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Check: we have a = b (mod n) if and only if a — b = kn for some
ke Z.
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symmetry: If a — b= kn, then b—a = —kn = (—k)n. v
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a—c=(a—-b)+(b—c)=kn+tn=(k+{ny

Yes! This is an equivalence relation!
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Let A be a set. Consider the relation on P(A) by
S~T if ScT
Is ~ is an equivalence relation?

Check: This is reflexive and transitive, but not symmetric.
So no, it is not an equivalence relation.

Is
S~T if ScTorScT
an equivalence relation on P(A)?

Check: This is reflexive and symmetric, but not transitive.
So still no, it is not an equivalence relation.

Is
S~T if |S| = |T|
an equivalence relation on P(A)?

Read: Why reflexivity doesn't follow from symmetry and
transitivity.
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Let ~ be an equivalence relation on a set A, and let a € A. The
set of all elements b € A such that a ~ b is called the equivalence
class of a, denoted by [a].

Example: Consider the equivalence relation on A = {a,b, ¢} given
by
a~a, b~b c~c, a~c, and c~a.
Then
[a] ={a,c} =[c], and
[b] = {b}
are the two equivalence classes in A (with respect to this relation).

(We say there are two, not three, since “the equivalence classes”
refers to the sets themselves, not to the elements that generate
them.)
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class of a, denoted by [a].
Example: We showed that
“a~b ifa=b (mod?5)"
is an equivalence relation on Z. Then
[0] = {5n | neZ} =5Z [1]={fn+1|neZ}=5Z+1
2] ={fn+2|neZ}=5Z+2 3] ={fn+3|neZ}=5Z+3
[4] ={Pn+4 | neZ}=5Z+4
[65] ={fn+5|neZ}={bm|meZ} =[0] =[-5]=[10] =---
[6]={pn+6|neZ}={m+1]|meZ}=][1]



Let ~ be an equivalence relation on a set A, and let a € A. The

set of all elements b € A such that a ~ b is called the equivalence

class of a, denoted by [a].

Example: We showed that

“a~b ifa=b (mod?5)"
is an equivalence relation on Z. Then
[0] = {5n | neZ} =5Z [1]={fn+1|neZ}=5Z+1
2] ={fn+2|neZ}=5Z+2 3] ={fn+3|neZ}=5Z+3
[4] ={Pn+4 | neZ}=5Z+4

[65] ={fn+5|neZ}={bm|meZ} =[0] =[-5]=[10] =---

[6] ={n+6|neZ}={bm+1]|meZ}=][1]=[-4]



Let ~ be an equivalence relation on a set A, and let a € A. The

set of all elements b € A such that a ~ b is called the equivalence

class of a, denoted by [a].

Example: We showed that

“a~b ifa=b (mod?5)"
is an equivalence relation on Z. Then
[0] = {5n | neZ} =5Z [1]={fn+1|neZ}=5Z+1
2] ={fn+2|neZ}=5Z+2 3] ={fn+3|neZ}=5Z+3
[4] ={Pn+4 | neZ}=5Z+4

[5] = {5n+5|neZ}={5m|meZ}=[0] =[-5] = [10] = --

[6] ={n+6|neZ}={m+1|meZ}=][1]=[-4]=][11] =



Let ~ be an equivalence relation on a set A, and let a € A. The

set of all elements b € A such that a ~ b is called the equivalence

class of a, denoted by [a].

Example: We showed that

“a~b ifa=b (mod?5)"
is an equivalence relation on Z. Then
[0] = {5n | neZ} =5Z [1]={fn+1|neZ}=5Z+1
2] ={fn+2|neZ}=5Z+2 3] ={fn+3|neZ}=5Z+3
[4] ={Pn+4 | neZ}=5Z+4

[5] = {5n+5|neZ}={5m|meZ}=[0] =[-5] = [10] = --

[6] ={n+6|neZ}={m+1|meZ}=][1]=[-4]=][11] =

In general, if z € [y], that means y ~ x.



Let ~ be an equivalence relation on a set A, and let a € A. The

set of all elements b € A such that a ~ b is called the equivalence

class of a, denoted by [a].

