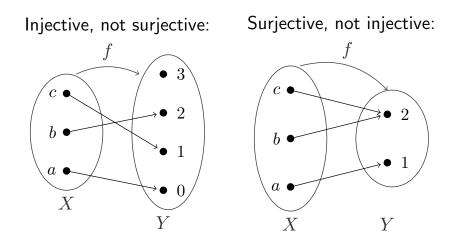
Functions

Let $f: X \to Y$ be a function. Recall, the image of f is $f(X) = \{y \in Y \mid f(x) = y \text{ for some } x \in X\}.$ Further, f is... • injective if at most one $x \in X$ maps to each $y \in Y$, i.e. if $f(x_1) = f(x_2)$ then $x_1 = x_2$. Ex. $f: \mathbb{R}_{>0} \to \mathbb{R}$ defined by $x \mapsto x^2$. Non-ex. $f: \mathbb{R} \to \mathbb{R}$ defined by $x \mapsto x^2$. • surjective if every $y \in Y$ gets mapped to, i.e. for all $y \in Y$, there exists $x \in X$ such that f(x) = y. Ex. $f: \mathbb{R} \to \mathbb{R}_{\ge 0}$ defined by $x \mapsto x^2$. Non-ex. $f: \mathbb{R} \to \mathbb{R}$ defined by $x \mapsto x^2$. • bijective if it's both injective and surjective.

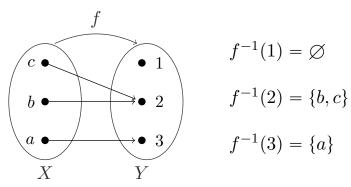
Ex. $f : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ defined by $x \mapsto x^2$. Non-ex. $f : \mathbb{R} \to \mathbb{R}$ defined by $x \mapsto x^2$.



To show $f: X \to Y$ is injective: Start: Suppose $f(x_1) = f(x_2)...$ Goal: Show $x_1 = x_2$.

To show $f: X \to Y$ is surjective: Start: Let $y \in Y$... Goal: Find $x \in X$ such that f(x) = y. For a function $f: X \to Y$, and an element $y \in Y$, let $f^{-1}(y) = \{x \in X \mid f(x) = y\} \subset X$,

called the inverse image or preimage of y. Note that this is abusing notation: we write f^{-1} whether or not f is invertible; and $f^{-1}(y)$ is a *set*, not an *element*.



We say f is invertible if for all $y \in Y$, $f^{-1}(y)$ has exactly one element (no more, no fewer).

Thm. For nonempty sets X and Y, a function $f: X \rightarrow Y$ is invertible if and only if it is bijective.

We say f is invertible if for all $y \in Y$, $f^{-1}(y)$ has exactly one element (no more, no fewer).

Thm. For nonempty sets X and Y, a function $f: X \to Y$ is invertible if and only if it is bijective.

Proof.

Suppose f is bijective. Since f is surjective, for all $y \in Y$, we have $|f^{-1}(y)| \ge 1$. And since f is injective, for any $x_1, x_2 \in f^{-1}(y)$, we have $x_1 = x_2$. So $|f^{-1}(y)| \le 1$. Therefore, for all $y \in Y$, we have $|f^{-1}(y)| = 1$, so that f is invertible.

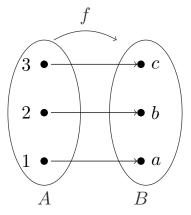
Now suppose f is invertible. Thus for all $y \in Y$, we have $|f^{-1}(y)| = 1$. Therefore, for all $y \in Y$, $f(y) \neq \emptyset$, so that f is surjective. And for all $y \in Y$, since $f^{-1}(y)$ has exactly one element, it has at most one element. So f is injective. Therefore, f is bijective.

Cardinality of sets

Two sets A and B have the same size, or cardinality, if there is a bijection $f : A \rightarrow B$.

Example: We know that set $\{a, b, c\}$ has 3 elements because we can count them:

But this is essentially the same as the bijection



Cardinality of sets

Definition:

Two sets A and B have the same size, or same cardinality, if and only if there is a bijection $f : A \rightarrow B$.

