
Relations

A binary relation on a set A is a subset R Ď AˆA, where
elements pa, bq are written as a „ b.

Example: A “ Z and R “ ta „ b | a ă bu.
In words:

Let „ be the relation on Z given by a „ b if a ă b.
(Note that we use language like in definitions, where “if” actually
means “if and only if”.)

Example: A “ R and R “ ta „ b | a “ bu.
In words:

Let „ be the relation on R given by a „ b if a “ b.

Example: A “ Z and R “ ta „ b | a ” b pmod 3qu.
In words:

Let „ be the relation on Z given by a „ b if a ” b pmod 3q.
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More examples of (binary) relations:

1. For A a number system, let a „ b if a “ b.

R, S, T

2. For A a number system, let a „ b if a ă b.

not R, not S, T

3. For A “ R, let a „ b if ab “ 0.

not R, S, not T

4. For A a set of people, let a „ b if a is a (full) sibling of b.

not R, S, T

5. For A a set of people, let a „ b if a and b speak a common
language.

R, S, not T

A binary relation on a set A is. . .

(R) reflexive if a „ a for all a P A;

(S) symmetric if a „ b implies b „ a;

(T) transitive if a „ b and b „ c implies a „ c, i.e.

pa „ b^ b „ cq ñ a „ c

An equivalence relation on a set A is a binary relation that is
reflexive, symmetric, and transitive. (Only #1)
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Fix n P Zą0 and define the relation on Z given by

“a „ b if a ” b pmod nq.”

Is „ is an equivalence relation?

Check: we have a ” b pmod nq if and only if a´ b “ kn for some
k P Z.

reflexivity: a´ a “ 0 “ 0 ¨ n X

symmetry: If a´ b “ kn, then b´ a “ ´kn “ p´kqn. X

transitivity: If a´ b “ kn and b´ c “ `n, then

a´ c “ pa´ bq ` pb´ cq “ kn` `n “ pk ` `qn.X

Yes! This is an equivalence relation!



Fix n P Zą0 and define the relation on Z given by

“a „ b if a ” b pmod nq.”

Is „ is an equivalence relation?

Check: we have a ” b pmod nq if and only if a´ b “ kn for some
k P Z.

reflexivity: a´ a “ 0 “ 0 ¨ n X

symmetry: If a´ b “ kn, then b´ a “ ´kn “ p´kqn. X

transitivity: If a´ b “ kn and b´ c “ `n, then

a´ c “ pa´ bq ` pb´ cq “ kn` `n “ pk ` `qn.X

Yes! This is an equivalence relation!



Fix n P Zą0 and define the relation on Z given by

“a „ b if a ” b pmod nq.”

Is „ is an equivalence relation?

Check: we have a ” b pmod nq if and only if a´ b “ kn for some
k P Z.

reflexivity:

a´ a “ 0 “ 0 ¨ n X

symmetry: If a´ b “ kn, then b´ a “ ´kn “ p´kqn. X

transitivity: If a´ b “ kn and b´ c “ `n, then

a´ c “ pa´ bq ` pb´ cq “ kn` `n “ pk ` `qn.X

Yes! This is an equivalence relation!



Fix n P Zą0 and define the relation on Z given by

“a „ b if a ” b pmod nq.”

Is „ is an equivalence relation?

Check: we have a ” b pmod nq if and only if a´ b “ kn for some
k P Z.

reflexivity: a´ a “ 0 “ 0 ¨ n X

symmetry: If a´ b “ kn, then b´ a “ ´kn “ p´kqn. X

transitivity: If a´ b “ kn and b´ c “ `n, then

a´ c “ pa´ bq ` pb´ cq “ kn` `n “ pk ` `qn.X

Yes! This is an equivalence relation!



Fix n P Zą0 and define the relation on Z given by

“a „ b if a ” b pmod nq.”

Is „ is an equivalence relation?