Example: We showed that

“a~b ifa=b (mod?5)"
is an equivalence relation on Z. Then
[0] = {5n | neZ} =5Z [1]={fn+1|neZ}=5Z+1
2] ={fn+2|neZ}=5Z+2 3] ={fn+3|neZ}=5Z+3
[4] ={Pn+4 | neZ}=5Z+4

[5] = {5n+5|neZ}={5m|meZ}=[0] =[-5] = [10] = --

[6] ={n+6|neZ}={m+1|meZ}=][1]=[-4]=][11] =

In general, if z € [y], that means y ~ x.
Sox ~y.



Let ~ be an equivalence relation on a set A, and let a € A. The

set of all elements b € A such that a ~ b is called the equivalence

class of a, denoted by [a].

Example: We showed that

“a~b ifa=b (mod?5)"
is an equivalence relation on Z. Then
[0] = {5n | neZ} =5Z [1]={fn+1|neZ}=5Z+1
2] ={fn+2|neZ}=5Z+2 3] ={fn+3|neZ}=5Z+3
[4] ={Pn+4 | neZ}=5Z+4

[5] = {5n+5|neZ}={5m|meZ}=[0] =[-5] = [10] = --

[6] ={n+6|neZ}={m+1|meZ}=][1]=[-4]=][11] =

In general, if z € [y], that means y ~ x.
Sox ~y. Soy e [z].



Let ~ be an equivalence relation on a set A, and let a € A. The

set of all elements b € A such that a ~ b is called the equivalence

class of a, denoted by [a].

Example: We showed that

“a~b ifa=b (mod?5)"
is an equivalence relation on Z. Then
[0] = {5n | neZ} =5Z [1]={fn+1|neZ}=5Z+1
2] ={fn+2|neZ}=5Z+2 3] ={fn+3|neZ}=5Z+3
[4] ={bn+4 |neZ}=52Z+4

[5] = {5n +5 [ neZ} = {5m | m e Z} = [0] = [-5] = [10] = -

[6] ={n+6|neZ}={m+1|meZ}=][1]=[-4]=][11] =

In general, if z € [y], that means y ~ x.
Sox ~y. Soy e [z].
Claim: x € [y] if and only if [z] = [y].




Let ~ be an equivalence relation on a set A, and let a € A. The

set of all elements b € A such that a ~ b is called the equivalence

class of a, denoted by [a].

Example: We showed that

“a~b ifa=b (mod?5)"
is an equivalence relation on Z. Then
[0] = {5n | neZ} =5Z [1]={fn+1|neZ}=5Z+1
2] ={fn+2|neZ}=5Z+2 3] ={fn+3|neZ}=5Z+3
[4] ={bn+4 |neZ}=52Z+4

[5] = {5n +5 [ neZ} = {5m | m e Z} = [0] = [-5] = [10] = -

[6] ={n+6|neZ}={m+1|meZ}=][1]=[-4]=][11] =

In general, if z € [y], that means y ~ x.
Sox ~y. Soy e [z].
Claim: x € [y] if and only if [z] = [y].

We call any element a of a class C representative of C' (since we
can write C' = [a] for any a € C).
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Theorem. The equivalence classes of A partition A into subsets,
meaning
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[a] < A for all a € A;

2. any two equivalence classes are either equal or disjoint:
for all a,b € A, either [a] = [b] or [a] N [b] = &; and
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For example, in our last example, there are exactly 5 equivalence
classes: [0], [1], [2], [3], and [4].
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meaning
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We say that A is the disjoint union of equivalency classes, written
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For example, in our last example, there are exactly 5 equivalence
classes: [0], [1], [2], [3], and [4]. Any other seemingly different
class is actually one of these (for example, [5] = [0]).



Theorem. The equivalence classes of A partition A into subsets,
meaning

1. the equivalence classes are subsets of A:
[a] < A for all a € A;

2. any two equivalence classes are either equal or disjoint:
for all a,b € A, either [a] = [b] or [a] N [b] = &; and
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class is actually one of these (for example, [5] = [0]). And
[0] v [1] w2l v[3]v[4] = Z.



Theorem. The equivalence classes of A partition A into subsets,
meaning

1. the equivalence classes are subsets of A:
[a] < A for all a € A;

2. any two equivalence classes are either equal or disjoint:
for all a,b € A, either [a] = [b] or [a] N [b] = &; and
3. the union of all the equivalence classes is all of A:
A=l
acA
We say that A is the disjoint union of equivalency classes, written
A= |_|[a], IATEX: \bigsqcup, \sqcup
aceA
For example, in our last example, there are exactly 5 equivalence
classes: [0], [1], [2], [3], and [4]. Any other seemingly different
class is actually one of these (for example, [5] = [0]). And
[0] v [1] w2l v[3]v[4] = Z.