(This allows us to measure the relative sizes of sets, even if they happen to be infinite!)

Example: The sets $\mathbb{Z}_{\geq 0}$ and $\mathbb{Z}_{>0}$ have the same cardinality since

$$\begin{array}{rcccc} f: \mathbb{Z}_{>0} & \to & \mathbb{Z}_{\geq 0} \\ x & \mapsto & x-1 \end{array}$$

is a bijective map.

Countably infinite sets

A set is countable if it is either finite or the same cardinality as the natural numbers $(\mathbb{N} = \mathbb{Z}_{>0})$. If a set A is not finite but is countable, we say A is "countably infinite" and write $|A| = \aleph_0$ (pronounced "aleph naught" or "aleph null"). To show that $|A| = \aleph_0$: show A is not finite, and give a bijection $f : \mathbb{Z}_{\geq 0} \to A$. Examples:

- 1. $\mathbb{Z}_{>0}$ is countably infinite: It is not finite, and $f : \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ by $x \mapsto x$ is a bijection.
- 2. $\mathbb{Z}_{\geq 0}$ is countably infinite: It is not finite, and $f : \mathbb{Z}_{>0} \to \mathbb{Z}_{\geq 0}$ by $x \mapsto x - 1$ is a bijection.
- **3**. \mathbb{Z} is countably infinite: Not finite, and $f : \mathbb{Z}_{>0} \to \mathbb{Z}$ by $x \mapsto (-1)^x \lfloor x/2 \rfloor$ is a bijection.

$\mathbb{Z}_{>0}$:	•••	9	7	5	3	1	2	4	6	$8 \cdots$
		\downarrow	\int	\downarrow	\downarrow	\int	Ţ	\int	$\overline{\downarrow}$	$\overline{\downarrow}$
ℤ:・										$4 \cdots$

More on this last example, $|\mathbb{Z}| = \aleph_0$:

We started with the picture

$\mathbb{Z}_{\geqslant 0}$:	•••	• 9	7	5	3	1	2	4	6	8 ····
										$\overline{\downarrow}$
										$4 \cdots$

This at least gives us a "list" of integers,

 $1:0, 2:1, 3:-1, 4:2, 5:-2, \ldots$

If I know that every integer appears on this list somewhere, then I know that the integers are countable. (Ok answer)

The next step in giving a more sophisticated, more robust, answer is to try to get the formula written down:

 $f: \mathbb{Z}_{>0} \to \mathbb{Z} \qquad x \mapsto \begin{cases} x/2 & \text{if } x \text{ is even,} \\ -(x-1)/2 & \text{if } x \text{ is odd.} \end{cases}$ (Better answer)

To be even more sophisticated, we used the floor function to get a closed form answer:

$$\begin{cases} x/2 & \text{if } x \text{ is even,} \\ -(x-1)/2 & \text{if } x \text{ is odd} \end{cases} = (-1)^x \lfloor x/2 \rfloor,$$
 for $x \in \mathbb{Z}_{>0}$. (Best answer)

Recall that |A| = |B| if and only if there is a bijection $f : A \to B$. If we know that $|A| = \aleph_0$ and $f : A \to B$ is a bijection, then $|B| = |A| = \aleph_0$.

Example: To show that $2\mathbb{Z} = \{ \text{ even integers } \}$ is countably infinite, we could construct a bijection like in the previous example. But it's a little more straightforward to note that

 $\begin{array}{cccc} f:\mathbb{Z} & \to & 2\mathbb{Z} \\ x & \mapsto & 2x \end{array} \quad \text{is a bijection,} \end{array}$

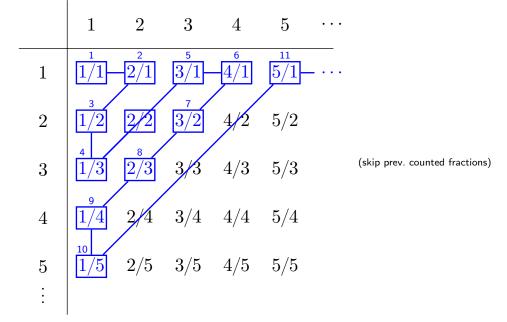
so that $|2\mathbb{Z}| = |\mathbb{Z}| = \aleph_0$.