Check: we have a ” b pmod nq if and only if a´ b “ kn for some
k P Z.

reflexivity: a´ a “ 0 “ 0 ¨ n X

symmetry:

If a´ b “ kn, then b´ a “ ´kn “ p´kqn. X

transitivity: If a´ b “ kn and b´ c “ `n, then

a´ c “ pa´ bq ` pb´ cq “ kn` `n “ pk ` `qn.X

Yes! This is an equivalence relation!



Fix n P Zą0 and define the relation on Z given by

“a „ b if a ” b pmod nq.”

Is „ is an equivalence relation?

Check: we have a ” b pmod nq if and only if a´ b “ kn for some
k P Z.

reflexivity: a´ a “ 0 “ 0 ¨ n X

symmetry: If a´ b “ kn

, then b´ a “ ´kn “ p´kqn. X

transitivity: If a´ b “ kn and b´ c “ `n, then

a´ c “ pa´ bq ` pb´ cq “ kn` `n “ pk ` `qn.X

Yes! This is an equivalence relation!



Fix n P Zą0 and define the relation on Z given by

“a „ b if a ” b pmod nq.”

Is „ is an equivalence relation?

Check: we have a ” b pmod nq if and only if a´ b “ kn for some
k P Z.

reflexivity: a´ a “ 0 “ 0 ¨ n X

symmetry: If a´ b “ kn, then b´ a “ ´kn “ p´kqn. X

transitivity: If a´ b “ kn and b´ c “ `n, then

a´ c “ pa´ bq ` pb´ cq “ kn` `n “ pk ` `qn.X

Yes! This is an equivalence relation!



Fix n P Zą0 and define the relation on Z given by

“a „ b if a ” b pmod nq.”

Is „ is an equivalence relation?

Check: we have a ” b pmod nq if and only if a´ b “ kn for some
k P Z.

reflexivity: a´ a “ 0 “ 0 ¨ n X

symmetry: If a´ b “ kn, then b´ a “ ´kn “ p´kqn. X

transitivity:

If a´ b “ kn and b´ c “ `n, then

a´ c “ pa´ bq ` pb´ cq “ kn` `n “ pk ` `qn.X

Yes! This is an equivalence relation!



Fix n P Zą0 and define the relation on Z given by

“a „ b if a ” b pmod nq.”

Is „ is an equivalence relation?

Check: we have a ” b pmod nq if and only if a´ b “ kn for some
k P Z.

reflexivity: a´ a “ 0 “ 0 ¨ n X

symmetry: If a´ b “ kn, then b´ a “ ´kn “ p´kqn. X

transitivity: If a´ b “ kn and b´ c “ `n

, then

a´ c “ pa´ bq ` pb´ cq “ kn` `n “ pk ` `qn.X

Yes! This is an equivalence relation!



Fix n P Zą0 and define the relation on Z given by

“a „ b if a ” b pmod nq.”

Is „ is an equivalence relation?

Check: we have a ” b pmod nq if and only if a´ b “ kn for some
k P Z.

reflexivity: a´ a “ 0 “ 0 ¨ n X

symmetry: If a´ b “ kn, then b´ a “ ´kn “ p´kqn. X

transitivity: If a´ b “ kn and b´ c “ `n, then

a´ c

“ pa´ bq ` pb´ cq “ kn` `n “ pk ` `qn.X

Yes! This is an equivalence relation!



Fix n P Zą0 and define the relation on Z given by

“a „ b if a ” b pmod nq.”

Is „ is an equivalence relation?

Check: we have a ” b pmod nq if and only if a´ b “ kn for some
k P Z.

reflexivity: a´ a “ 0 “ 0 ¨ n X

symmetry: If a´ b “ kn, then b´ a “ ´kn “ p´kqn. X

transitivity: If a´ b “ kn and b´ c “ `n, then

a´ c “ pa´ bq ` pb´ cq

“ kn` `n “ pk ` `qn.X

Yes! This is an equivalence relation!



Fix n P Zą0 and define the relation on Z given by

“a „ b if a ” b pmod nq.”

Is „ is an equivalence relation?