So|Z =[0] u [1]u[2] U [3] L [4]]
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and to take unions, intersection, and power sets of sets. v’
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Let 0 = 5.
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(By “successor to n" we basically mean n + 1.)



Ok, so what are numbers, anyway?
Recall from the homework, the Zermelo-Fraenkel axioms of set
theory, which tells us how to compare sets, put sets in other sets,
and to take unions, intersection, and power sets of sets. v’

Set theoretic definition of the natural numbers. (Zx)
Let 0 = 5.
Given n, define the successor to n as S(n) = n u {n}.
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Let N be the set of all sets generated by 0 and S.
For example,

1=0u{0} =g u{g}={T},
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3 =



Ok, so what are numbers, anyway?
Recall from the homework, the Zermelo-Fraenkel axioms of set
theory, which tells us how to compare sets, put sets in other sets,
and to take unions, intersection, and power sets of sets. v’

Set theoretic definition of the natural numbers. (Zx)
Let 0 = 5.
Given n, define the successor to n as S(n) = n u {n}.
(By “successor to n" we basically mean n + 1.)
Let N be the set of all sets generated by 0 and S.
For example,

1=0u{0} = u{d}={T},

2=10v{l} ={g}v {{d}} = {,{T}},
3 =



Ok, so what are numbers, anyway?

Recall from the homework, the Zermelo-Fraenkel axioms of set
theory, which tells us how to compare sets, put sets in other sets,
and to take unions, intersection, and power sets of sets. v’

Set theoretic definition of the natural numbers. (Zx)
Let 0 = 5.
Given n, define the successor to n as S(n) = n u {n}.
(By “successor to n" we basically mean n + 1.)
Let N be the set of all sets generated by 0 and S.
For example,

1=00u{0} = u{g}={T},
2=1u{l} ={g} v {{z}} = {F,{T}},
3=20{2} ={z.{0}} v {T.{T}}}

= {2, {2}, {2, {T}}},

and so on. (Note that we identified n with |n|.) Compute 4.



Ok, so what are numbers, anyway?
Recall from the homework, the Zermelo-Fraenkel axioms of set
theory, which tells us how to compare sets, put sets in other sets,
and to take unions, intersection, and power sets of sets. v’

Set theoretic definition of the natural numbers. (Zx)
Let 0 = 5.
Given n, define the successor to n as S(n) = n u {n}.
(By “successor to n" we basically mean n + 1.)
Let N be the set of all sets generated by 0 and S.
For example,

1=00u{0} = u{g}={T},
2=1u{l} ={g} v {{z}} = {F,{T}},
3=20{2} ={z.{0}} v {T.{T}}}

= {2, {2}, {2, {T}}},

and so on. (Note that we identified n with |n|.) Compute 4.
Think: Given n,m € N, are n. U m and/or n n'm elements of N? If
so, what elements are they?



Set theoretic definition of the natural numbers. (Z)

Let 0 = 7.

Given n, define the successor to n as S(n) =n u {n}. Let N be
the set of all sets generated by 0 and S.

For example,

1={g}, 2={a,{z}}, 3={DAT}{TA{T}}},
4 = {B A ADADHAD AT AT AT},

and so on. (Note that we identified n with |n|.)

Addition: Define + : N x N — N by, for all a,b e N,

1. a+0=aq; and
2. a+ S(b) = S(a+Db).



Set theoretic definition of the natural numbers. (Z)

Let 0 = 7.

Given n, define the successor to n as S(n) =n u {n}. Let N be
the set of all sets generated by 0 and S.

For example,

1={az}, 2={z,{z}}, 3={DAT}{T,{T}}},
4 =A{B AT D AT AD AT AT,

and so on. (Note that we identified n with |n|.)

Addition: Define + : N x N — N by, for all a,b e N,
1. a+0=aq; and
2. a+ S(b) = S(a+Db).
For example,
a+1



Set theoretic definition of the natural numbers. (Z)

Let 0 = 7.

Given n, define the successor to n as S(n) =n u {n}. Let N be
the set of all sets generated by 0 and S.