Examples: For each of the following, show that the set is countably infinite. (Define a bijective function to something that we know to be countably infinite if it's not too hard; otherwise, explain how to make the list.)

- 1. The set of negative integers $(\mathbb{Z}_{<0})$.
- 2. The set of integers less than 100 ($\mathbb{Z}_{<100}$).
- 3. The set of integers that are integer multiples of 3 ($3\mathbb{Z}$).
- 4. The set of integers that are not integer multiples of 3 $(\mathbb{Z} 3\mathbb{Z})$.

The rational numbers

Claim: $\mathbb{Q}_{>0}$ is countably infinite. Make a table:



Then use the same alternating map that we did for $\mathbb{Z}_{>0} \to \mathbb{Z}$ to build a bijection $\mathbb{Q}_{>0} \to \mathbb{Q}$, yielding a bijection $\mathbb{Z}_{>0} \to \mathbb{Q}_{>0} \to \mathbb{Q}$.

Are there sets that are *not* countable?

Theorem. The set of real numbers in the interval [0,1) is not countable.

Proof outline: We will prove this by contradiction.

Suppose that the set $\left[0,1\right)$ is countable, so that the real numbers in $\left[0,1\right)$ can be listed.

Take one such list.

Goal: Show that the list isn't complete. Namely, algorithmically produce an element of [0, 1) that isn't on any fixed list.

Take this is the supposedly complete list of real numbers in [0, 1).

For example:	Algorithm for producing a number that					
1 . 0. 0 01240191057	is not on the list:					
2 . 0.1 2 3451234512	In the <i>i</i> th number in the list, highlight the <i>i</i> th digit. Build a new number as follows:					
3 . 0.33 3 333333333						
4 . 0.500 0 0000000	i. If the highlighted digit of the <i>i</i> th					
5 . 0.1212 1 2121212	number is a 0, then make the					
6 . 0.55555 5 555555	corresponding digit of the new					
7 . 0.141592 6 53589	number a 1.					
8. 0.0018500 <mark>0</mark> 0000	ii. If the highlighted digit of the i th					
9 . 0.11111111 1 111	number is not a 0, then make the corresponding digit of the new					
10 . 0.750000000 0 00	number a 0.					
11 . 0.9487973624 7 1	Example:					
÷	0.10010001010					

In this way, this new number differs from every item in the list in at least one digit!

Theorem. The set of real numbers in the interval [0,1) is not countable.

Proof outline: We will prove this by contradiction. Suppose that the set [0,1) is countable, so that the real numbers in [0,1) can be listed. Show that any list isn't complete. Namely, algorithmically produce an element of [0,1) that isn't on any fixed list.

Proof. For $x \in [0, 1)$, denote the *i*th digit of x by x[i]. Note that for $x, y \in [0, 1)$, we have x = y if and only if x[i] = y[i] for all $i \in \mathbb{Z}_{>0}$.

Now, suppose $f : \mathbb{Z}_{>0} \to [0,1)$ is a bijection. Define $x_f \in [0,1)$ so that the *i*th digit of x_f is

$$x_f[i] = \begin{cases} 1 & \text{if } f(i)[i] = 0, \\ 0 & \text{if } f(i)[i] = 1. \end{cases}$$

Then, for all $i \in \mathbb{Z}_{>0}$, we have $f(i)[i] \neq x_f[i]$, so that $f(i) \neq x_f$. Therefore $x_f \notin f(\mathbb{Z}_{>0})$, so that f is not surjective. This contradicts f being bijective, so no such bijection exists. Therefore [0, 1) is not countable.

Theorem. The set of real numbers in the interval [0,1) is not countable.