Check: we have a ” b pmod nq if and only if a´ b “ kn for some
k P Z.

reflexivity: a´ a “ 0 “ 0 ¨ n X

symmetry: If a´ b “ kn, then b´ a “ ´kn “ p´kqn. X

transitivity: If a´ b “ kn and b´ c “ `n, then

a´ c “ pa´ bq ` pb´ cq “ kn` `n

“ pk ` `qn.X

Yes! This is an equivalence relation!



Fix n P Zą0 and define the relation on Z given by

“a „ b if a ” b pmod nq.”

Is „ is an equivalence relation?

Check: we have a ” b pmod nq if and only if a´ b “ kn for some
k P Z.

reflexivity: a´ a “ 0 “ 0 ¨ n X

symmetry: If a´ b “ kn, then b´ a “ ´kn “ p´kqn. X

transitivity: If a´ b “ kn and b´ c “ `n, then

a´ c “ pa´ bq ` pb´ cq “ kn` `n “ pk ` `qn.X

Yes! This is an equivalence relation!



Fix n P Zą0 and define the relation on Z given by

“a „ b if a ” b pmod nq.”

Is „ is an equivalence relation?

Check: we have a ” b pmod nq if and only if a´ b “ kn for some
k P Z.

reflexivity: a´ a “ 0 “ 0 ¨ n X

symmetry: If a´ b “ kn, then b´ a “ ´kn “ p´kqn. X

transitivity: If a´ b “ kn and b´ c “ `n, then

a´ c “ pa´ bq ` pb´ cq “ kn` `n “ pk ` `qn.X

Yes! This is an equivalence relation!



Let A be a set. Consider the relation on PpAq by

S „ T if S Ď T

Is „ is an equivalence relation?

Check: This is reflexive and transitive, but not symmetric.
So no, it is not an equivalence relation.

Is
S „ T if S Ď T or S Ď T

an equivalence relation on PpAq?

Check: This is reflexive and symmetric, but not transitive.
So still no, it is not an equivalence relation.

Is
S „ T if |S| “ |T |

an equivalence relation on PpAq?

Read: Why reflexivity doesn’t follow from symmetry and
transitivity.
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Let „ be an equivalence relation on a set A, and let a P A. The
set of all elements b P A such that a „ b is called the equivalence
class of a, denoted by ras.

Example: Consider the equivalence relation on A “ ta, b, cu given
by

a „ a, b „ b, c „ c, a „ c, and c „ a.

Then

ras “ ta, cu “ rcs, and

rbs “ tbu

are the two equivalence classes in A (with respect to this relation).

(We say there are two, not three, since “the equivalence classes”
refers to the sets themselves, not to the elements that generate
them.)
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Let „ be an equivalence relation on a set A, and let a P A. The
set of all elements b P A such that a „ b is called the equivalence
class of a, denoted by ras.
Example: We showed that

“a „ b if a ” b pmod 5q”
is an equivalence relation on Z.

Then
r0s “ t5n | n P Zu “ 5Z r1s “ t5n` 1 | n P Zu “ 5Z` 1

r2s “ t5n` 2 | n P Zu “ 5Z` 2 r3s “ t5n` 3 | n P Zu “ 5Z` 3
r4s “ t5n` 4 | n P Zu “ 5Z` 4

r5s “ t5n` 5 | n P Zu “ t5m | m P Zu “ r0s “ r´5s “ r10s “ ¨ ¨ ¨
r6s “ t5n` 6 | n P Zu “ t5m` 1 | m P Zu “ r1s “ r´4s “ r11s “ ¨ ¨ ¨

...
In general, if x P rys, that means y „ x.
So x „ y. So y P rxs.
Claim: x P rys if and only if rxs “ rys.

We call any element a of a class C representative of C (since we
can write C “ ras for any a P C).
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Theorem. The equivalence classes of A partition A into subsets

,
meaning

1. the equivalence classes are subsets of A:
ras Ď A for all a P A;

2. any two equivalence classes are either equal or disjoint:
for all a, b P A, either ras “ rbs or ras X rbs “ H; and

3. the union of all the equivalence classes is all of A:
A “

ď

aPA

ras.