For example,

1={az}, 2={z,{z}}, 3={DAT}{T,{T}}},
4 =A{B AT D AT AD AT AT,

and so on. (Note that we identified n with |n|.)

Addition: Define + : N x N — N by, for all a,b e N,
1. a+0=aq; and
2. a+ S(b) = S(a+Db).
For example,
a+1=a+5(0)



Set theoretic definition of the natural numbers. (Z)

Let 0 = 7.

Given n, define the successor to n as S(n) =n u {n}. Let N be
the set of all sets generated by 0 and S.

For example,

1={az}, 2={z,{z}}, 3={DAT}{T,{T}}},
4 =A{B AT D AT AD AT AT,

and so on. (Note that we identified n with |n|.)

Addition: Define + : N x N — N by, for all a,b e N,
1. a+0=aq; and
2. a+ S(b) = S(a+Db).
For example,
a+1=a+5(0)=S(a+0)



Set theoretic definition of the natural numbers. (Z)

Let 0 = 7.

Given n, define the successor to n as S(n) =n u {n}. Let N be
the set of all sets generated by 0 and S.

For example,

1={az}, 2={z,{z}}, 3={DAT}{T,{T}}},
4 =A{B AT D AT AD AT AT,

and so on. (Note that we identified n with |n|.)

Addition: Define + : N x N — N by, for all a,b e N,
1. a+0=aq; and
2. a+ S(b) = S(a+Db).
For example,
a+1=a+S5(0)=S(a+0)=S(a);



Set theoretic definition of the natural numbers. (Z)

Let 0 = 7.

Given n, define the successor to n as S(n) =n u {n}. Let N be
the set of all sets generated by 0 and S.

For example,

1={az}, 2={z,{z}}, 3={DAT}{T,{T}}},
4 =A{B AT D AT AD AT AT,

and so on. (Note that we identified n with |n|.)

Addition: Define + : N x N — N by, for all a,b e N,
1. a+0=aq; and
2. a+ S(b) = S(a+Db).
For example,
a+1=a+S5(0)=S(a+0)=S(a);
a+ 2



Set theoretic definition of the natural numbers. (Z)

Let 0 = 7.

Given n, define the successor to n as S(n) =n u {n}. Let N be
the set of all sets generated by 0 and S.

For example,

1={az}, 2={z,{z}}, 3={DAT}{T,{T}}},
4 =A{B AT D AT AD AT AT,

and so on. (Note that we identified n with |n|.)

Addition: Define + : N x N — N by, for all a,b e N,
1. a+0=aq; and
2. a+ S(b) = S(a+Db).
For example,
a+1=a+S5(0)=S(a+0)=S(a);
a+2=a+S5(1)



Set theoretic definition of the natural numbers. (Z)

Let 0 = 7.

Given n, define the successor to n as S(n) =n u {n}. Let N be
the set of all sets generated by 0 and S.

For example,

1={az}, 2={z,{z}}, 3={DAT}{T,{T}}},
4 =A{B AT D AT AD AT AT,

and so on. (Note that we identified n with |n|.)

Addition: Define + : N x N — N by, for all a,b e N,
1. a+0=aq; and
2. a+ S(b) = S(a+Db).
For example,
a+1=a+S5(0)=S(a+0)=S(a);
a+2=a+S5(1)=S(a+1)



Set theoretic definition of the natural numbers. (Z)

Let 0 = 7.

Given n, define the successor to n as S(n) =n u {n}. Let N be
the set of all sets generated by 0 and S.

For example,

1=A{@}, 2={a.{o}}, 3={0A{}{D,{T}}},
4 ={d A} {D A1, {3}, {T.{T}}}},
and so on. (Note that we identified n with |n|.)
Addition: Define + : N x N — N by, for all a,b e N,
1. a+0=aq; and
2. a+ S(b) = S(a+Db).
For example,

a+1=a+S5(0)=S(a+0)=S(a);
a+2=a+S5(1)=S(a+1)=5(5(a))
Check that a + 3 = S(S(S(a))) = S3(a).



Set theoretic definition of the natural numbers. (Z)

Let 0 = 7.

Given n, define the successor to n as S(n) =n u {n}. Let N be
the set of all sets generated by 0 and S.

For example,

1={az}, 2={z,{z}}, 3={DAT}{T,{T}}},
4 =A{B AT D AT AD AT AT,

and so on. (Note that we identified n with |n|.)