Proof outline: We will prove this by contradiction. Suppose that the set [0,1) is countable, so that the real numbers in [0,1) can be listed. Show that any list isn't complete. Namely, algorithmically produce an element of [0,1) that isn't on any fixed list.

Proof. For $x \in [0, 1)$, denote the *i*th digit of x by x[i]. Note that for $x, y \in [0, 1)$, we have x = y if and only if x[i] = y[i] for all $i \in \mathbb{Z}_{>0}$.

Now, suppose $f : \mathbb{Z}_{>0} \to [0,1)$ is a bijection let $f : \mathbb{Z}_{>0} \to [0,1)$. Define $x_f \in [0,1)$ so that the *i*th digit of x_f is

$$x_f[i] = \begin{cases} 1 & \text{if } f(i)[i] = 0, \\ 0 & \text{if } f(i)[i] = 1. \end{cases}$$

Then, for all $i \in \mathbb{Z}_{>0}$, we have $f(i)[i] \neq x_f[i]$, so that $f(i) \neq x_f$. Therefore $x_f \notin f(\mathbb{Z}_{>0})$, so that f is not surjective. This contradicts f being bijective, so no such bijection exists. Thus, since no function $f : \mathbb{Z}_{>0} \rightarrow [0, 1)$ can be surjective, no bijection between $\mathbb{Z}_{>0}$ and [0, 1) exists. Therefore [0, 1) is not countable. For sets X and Y, we say $|X| \leq |Y|$ if there exists an injective function $f: X \to Y$. And write |X| < |Y| if $|X| \leq |Y|$ and $|X| \neq |Y|$.

Recall, the power set of as set A is the set of subsets of A, given by $\mathcal{P}(A) = \{S \mid S \subseteq A\}.$

Theorem. $|A| < |\mathcal{P}(A)|$.

Outline:

- 1. Show $|A| \leq |\mathcal{P}(A)|$ by showing an injective map *exists* (give one example).
- 2. Show $|A| \neq |\mathcal{P}(A)|$ by showing that *any* map (not just the example from before) cannot be surjective.

Hint. For any $f : A \to \mathcal{P}(A)$, show f is not surjective; i.e.

construct a set $S \subseteq A$ such that $S \neq f(a)$ for all $a \in A$.

(Need for care: 1 is a "there exists" statement; 2 is a "for all" statement.)

Relations

A binary relation on a set A is a subset $R \subseteq A \times A$, where elements (a, b) are written as $a \sim b$.

Example: $A = \mathbb{Z}$ and $R = \{a \sim b \mid a < b\}$. In words:

Let \sim be the relation on \mathbb{Z} given by $a \sim b$ if a < b. (Note that we use language like in definitions, where "if" actually means "if and only if".)

Example: $A = \mathbb{R}$ and $R = \{a \sim b \mid a = b\}$. In words:

Let \sim be the relation on \mathbb{R} given by $a \sim b$ if a = b. Example: $A = \mathbb{Z}$ and $R = \{a \sim b \mid a \equiv b \pmod{3}\}$. In words:

Let \sim be the relation on \mathbb{Z} given by $a \sim b$ if $a \equiv b \pmod{3}$.

More examples of (binary) relations:

- 1. For A a number system, let $a \sim b$ if a = b. R, S, T
- 2. For A a number system, let $a \sim b$ if a < b. not R, not S, T
- 3. For $A = \mathbb{R}$, let $a \sim b$ if ab = 0. not R, S, not T
- 4. For A a set of people, let $a \sim b$ if a is a (full) sibling of b.

not R, S, T

5. For A a set of people, let $a \sim b$ if a and b speak a common language. R, S, not T

A binary relation on a set A is...

- (R) reflexive if $a \sim a$ for all $a \in A$;
- (S) symmetric if $a \sim b$ implies $b \sim a$;
- (T) transitive if $a \sim b$ and $b \sim c$ implies $a \sim c$, i.e.

$$(a \sim b \land b \sim c) \Rightarrow a \sim c$$

An equivalence relation on a set A is a binary relation that is reflexive, symmetric, and transitive. (Only #1)

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

"
$$a \sim b$$
 if $a \equiv b \pmod{n}$."