We say that A is the disjoint union of equivalency classes, written

A “
ğ

aPA

ras, LATEX: \bigsqcup, \sqcup

For example, in our last example, there are exactly 5 equivalence
classes: r0s, r1s, r2s, r3s, and r4s. Any other seemingly different
class is actually one of these (for example, r5s “ r0s). And

r0s Y r1s Y r2s Y r3s Y r4s “ Z.

So Z “ r0s \ r1s \ r2s \ r3s \ r4s .
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Ok, so what are numbers, anyway?
Recall from the homework, the Zermelo-Fraenkel axioms of set
theory, which tells us how to compare sets, put sets in other sets,
and to take unions, intersection, and power sets of sets. X

Set theoretic definition of the natural numbers. (Zě0)
Let 0 “ H.
Given n, define the successor to n as Spnq “ nY tnu.

(By “successor to n” we basically mean n` 1.)
Let N be the set of all sets generated by 0 and S.
For example,

1 “ 0Y t0u “ HY tHu “ tHu,

2 “

1Y t1u “ tHu Y ttHuu “ tH, tHuu,

3 “

2Y t2u “ tH, tHuu Y ttH, tHuuu

“ tH, tHu, tH, tHuuu,

and so on. (Note that we identified n with |n|.) Compute 4.
Think: Given n,m P N, are nYm and/or nXm elements of N? If
so, what elements are they?
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Set theoretic definition of the natural numbers. (Zě0)
Let 0 “ H.
Given n, define the successor to n as Spnq “ nY tnu. Let N be
the set of all sets generated by 0 and S.
For example,

1 “ tHu, 2 “ tH, tHuu, 3 “ tH, tHu, tH, tHuuu,

4 “ tH, tHu, tH, tHuu, tH, tHu, tH, tHuuuu,

and so on. (Note that we identified n with |n|.)

Addition: Define ` : Nˆ NÑ N by, for all a, b P N,

1. a` 0 “ a; and

2. a` Spbq “ Spa` bq.

For example,

a` 1 “ a` Sp0q “ Spa` 0q “ Spaq;

a` 2 “ a` Sp1q “ Spa` 1q “ SpSpaqq.

Check that a` 3 “ SpSpSpaqqq “ S3paq. Think: a` b “ Sbpaq.
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(These all follow from the definitions, but we’ll skip proofs for the sake of time.)



Peano axioms

The natural numbers N are defined by the following axioms.

1. We have 0 P N. (technically, 0 “ H)

2. There exists an a successor function S : NÑ N (namely, if
n P Z, then Spnq P N) satisfying

(i) 0 R SpNq;
(ii) S is injective (if Spnq “ Spmq, then n “ m); and
(iii) if X Ď N satisfies n0 P X and SpXq Ď X, we have X “ N.

Note:

(a) We have not assumed that 0 is the only element that is no
one’s successor (but it follows, in part from 1(iii)).

(b) By changing 0 out for something else (like 1), or changing
Spnq to something else (like n´ 1), we can generate other
sets that are basically the natural numbers all over again. This
is why we’re not fussy about whether N is Zě0 or Zą0.

(c) The last axiom (1(iii)) is the basis of proof by induction.
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1. We have 0 P N.

2. There exists an a successor function S : NÑ N (namely, if
n P Z, then Spnq P N) satisfying

(i) 0 R SpNq;
(ii) S is injective (if Spnq “ Spmq, then n “ m); and
(iii) if X Ď N satisfies n0 P X and SpXq Ď X, we have X “ N.

Order on N.
For a, b P N, we say a ď b if b “ SpSp¨ ¨ ¨Spaq ¨ ¨ ¨ qq.

Properties:

(i) For all a, b P N, we have a ď b or b ď a.

(ii) If a ď b and b ď a, then a “ b.

(iii) If a ď b and b ď c, then a ď c.

(iv) If a ď b then a` c ď b` c.

(v) If a ď b then ac ď bc.

(These all follow from the axioms, but we’ll skip proofs for the sake of time.)
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Integers
Now that we have N, we can define Z by formally letting

´N “ t´n | n P Nu, where ´ 0 “ 0;

and Z “ NY´N.