Addition: Define + : N x N — N by, for all a,b e N,
1. a+0=aq; and
2. a+ S(b) = S(a+Db).
For example,
a+1=a+S5(0)=S(a+0)=S(a);
a+2=a+S5(1) =S(a+1) =5(5(a)).
Check that a + 3 = S(S(S(a))) = S3(a).  Think: a + b= S%(a).



Given n, define the successor to n as S(n) = n u {n}. Let N be
the set of all sets generated by 0 and S.
For example,

1={a}, 2={z.{g}}, 3={T{T}{T{T}}},
4 =AW D AT AT AT AT}

and so on. (Note that we identified n with |n|.)

Addition: Define + : N x N — N by, for all a,b e N,
1. a+0=a; and 2. a+ S(b)=S(a+b).
Think: a +b = Sb(a) = S**(0).
Multiplication: Define - : N x N — N by, for all a,b e N,
1. n-0=0; and 2. a-S(b)=(a-b)+a.



Given n, define the successor to n as S(n) = n u {n}. Let N be
the set of all sets generated by 0 and S.
For example,

1={a}, 2={z.{g}}, 3={T{T}{T{T}}},
4 =AW D AT AT AT AT}

and so on. (Note that we identified n with |n|.)

Addition: Define + : N x N — N by, for all a,b e N,
1. a+0=a; and 2. a+ S(b)=S(a+b).
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For example,
a-1



Given n, define the successor to n as S(n) = n u {n}. Let N be
the set of all sets generated by 0 and S.
For example,

1={a}, 2={z.{g}}, 3={T{T}{T{T}}},
4 =AW D AT AT AT AT}

and so on. (Note that we identified n with |n|.)

Addition: Define + : N x N — N by, for all a,b e N,
1. a+0=a; and 2. a+ S(b)=S(a+b).
Think: a + b = S%(a) = S*+4(0).
Multiplication: Define - : N x N — N by, for all a,b e N,

1. n-0=0; and 2. a-S(b)=(a-b)+a.
For example,

a-1=a-5(0)



Given n, define the successor to n as S(n) = n u {n}. Let N be
the set of all sets generated by 0 and S.
For example,

1={a}, 2={z.{g}}, 3={T{T}{T{T}}},
4 =AW D AT AT AT AT}

and so on. (Note that we identified n with |n|.)

Addition: Define + : N x N — N by, for all a,b e N,
1. a+0=a; and 2. a+ S(b)=S(a+b).
Think: a + b = S%(a) = S*+4(0).
Multiplication: Define - : N x N — N by, for all a,b e N,

1. n-0=0; and 2. a-S(b)=(a-b)+a.
For example,

a-1=a-50)=a-0+a



Given n, define the successor to n as S(n) = n u {n}. Let N be
the set of all sets generated by 0 and S.
For example,

1={a}, 2={z.{g}}, 3={T{T}{T{T}}},
4 =AW D AT AT AT AT}

and so on. (Note that we identified n with |n|.)

Addition: Define + : N x N — N by, for all a,b e N,
1. a+0=a; and 2. a+ S(b)=S(a+b).
Think: a + b = S%(a) = S*+4(0).
Multiplication: Define - : N x N — N by, for all a,b e N,

1. n-0=0; and 2. a-S(b)=(a-b)+a.
For example,

a-1=a-50)=a-0+a=0+a



Given n, define the successor to n as S(n) = n u {n}. Let N be
the set of all sets generated by 0 and S.
For example,

1={a}, 2={z.{g}}, 3={T{T}{T{T}}},
4 =AW D AT AT AT AT}

and so on. (Note that we identified n with |n|.)

Addition: Define + : N x N — N by, for all a,b e N,
1. a+0=a; and 2. a+ S(b)=S(a+b).
Think: a + b = S%(a) = S*+4(0).
Multiplication: Define - : N x N — N by, for all a,b e N,

1. n-0=0; and 2. a-S(b)=(a-b)+a.
For example,

a-1=a-50)=a-0+a=0+a=a;



Given n, define the successor to n as S(n) = n u {n}. Let N be
the set of all sets generated by 0 and S.
For example,

1={a}, 2={z.{g}}, 3={T{T}{T{T}}},
4 =AW D AT AT AT AT}

and so on. (Note that we identified n with |n|.)

Addition: Define + : N x N — N by, for all a,b e N,

1. a+0=a; and 2. a+ S(b)=S(a+b).