Is \sim is an equivalence relation?

Check: we have $a \equiv b \pmod{n}$ if and only if a - b = kn for some $k \in \mathbb{Z}$.

reflexivity: $a - a = 0 = 0 \cdot n \checkmark$ symmetry: If a - b = kn, then b - a = -kn = (-k)n. \checkmark transitivity: If a - b = kn and $b - c = \ell n$, then

$$a-c = (a-b) + (b-c) = kn + \ell n = (k+\ell)n.\checkmark$$

Yes! This is an equivalence relation!

Let A be a set. Consider the relation on $\mathcal{P}(A)$ by

$$S \sim T$$
 if $S \subseteq T$

Is \sim is an equivalence relation?

Check: This is reflexive and transitive, but not symmetric. So no, it is not an equivalence relation.

ls

$$S \sim T \qquad \text{if} \qquad S \subseteq T \text{ or } S \subseteq T$$
 an equivalence relation on $\mathcal{P}(A)$?

Check: This is reflexive and symmetric, but not transitive. So still no, it is not an equivalence relation.

ls

 $S \sim T \qquad \text{if} \qquad |S| = |T|$

an equivalence relation on $\mathcal{P}(A)$?

Read: Why reflexivity doesn't follow from symmetry and transitivity.

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by [a].

Example: Consider the equivalence relation on $A = \{a, b, c\}$ given by

 $a \sim a, \quad b \sim b, \quad c \sim c, \quad a \sim c, \quad \text{and} \quad c \sim a.$

Then

$$[a] = \{a, c\} = [c],$$
 and
 $[b] = \{b\}$

are the two equivalence classes in A (with respect to this relation).

(We say there are two, *not three*, since "the equivalence classes" refers to the sets themselves, not to the elements that generate them.)

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by [a]. Example: We showed that

" $a \sim b$ if $a \equiv b \pmod{5}$ " is an equivalence relation on \mathbb{Z} . Then $[0] = \{5n \mid n \in \mathbb{Z}\} = 5\mathbb{Z}$ $[1] = \{5n + 1 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 1$ $[2] = \{5n + 2 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 2$ $[3] = \{5n + 3 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 3$ $[4] = \{5n + 4 \mid n \in \mathbb{Z}\} = 5\mathbb{Z} + 4$ $[5] = \{5n + 5 \mid n \in \mathbb{Z}\} = \{5m \mid m \in \mathbb{Z}\} = [0] = [-5] = [10] = \cdots$ $[6] = \{5n + 6 \mid n \in \mathbb{Z}\} = \{5m + 1 \mid m \in \mathbb{Z}\} = [1] = [-4] = [11] = \cdots$ \vdots In general, if $x \in [y]$, that means $y \sim x$. So $x \sim y$. So $y \in [x]$. Claim: $x \in [y]$ if and only if [x] = [y].

We call any element a of a class C representative of C (since we can write C = [a] for any $a \in C$).

Theorem. The equivalence classes of A partition A into subsets, meaning

1. the equivalence classes are subsets of A:

$$[a] \subseteq A$$
 for all $a \in A$;

- any two equivalence classes are either equal or disjoint: for all a, b ∈ A, either [a] = [b] or [a] ∩ [b] = Ø; and
- 3. the union of all the equivalence classes is all of A:

$$A = \bigcup_{a \in A} [a]$$

We say that A is the disjoint union of equivalency classes, written

$$A = \bigsqcup_{a \in A} [a], \qquad \texttt{ATEX: } \mathsf{bigsqcup, } \mathsf{sqcup}$$

For example, in our last example, there are exactly 5 equivalence classes: [0], [1], [2], [3], and [4]. Any other seemingly different class is actually one of these (for example, [5] = [0]). And $[0] \cup [1] \cup [2] \cup [3] \cup [4] = \mathbb{Z}$. So $\mathbb{Z} = [0] \sqcup [1] \sqcup [2] \sqcup [3] \sqcup [4]$.