Extend S : ZÑ Z by defining Sp´aq for any ´a P ´N´ t0u as

Sp´aq “ ´b, where Spbq “ a.

We can define the predecessor function P : ZÑ Z by P pxq “ y
whenever Spyq “ x. Letting ´p´xq “ x, this says that

Spxq “ y if and only if P pyq “ x.

We can also extend our definitions of ` and ¨ to Z.
Properties:

1. Addition and multiplication still satisfy commutativity,
associativity, and distributivity.

2. We still have a` 0 “ a (additive identity) and a ¨ 1 “ a
(multiplicative identity) for all a P Z.

3. We also have that a` p´aq “ 0 (prove). (additive inverses)

We call any number system that has an addition and multiplication
that satisfy all these properties a ring (modern algebra).
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Now that we have N, we can define Z by formally letting

´N “ t´n | n P Nu, where ´ 0 “ 0;

and Z “ NY´N. Extend S : ZÑ Z by defining Sp´aq for any
´a P ´N´ t0u as

Sp´aq “ ´b, where Spbq “ a.

We can define the predecessor function P : ZÑ Z by P pxq “ y
whenever Spyq “ x. Letting ´p´xq “ x, this says that

Spxq “ y if and only if P pyq “ x.

We can also extend our definition of order to Z. The only
modification is:

(i) For all a, b P N, we have a ď b or b ď a.

(ii) If a ď b and b ď a, then a “ b.

(iii) If a ď b and b ď c, then a ď c.

(iv) If a ď b then a` c ď b` c.

(v) If a ď b and c P N, then ac ď bc.

These properties make Z an ordered ring.



Rational numbers

Let

Q “ Zˆ pZ´ t0uq,
and define an equivalence relation on Q by

pa, bq „ px ¨ a, x ¨ bq for all x P Z´ t0u.

Under this equivalence relation, write
a

b
“ rpa, bqs.

Then rational numbers are

Q “
!a

b

ˇ

ˇ

ˇ
a, b P Z, b ‰ 0

)

.

(Note that we get lazy, and write a
1 “ a.)

Define ` : QˆQÑ Q and ¨ : QˆQÑ Q by
a

b
`

c

d
“

a ¨ d` b ¨ c

b ¨ d
and

a

b
¨
c

d
“

a ¨ c

b ¨ d
.
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pa, bq „ px ¨ a, x ¨ bq for all x P Z´ t0u.
Under this equivalence relation, write a

b “ rpa, bqs (writing a
1 “ a). Then

rational numbers are

Q “
!a

b

ˇ

ˇ

ˇ
a, b P Z, b ‰ 0

)

.

Define ` : QˆQÑ Q and ¨ : QˆQÑ Q by
a

b
`

c

d
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and

a
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¨
c

d
“

a ¨ c

b ¨ d
.

Again. . .

1. Addition and multiplication still satisfy commutativity,
associativity, and distributivity.

2. We still have x` 0 “ x (additive identity) and x ¨ 1 “ x
(multiplicative identity) for all x P Q.

3. We also have that x` p´xq “ 0. (additive inverses)

So Q is also a ring.

In addition, for all a{b P Q,

a

b
¨
b

a
“ 1 (multiplicative inverses).

This makes Q a field (again, modern algebra).
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Order on Q

Define ´a
b “

´a
b (you can show ´a

b “
a
´b).

We define ď on Q by the following: for a, b, c, d P N, we have

1. a
b ď

c
d whenever a ¨ d ď b ¨ c;

2. ´a
b ď

c
d ; and

3. ´a
b ď ´

c
d whenever c

d ď
a
b .

Then, again,

(i) For all a, b P N, we have a ď b or b ď a.

(ii) If a ď b and b ď a, then a “ b.

(iii) If a ď b and b ď c, then a ď c.

(iv) If a ď b then a` c ď b` c.

(v) If a ď b and 0 ď c, then ac ď bc.

This makes Q into an ordered field.
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