Think: a + b = S°(a) = S*+4(0).

Multiplication: Define - : N x N — N by, for all a,b e N,

1. n-0=0; and 2. a-S(b)=(a-b)+a.
For example,

a-1=a-50)=a-0+a=0+a=a;
a-2



Given n, define the successor to n as S(n) = n u {n}. Let N be
the set of all sets generated by 0 and S.
For example,

1={a}, 2={z.{g}}, 3={T{T}{T{T}}},
4 =AW D AT AT AT AT}

and so on. (Note that we identified n with |n|.)

Addition: Define + : N x N — N by, for all a,b e N,

1. a+0=a; and 2. a+ S(b)=S(a+b).

Think: a +b = Sb(a) = S**(0).

Multiplication: Define - : N x N — N by, for all a,b e N,

1. n-0=0; and 2. a-S(b)=(a-b)+a.
For example,

a-1=a-50)=a-0+a=0+a=a;
a-2=a-5(1)



Given n, define the successor to n as S(n) = n u {n}. Let N be
the set of all sets generated by 0 and S.
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Think: a +b = Sb(a) = S**(0).
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Given n, define the successor to n as S(n) = n u {n}. Let N be
the set of all sets generated by 0 and S.
For example,

1={a}, 2={z.{g}}, 3={T{T}{T{T}}},
4 =AW D AT AT AT AT}

and so on. (Note that we identified n with |n|.)

Addition: Define + : N x N — N by, for all a,b e N,
1. a+0=a; and 2. a+ S(b)=S(a+b).
Think: a + b = S°(a) = S*+4(0).
Multiplication: Define - : N x N — N by, for all a,b e N,
1. n-0=0; and 2. a-S(b)=(a-b)+a.
For example,
a-1=a-50)=a-0+a=0+a=a;
a-2=a-S(1)=a-1+a=a+a.
Check that a +3 =a + a + a.



Given n, define the successor to n as S(n) = n u {n}. Let N be
the set of all sets generated by 0 and S.
For example,

1={a}, 2={z.{g}}, 3={T{T}{T{T}}},
4 =AW D AT AT AT AT}

and so on. (Note that we identified n with |n|.)

Addition: Define + : N x N — N by, for all a,b e N,
1. a+0=a; and 2. a+ S(b)=S(a+b).
Think: a +b = Sb(a) = S**(0).
Multiplication: Define - : N x N — N by, for all a,b e N,
1. n-0=0; and 2. a-S(b)=(a-b)+a.
For example,
a-1=a-50)=a-0+a=0+a=a;
a-2=a-S(1)=a-1+a=a+a.
Check that a + 3 =a + a + a. Think: a-b = S%(0).



Addition: Define + : N x N — N by, for all a,b € N,

1. a+0=a; and 2. a+ S(b)=S(a+b).
Think: a + b = S%(a) = S47°(0).

Multiplication: Define - : N x N — N by, for all a,b e N,
1. n-0=0; and 2. a-S(b)=(a-b)+a.
Think: a-b= 5%(0).

Properties:
1. Addition is commutative, i.e. a + b = b+ a for all a,b € N.

2. Addition is associative, i.e. a + (b + ¢) = (a + b) + ¢ for all
a,b,ce N.

3. Multiplication is commutative, i.e. a-b=b-a for all a,b e N.

4. Multiplication is associative, i.e. a- (b-c¢) = (a-b) - ¢ for all
a,b,ce N.

5. Multiplication is distributive across addition, i.e.
a-(b+c)=(a-b)+ (a-c)forall a,b,ceN.

(These all follow from the definitions, but we'll skip proofs for the sake of time.)



Peano axioms

The natural numbers N are defined by the following axioms.

1. We have 0 € N. (technically, 0 = &)
2. There exists an a successor function S : N — N (namely, if
n € Z, then S(n) € N) satisfying
(i) 0¢S(N);
(ii) S is injective (if S(n) = S(m), then n = m); and
(iii) if X < N satisfies ng € X and S(X) € X, we have X = N.
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Note:

(a) We have not assumed that 0 is the only element that is no
one's successor (but it follows, in part from 1(iii)).



