
Relations

A binary relation on a set A is a subset R Ñ A ˆ A, where

elements pa, bq are written as a „ b.

Example: A “ Z and R “ ta „ b | a † bu.
In words:

Let „ be the relation on Z given by a „ b if a † b.
(Note that we use language like in definitions, where “if” actually

means “if and only if”.)

Example: A “ R and R “ ta „ b | a “ bu.
In words:

Let „ be the relation on R given by a „ b if a “ b.

Example: A “ Z and R “ ta „ b | a ” b pmod 3qu.

In words:

Let „ be the relation on Z given by a „ b if a ” b pmod 3q.

More examples of (binary) relations:

1. For A a number system, let a „ b if a “ b. R, S, T

2. For A a number system, let a „ b if a † b. not R, not S, T

3. For A “ R, let a „ b if ab “ 0. not R, S, not T

4. For A a set of people, let a „ b if a is a (full) sibling of b.
not R, S, T

5. For A a set of people, let a „ b if a and b speak a common

language. R, S, not T

A binary relation on a set A is. . .

(R) reflexive if a „ a for all a P A;

(S) symmetric if a „ b implies b „ a;

(T) transitive if a „ b and b „ c implies a „ c, i.e.

pa „ b ^ b „ cq ñ a „ c

An equivalence relation on a set A is a binary relation that is

reflexive, symmetric, and transitive. (Only #1)



Fix n P Z°0 and define the relation on Z given by

“a „ b if a ” b pmod nq.”

Is „ is an equivalence relation?

Check: we have a ” b pmod nq if and only if a ´ b “ kn for some

k P Z.
reflexivity: a ´ a “ 0 “ 0 ¨ n X
symmetry: If a ´ b “ kn, then b ´ a “ ´kn “ p´kqn. X
transitivity: If a ´ b “ kn and b ´ c “ `n, then

a ´ c “ pa ´ bq ` pb ´ cq “ kn ` `n “ pk ` `qn.X

Yes! This is an equivalence relation!

Let A be a set. Consider the relation on PpAq by

S „ T if S Ñ T

Is „ is an equivalence relation?

Check: This is reflexive and transitive, but not symmetric.

So no, it is not an equivalence relation.

Is

S „ T if S Ñ T or S Ñ T
an equivalence relation on PpAq?

Check: This is reflexive and symmetric, but not transitive.

So still no, it is not an equivalence relation.

Is

S „ T if |S| “ |T |

an equivalence relation on PpAq?

Read: Why reflexivity doesn’t follow from symmetry and

transitivity.



Let „ be an equivalence relation on a set A, and let a P A. The

set of all elements b P A such that a „ b is called the equivalence

class of a, denoted by ras.

Example: Consider the equivalence relation on A “ ta, b, cu given

by

a „ a, b „ b, c „ c, a „ c, and c „ a.

Then

ras “ ta, cu “ rcs, and

rbs “ tbu

are the two equivalence classes in A (with respect to this relation).

(We say there are two, not three, since “the equivalence classes”

refers to the sets themselves, not to the elements that generate

them.)

Let „ be an equivalence relation on a set A, and let a P A. The

set of all elements b P A such that a „ b is called the equivalence

class of a, denoted by ras.

Example: We showed that

“a „ b if a ” b pmod 5q”

is an equivalence relation on Z. Then
r0s “ t5n | n P Zu “ 5Z r1s “ t5n ` 1 | n P Zu “ 5Z ` 1

r2s “ t5n ` 2 | n P Zu “ 5Z ` 2 r3s “ t5n ` 3 | n P Zu “ 5Z ` 3
r4s “ t5n ` 4 | n P Zu “ 5Z ` 4

r5s “ t5n ` 5 | n P Zu “ t5m | m P Zu “ r0s “ r´5s “ r10s “ ¨ ¨ ¨

r6s “ t5n ` 6 | n P Zu “ t5m ` 1 | m P Zu “ r1s “ r´4s “ r11s “ ¨ ¨ ¨

.

.

.

In general, if x P rys, that means y „ x.
So x „ y. So y P rxs.

Claim: x P rys if and only if rxs “ rys.

We call any element a of a class C representative of C (since we

can write C “ ras for any a P C).



Theorem. The equivalence classes of A partition A into subsets,

meaning

1. the equivalence classes are subsets of A:

ras Ñ A for all a P A;

2. any two equivalence classes are either equal or disjoint:

for all a, b P A, either ras “ rbs or ras X rbs “ H; and

3. the union of all the equivalence classes is all of A:

A “

§

aPA
ras.

We say that A is the disjoint union of equivalency classes, written

A “

ß

aPA
ras, LATEX: \bigsqcup, \sqcup

For example, in our last example, there are exactly 5 equivalence

classes: r0s, r1s, r2s, r3s, and r4s. Any other seemingly di↵erent

class is actually one of these (for example, r5s “ r0s). And

r0s Y r1s Y r2s Y r3s Y r4s “ Z.
So Z “ r0s \ r1s \ r2s \ r3s \ r4s .

