e. a + b= b+ a for all a,b e N.

2. Addition is associative, i.e. a + (b + ¢) = (a + b) + ¢ for all
a,b,ce N.

3. Multiplication is commutative, i.e. a-b=b-a for all a,b e N.

4. Multiplication is associative, i.e. a- (b-c¢) = (a-b) - ¢ for all
a,b,ce N.

5. Multiplication is distributive across addition, i.e.
a-(b+c)=(a-b)+ (a-c) forall a,b,ceN.

(These all follow from the definitions, but we'll skip proofs for the sake of time.)

Peano axioms

The natural numbers N are defined by the following axioms.
1. We have 0 e N. (technically, 0 = &)

2. There exists an a successor function S : N — N (namely, if
n € Z, then S(n) € N) satisfying
(i) 0¢ S(N);
(i) S is injective (if S(n) = S(m), then n = m); and
(i) if X < N satisfies ng € X and S(X) < X, we have X = N.

Note:

(a) We have not assumed that 0 is the only element that is no
one's successor (but it follows, in part from 1(iii)).

(b) By changing 0 out for something else (like 1), or changing
S(n) to something else (like n — 1), we can generate other
sets that are basically the natural numbers all over again. This
is why we're not fussy about whether N is Z~q or Z~g.

(c) The last axiom (1(iii)) is the basis of proof by induction.



The natural numbers N are defined by the following axioms.
1. We have 0 € N.

2. There exists an a successor function S : N — N (namely, if
n € Z, then S(n) € N) satisfying

(i) 0¢ S(N);
(i) S is injective (if S(n) = S(m), then n = m); and
(i) if X < N satisfies ng € X and S(X) < X, we have X = N.

Order on N.
Fora,be N, wesay a <bif b=S(S(---S(a)--+)).

Properties:
(i) For all a,be N, we have a < bor b < a.
(i) If a < band b < a, then a =10.
(iii) If a < band b < ¢, then a < c.
(iv) fa<bthena+c<b+c
(v) If a < b then ac < be.

(These all follow from the axioms, but we'll skip proofs for the sake of time.)

Integers

Now that we have N, we can define Z by formally letting
—N={-n|neN}, where —0=0;
and Z = Nu —N.
Extend S : Z — Z by defining S(—a) for any —a € —N — {0} as
S(—a) = —b, where S(b) = a.
We can define the predecessor function P : Z — Z by P(x) =y
whenever S(y) = x. Letting —(—x) = z, this says that
S(z)=y ifandonlyif P(y)==z.
We can also extend our definitions of + and - to Z.
Properties:
1. Addition and multiplication still satisfy commutativity,
associativity, and distributivity.
2. We still have a + 0 = a (additive identity) and a- 1 = a
(multiplicative identity) for all a € Z.
3. We also have that a + (—a) = 0 (prove). (additive inverses)
We call any number system that has an addition and multiplication
that satisfy all these properties a ring (modern algebra).



Integers
Now that we have N, we can define Z by formally letting
—N={-n|neN}, where —0=0;
and Z = N u —N. Extend S : Z — Z by defining S(—a) for any
—a € —N — {0} as
S(—a) = —b, where S(b) = a.
We can define the predecessor function P : Z — Z by P(x) =y
whenever S(y) = x. Letting —(—x) = z, this says that
S(z)=y ifandonlyif P(y)==.
We can also extend our definition of order to Z. The only
modification is:

(i) For all a,be N, we have a < bor b < a.

(i) If a <band b < a, then a = b.

(iii) If a <band b<c, then a <c.
(iv) Ifa<bthena+c<b+ec.
(v) If a <band ceN, then ac < be.

These properties make Z an ordered ring.

Rational numbers

Let
and define an equivalence relation on () by
(a,b) ~ (z-a,z-b) forall xeZ—{0}.

Under this equivalence relation, write
a

g = [(CL, b)]
Then rational numbers are
Q= {% ‘ a,beZ,b;«éO}.

(Note that we get lazy, and write § = a.)

Define + :QxQ > Qand - : Q x Q — Q by

a+c_a-d+b-c q a c¢
b d- b-d an b'd b-d



Let Q = Z x (Z — {0}) and define an equivalence relation on @ by
(a,b) ~ (z-a,z-b) forall xeZ—{0}.

Under this equivalence relation, write § = [(a,b)] (writing ¢ = a). Then

rational numbers are

Q= {%( a,beZ,bsﬁO}.

Define + :Q xQ ->Qand - : Q x Q — Q by

g+g_a-d—|—b-c and a
b d  b-d b

Again. . .

ISH Y
=
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1. Addition and multiplication still satisfy commutativity,
associativity, and distributivity.

2. We still have = + 0 = x (additive identity) and -1 =z
(multiplicative identity) for all z € Q.

3. We also have that = + (—z) = 0. (additive inverses)

So Q is also a ring. In addition, for all a/b € Q,
b
% -— =1 (multiplicative inverses).
a
This makes QQ a field (again, modern algebra).

Order on Q

—a _

i a _ —a @
Define —3 = 5% (you can show =% = %),

We define < on Q by the following: for a, b, c,d € N, we have

1. %<9whenevera-d<b-c;
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Then, again,
(i) For all a,b e N, we have a < b or b < a.
(i) If a < band b < a, then a = 0.
(iii) If a < band b < ¢, then a < c.
(iv) fa<bthena+c<b+ec
(v) If a <band 0 < ¢, then ac < be.

This makes Q into an ordered field.