Peano axioms

The natural numbers N are defined by the following axioms.
1. We have 0 € N. (technically, 0 = &¥)
2. There exists an a successor function S : N — N (namely, if
n € Z, then S(n) € N) satisfying
(i) 0¢ S(N);
(ii) S is injective (if S(n) = S(m), then n = m); and
(iii) if X < N satisfies ng € X and S(X) € X, we have X = N.

Note:

(a) We have not assumed that 0 is the only element that is no
one's successor (but it follows, in part from 1(iii)).

(b) By changing 0 out for something else (like 1), or changing
S(n) to something else (like n — 1), we can generate other
sets that are basically the natural numbers all over again. This
is why we're not fussy about whether N is Z~¢ or Z~g.



Peano axioms

The natural numbers N are defined by the following axioms.
1. We have 0 € N. (technically, 0 = &)

2. There exists an a successor function S : N — N (namely, if
n € Z, then S(n) € N) satisfying
(i) 0¢ S(N);
(ii) S is injective (if S(n) = S(m), then n = m); and
(iii) if X < N satisfies ng € X and S(X) € X, we have X = N.

Note:

(a) We have not assumed that 0 is the only element that is no
one's successor (but it follows, in part from 1(iii)).

(b) By changing 0 out for something else (like 1), or changing
S(n) to something else (like n — 1), we can generate other
sets that are basically the natural numbers all over again. This
is why we're not fussy about whether N is Z~¢ or Z~g.

(c) The last axiom (1(iii)) is the basis of proof by induction.



The natural numbers N are defined by the following axioms.
1. We have 0 € N.
2. There exists an a successor function S : N — N (namely, if
n € Z, then S(n) € N) satisfying
(i) 0¢ S(N);
(i) S is injective (if S(n) = S(m), then n = m); and
(i) if X < N satisfies ng € X and S(X) € X, we have X = N.

Order on N,
Fora,be N, wesay a <bif b= S(S(---S(a)---)).



The natural numbers N are defined by the following axioms.
1. We have 0 € N.

2. There exists an a successor function S : N — N (namely, if
n € Z, then S(n) € N) satisfying

(i) 0¢ S(N);
(ii) S is injective (if S(n) = S(m), then n = m); and
(i) if X < N satisfies ng € X and S(X) € X, we have X = N.

Order on N.
Fora,be N, wesaya <bif b=S5(S(---S(a)---)).
Properties:
(i) For all a,be N, we have a < bor b <
(i) If a <band b < a, then a = b.
(iii) f a<band b < ¢, then a < c.
(iv) Ifa<bthena+c<b+ec
(v) If a < b then ac < be.

(These all follow from the axioms, but we'll skip proofs for the sake of time.)



Integers
Now that we have N, we can define Z by formally letting
—N={-n|neN}, where —0=0;
and Z =Nu —N.
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whenever S(y) = z. Letting —(—z) = x, this says that
S(x)=y ifandonlyif P(y)==x.
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Now that we have N, we can define Z by formally letting
—N={-n|neN}, where —0=0;
and Z =Nu —N.
Extend S : Z — Z by defining S(—a) for any —a € —N — {0} as
S(—a) = —b, where S(b) = a.
We can define the predecessor function P :Z — Z by P(z) =y
whenever S(y) = z. Letting —(—z) = x, this says that
S(x)=y ifandonlyif P(y)==x.
We can also extend our definitions of + and - to Z.
Properties:
1. Addition and multiplication still satisfy commutativity,
associativity, and distributivity.
2. We still have a + 0 = a (additive identity) and a- 1 = a
(multiplicative identity) for all a € Z.
3. We also have that a + (—a) = 0 (prove). (additive inverses)



Integers
Now that we have N, we can define Z by formally letting
—N={-n|neN}, where —0=0;
and Z = Nu —N.
Extend S : Z — Z by defining S(—a) for any —a € —N — {0} as
S(—a) = —b, where S(b) = a.
We can define the predecessor function P :Z — Z by P(z) =y
whenever S(y) = z. Letting —(—z) = x, this says that
S(x) =y ifandonlyif P(y)==x.
We can also extend our definitions of 4+ and - to Z.
Properties:
1. Addition and multiplication still satisfy commutativity,
associativity, and distributivity.
2. We still have a + 0 = a (additive identity) and a- 1 = a
(multiplicative identity) for all a € Z.
3. We also have that a + (—a) = 0 (prove). (additive inverses)
We call any number system that has an addition and multiplication
that satisfy all these properties a ring (modern algebra).