Ok, so what are numbers, anyway?

Recall from the homework, the Zermelo-Fraenkel axioms of set

theory, which tells us how to compare sets, put sets in other sets,

and to take unions, intersection, and power sets of sets. X
Set theoretic definition of the natural numbers. (Z•0)

Let 0 “ H.

Given n, define the successor to n as Spnq “ n Y tnu.

(By “successor to n” we basically mean n ` 1.)
Let N be the set of all sets generated by 0 and S.
For example,

1 “ 0 Y t0u “ H Y tHu “ tHu,

2 “ 1 Y t1u “ tHu Y ttHuu “ tH, tHuu,

3 “ 2 Y t2u “ tH, tHuu Y ttH, tHuuu

“ tH, tHu, tH, tHuuu,

and so on. (Note that we identified n with |n|.) Compute 4.
Think: Given n,m P N, are n Y m and/or n X m elements of N? If

so, what elements are they?



Set theoretic definition of the natural numbers. (Z•0)

Let 0 “ H.

Given n, define the successor to n as Spnq “ n Y tnu. Let N be

the set of all sets generated by 0 and S.
For example,

1 “ tHu, 2 “ tH, tHuu, 3 “ tH, tHu, tH, tHuuu,

4 “ tH, tHu, tH, tHuu, tH, tHu, tH, tHuuuu,

and so on. (Note that we identified n with |n|.)

Addition: Define ` : N ˆ N Ñ N by, for all a, b P N,
1. a ` 0 “ a; and

2. a ` Spbq “ Spa ` bq.

For example,

a ` 1 “ a ` Sp0q “ Spa ` 0q “ Spaq;

a ` 2 “ a ` Sp1q “ Spa ` 1q “ SpSpaqq.

Check that a ` 3 “ SpSpSpaqqq “ S3
paq. Think: a ` b “ Sb

paq.

Given n, define the successor to n as Spnq “ n Y tnu. Let N be

the set of all sets generated by 0 and S.
For example,

1 “ tHu, 2 “ tH, tHuu, 3 “ tH, tHu, tH, tHuuu,

4 “ tH, tHu, tH, tHuu, tH, tHu, tH, tHuuuu,

and so on. (Note that we identified n with |n|.)

Addition: Define ` : N ˆ N Ñ N by, for all a, b P N,
1. a ` 0 “ a; and 2. a ` Spbq “ Spa ` bq.

Think: a ` b “ Sb
paq “ Sa`b

p0q.

Multiplication: Define ¨ : N ˆ N Ñ N by, for all a, b P N,
1. n ¨ 0 “ 0; and 2. a ¨ Spbq “ pa ¨ bq ` a.

For example,

a ¨ 1 “ a ¨ Sp0q “ a ¨ 0 ` a “ 0 ` a “ a;

a ¨ 2 “ a ¨ Sp1q “ a ¨ 1 ` a “ a ` a.

Check that a ` 3 “ a ` a ` a. Think: a ¨ b “ Sab
p0q.



Addition: Define ` : N ˆ N Ñ N by, for all a, b P N,
1. a ` 0 “ a; and 2. a ` Spbq “ Spa ` bq.

Think: a ` b “ Sb
paq “ Sa`b

p0q.

Multiplication: Define ¨ : N ˆ N Ñ N by, for all a, b P N,
1. n ¨ 0 “ 0; and 2. a ¨ Spbq “ pa ¨ bq ` a.

Think: a ¨ b “ Sab
p0q.

Properties:

1. Addition is commutative, i.e. a ` b “ b ` a for all a, b P N.
2. Addition is associative, i.e. a ` pb ` cq “ pa ` bq ` c for all

a, b, c P N.
3. Multiplication is commutative, i.e. a ¨ b “ b ¨ a for all a, b P N.
4. Multiplication is associative, i.e. a ¨ pb ¨ cq “ pa ¨ bq ¨ c for all

a, b, c P N.
5. Multiplication is distributive across addition, i.e.

a ¨ pb ` cq “ pa ¨ bq ` pa ¨ cq for all a, b, c P N.
(These all follow from the definitions, but we’ll skip proofs for the sake of time.)

Peano axioms

The natural numbers N are defined by the following axioms.

1. We have 0 P N. (technically, 0 “ H)

2. There exists an a successor function S : N Ñ N (namely, if

n P Z, then Spnq P N) satisfying
(i) 0 R SpNq;

(ii) S is injective (if Spnq “ Spmq, then n “ m); and

(iii) if X Ñ N satisfies n0 P X and SpXq Ñ X, we have X “ N.

Note:

(a) We have not assumed that 0 is the only element that is no

one’s successor (but it follows, in part from 1(iii)).

(b) By changing 0 out for something else (like 1), or changing

Spnq to something else (like n ´ 1), we can generate other

sets that are basically the natural numbers all over again. This

is why we’re not fussy about whether N is Z•0 or Z°0.

(c) The last axiom (1(iii)) is the basis of proof by induction.



The natural numbers N are defined by the following axioms.