Integers
Now that we have N, we can define Z by formally letting
—N={-n|neN}, where —0=0;
and Z =N u —N. Extend S : Z — Z by defining S(—a) for any
—a € —N—{0} as
S(—a) = —b, where S(b) = a.
We can define the predecessor function P :Z — Z by P(z) =y
whenever S(y) = z. Letting —(—x) = x, this says that
S(x) =y ifandonlyif P(y)==x.
We can also extend our definition of order to Z. The only
modification is:

(i) Forall a,be N, we have a < bor b < a.
(i) fa<band b <

(iii) If a <band b < ¢, then a < c.
(iv) fa<bthena+c<b+ec.
(v) fa<

These properties make Z an ordered ring.

a, then a = b.

b and c e N, then ac < be.



Rational numbers

Let
Q =7 x (Z—{0}),

and define an equivalence relation on @) by
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Rational numbers

Let
Q=7 x (Z—{0}),
and define an equivalence relation on @) by
(a,b) ~ (z-a,z-b) forall xzeZ—{0}.

Under this equivalence relation, write
a

)]

Then rational numbers are
a
@:{g‘mbeab¢o}
(Note that we get lazy, and write § = a.)
Define +:QxQ —>Qand - : Q xQ — Q by
a ¢ a-d+b-c

L AL
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Let Q@ = Z x (Z — {0}) and define an equivalence relation on @ by
(a,b) ~ (x-a,x-b) forall xeZ—{0}.
Under this equivalence relation, write ¢ = [(a,b)] (writing § = a). Then
rational numbers are
a
Q= {5 ‘ a,beZ,b;éO}.

Define +:QxQ —>Qand - : Q xQ — Q by

g_}_g_a-d%—b-c and
b d b-d

Again. ..
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1. Addition and multiplication still satisfy commutativity,
associativity, and distributivity.

2. We still have z + 0 = x (additive identity) and - 1 =z
(multiplicative identity) for all x € Q.

3. We also have that z + (—z) = 0. (additive inverses)

So Q is also a ring.



Let Q@ = Z x (Z — {0}) and define an equivalence relation on @ by
(a,b) ~ (x-a,x-b) forall xeZ—{0}.
Under this equivalence relation, write ¢ = [(a,b)] (writing § = a). Then
rational numbers are
a
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1. Addition and multiplication still satisfy commutativity,
associativity, and distributivity.

2. We still have z + 0 = x (additive identity) and - 1 =z
(multiplicative identity) for all x € Q.
3. We also have that z + (—z) = 0. (additive inverses)
So Q is also a ring. In addition, for all a/b € Q,
a b
a
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Let Q@ = Z x (Z — {0}) and define an equivalence relation on @ by
(a,b) ~ (x-a,x-b) forall xeZ—{0}.
Under this equivalence relation, write ¢ = [(a,b)] (writing § = a). Then
rational numbers are
a
Q= {5 ‘ a,beZ,b;éO}.

Define +:QxQ —>Qand - : Q xQ — Q by

g_}_g_a-d%—b-c and
b d b-d

Again. ..
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1. Addition and multiplication still satisfy commutativity,
associativity, and distributivity.

2. We still have z + 0 = x (additive identity) and - 1 =z
(multiplicative identity) for all x € Q.

3. We also have that z + (—z) = 0. (additive inverses)

So Q is also a ring. In addition, for all a/b € Q,

b
% -— =1 (multiplicative inverses).
a
This makes Q a field (again, modern algebra).



Order on Q

Define —% = 3% (you can show 3% = %)



Order on Q

a _ —a e - a
Define —% = 3% (you can show 3% = %)

We define < on Q by the following: for a,b,c,d € N, we have

1. %é%whenevera-dgb-c;

~
< —4 whenever £ < 7.
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Q



Order on Q

Define —% = 3% (you can show 3% = %)
We define < on Q by the following: for a,b,c,d € N, we have

1. % < % whenever a-d < b-c;
a C.
2. =3 <3
a a
3. —-3<—3 ¢ whenever £ IS 1

and

Then, again,
(i) Forall a,be N, we have a <borb <
(i) If a <band b < a, then a = b.
(i) f a<band b< ¢ thena <c.
(iv) fa<bthena+c<b+ec.
(v) If a < band 0 < ¢, then ac < be.
This makes Q into an ordered field.