1. We have 0 P N.
2. There exists an a successor function S : N Ñ N (namely, if

n P Z, then Spnq P N) satisfying
(i) 0 R SpNq;

(ii) S is injective (if Spnq “ Spmq, then n “ m); and

(iii) if X Ñ N satisfies n0 P X and SpXq Ñ X, we have X “ N.

Order on N.
For a, b P N, we say a § b if b “ SpSp¨ ¨ ¨Spaq ¨ ¨ ¨ qq.

Properties:

(i) For all a, b P N, we have a § b or b § a.

(ii) If a § b and b § a, then a “ b.

(iii) If a § b and b § c, then a § c.

(iv) If a § b then a ` c § b ` c.

(v) If a § b then ac § bc.

(These all follow from the axioms, but we’ll skip proofs for the sake of time.)

Integers

Now that we have N, we can define Z by formally letting

´N “ t´n | n P Nu, where ´ 0 “ 0;

and Z “ N Y ´N.
Extend S : Z Ñ Z by defining Sp´aq for any ´a P ´N ´ t0u as

Sp´aq “ ´b, where Spbq “ a.

We can define the predecessor function P : Z Ñ Z by P pxq “ y
whenever Spyq “ x. Letting ´p´xq “ x, this says that

Spxq “ y if and only if P pyq “ x.

We can also extend our definitions of ` and ¨ to Z.
Properties:

1. Addition and multiplication still satisfy commutativity,

associativity, and distributivity.

2. We still have a ` 0 “ a (additive identity) and a ¨ 1 “ a
(multiplicative identity) for all a P Z.

3. We also have that a ` p´aq “ 0 (prove). (additive inverses)

We call any number system that has an addition and multiplication

that satisfy all these properties a ring (modern algebra).



Integers

Now that we have N, we can define Z by formally letting

´N “ t´n | n P Nu, where ´ 0 “ 0;

and Z “ N Y ´N. Extend S : Z Ñ Z by defining Sp´aq for any

´a P ´N ´ t0u as

Sp´aq “ ´b, where Spbq “ a.

We can define the predecessor function P : Z Ñ Z by P pxq “ y
whenever Spyq “ x. Letting ´p´xq “ x, this says that

Spxq “ y if and only if P pyq “ x.
We can also extend our definition of order to Z. The only

modification is:

(i) For all a, b P N, we have a § b or b § a.

(ii) If a § b and b § a, then a “ b.

(iii) If a § b and b § c, then a § c.

(iv) If a § b then a ` c § b ` c.

(v) If a § b and c P N, then ac § bc.

These properties make Z an ordered ring.

Rational numbers

Let

Q “ Z ˆ pZ ´ t0uq,

and define an equivalence relation on Q by

pa, bq „ px ¨ a, x ¨ bq for all x P Z ´ t0u.

Under this equivalence relation, write

a

b
“ rpa, bqs.

Then rational numbers are

Q “

!a

b

ˇ̌
ˇ a, b P Z, b ‰ 0

)
.

(Note that we get lazy, and write
a
1 “ a.)

Define ` : Q ˆ Q Ñ Q and ¨ : Q ˆ Q Ñ Q by

a

b
`

c

d
“

a ¨ d ` b ¨ c

b ¨ d
and

a

b
¨
c

d
“

a ¨ c

b ¨ d
.



Let Q “ Z ˆ pZ ´ t0uq and define an equivalence relation on Q by

pa, bq „ px ¨ a, x ¨ bq for all x P Z ´ t0u.

Under this equivalence relation, write
a
b “ rpa, bqs (writing

a
1 “ a). Then

rational numbers are

Q “

!a

b

ˇ̌
ˇ a, b P Z, b ‰ 0

)
.

Define ` : Q ˆ Q Ñ Q and ¨ : Q ˆ Q Ñ Q by

a

b
`

c

d
“

a ¨ d ` b ¨ c

b ¨ d
and

a

b
¨
c

d
“

a ¨ c

b ¨ d
.

Again. . .

1. Addition and multiplication still satisfy commutativity,

associativity, and distributivity.

2. We still have x ` 0 “ x (additive identity) and x ¨ 1 “ x
(multiplicative identity) for all x P Q.

3. We also have that x ` p´xq “ 0. (additive inverses)

So Q is also a ring. In addition, for all a{b P Q,

a

b
¨
b

a
“ 1 (multiplicative inverses).

This makes Q a field (again, modern algebra).

Order on Q

Define ´
a
b “

´a
b (you can show

´a
b “

a
´b).

We define § on Q by the following: for a, b, c, d P N, we have

1.
a
b §

c
d whenever a ¨ d § b ¨ c;

2. ´
a
b §

c
d ; and

3. ´
a
b § ´

c
d whenever

c
d §

a
b .

Then, again,

(i) For all a, b P N, we have a § b or b § a.

(ii) If a § b and b § a, then a “ b.

(iii) If a § b and b § c, then a § c.

(iv) If a § b then a ` c § b ` c.

(v) If a § b and 0 § c, then ac § bc.

This makes Q into an ordered field.




