Functions
Let f: X — Y be a function. Recall, the image of f is
f(X)={yeY | f(x) =y for some x € X}.
Further, f is. ..
e injective if at most one x € X maps to each y €Y, i.e.
if f(x1) = f(z2) then 1 = z9.
Ex. f:Rs¢ — R defined by = — z2.
Non-ex. f:R — R defined by z — 2.
e surjective if every y € Y gets mapped to, i.e.
for all y € Y, there exists x € X such that f(z) = y.
Ex. f:R — Rxq defined by z — 2.
Non-ex. f :R — R defined by z — z2.
e bijective if it's both injective and surjective.
Ex. f:Rso — R defined by x +— z2.
Non-ex. f:R — R defined by z — 22.

Injective, not surjective: Surjective, not injective:
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To show f: X — Y is injective:
Start: Suppose f(x1) = f(x2)...  Goal: Show x1 = xs.
To show f: X — Y is surjective:
Start: LetyeY... Goal: Find x € X such that f(z) = y.



For a function f: X — Y, and an element y € Y, let

fHy) ={ze X | f(z) =y} c X,
called the inverse image or preimage of y. Note that this is abusing
notation: we write £~ whether or not f is invertible; and f~1(y)
is a set, not an element.

f
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f713) = {a}
X Y

We say f is invertible if for all y € Y, f~!(y) has exactly one
element (no more, no fewer).

Thm. For nonempty sets X and Y, a function f: X —» Y is
invertible if and only if it is bijective.

We say f is invertible if for all y € Y, f~1(y) has exactly one
element (no more, no fewer).

Thm. For nonempty sets X and Y, a function f: X — Y is
invertible if and only if it is bijective.

Proof.

Suppose f is bijective. Since f is surjective, for all y € Y, we have
|f~1(y)| = 1. And since f is injective, for any x1, 22 € f~1(y), we
have 1 = x5. So |f~1(y)| < 1. Therefore, for all y € Y, we have
|f~1(y)| = 1, so that f is invertible.

Now suppose f is invertible. Thus for all y € Y, we have
|f~1(y)| = 1. Therefore, for all y €Y, f(y) # &, so that f is
surjective. And for all y € Y, since f~!(y) has exactly one
element, it has at most one element. So f is injective. Therefore,
f is bijective.

[]



Cardinality of sets

Two sets A and B have the same size, or cardinality, if there is a
bijection f: A — B.

Example: We know that set {a, b, c} has 3 elements because we
can count them:

But this is essentially the same as the bijection

f

/\\

Cardinality of sets

Definition:
Two sets A and B have the same size, or same cardinality, if and
only if there is a bijection f: A — B.

(This allows us to measure the relative sizes of sets, even if they
happen to be infinite!)

Example: The sets Z>q and Z~( have the same cardinality since

fi1Zso — Zxo

r — x—1

is a bijective map.



Countably infinite sets

A set is countable if it is either finite or the same cardinality as the
natural numbers (N = Z-). If a set A is not finite but is
countable, we say A is “countably infinite” and write |A| = N
(pronounced “aleph naught” or “aleph null”). To show that
|A| = Wg: show A is not finite, and give a bijection [ : Z>o — A.
Examples:
1. Z~¢ is countably infinite:
It is not finite, and f : Z-g — Z~¢ by x — x is a bijection.
2. Z=o is countably infinite:
It is not finite, and f : Z~g — Z>q by x — x — 1 is a bijection.

3. Z is countably infinite: Not finite, and f : Z-g — Z by
x — (—1)%|x/2] is a bijection.

Z-o: -+ 9 7 5 3 1 2 4 6 8 -
P71 1 17 1 T 1 1
Z:- —4 -3 -2 -1 0 1 2 3 4

More on this last example,

Z‘ = Noi

We started with the picture

Zoo: -9 7 5 3 1 2 4 6 8-
L A |
Z:-- -4 -3 -2 -1 0 1 2 3 4 -

This at least gives us a “list” of integers,
1:0, 2:1, 3:—-1, 4:2, 5:-2,
If | know that every integer appears on this list somewhere, then |
know that the integers are countable. (Ok answer)
The next step in giving a more sophisticated, more robust, answer
is to try to get the formula written down:
x/2 if x is even,

sy — 4 T —
s {—(;:;—1)/2 if 2 is odd.
To be even more sophisticated, we used the floor function to get a

closed form answer:
x/2 if z is even,
—(z—1)/2 if x is odd
for x € Z~¢. (Best answer)

(Better answer)

= (=1)*[2/2],



Recall that |A| = |B| if and only if there is a bijection f: A — B.

If we know that |A| = Ry and f: A — B is a bijection, then
|B| = |A] = Ro.

Example: To show that 2Z = { even integers } is countably
infinite, we could construct a bijection like in the previous example.
But it's a little more straightforward to note that

f:7Z — 27

r — 2

so that |2Z| = |Z| = Ry.
Examples: For each of the following, show that the set is countably
infinite. (Define a bijective function to something that we know to
be countably infinite if it's not too hard; otherwise, explain how to
make the list.)

is a bijection,

1. The set of negative integers (Zg).

2. The set of integers less than 100 (Z100)-

3. The set of integers that are integer multiples of 3 ( 3Z).
4

. The set of integers that are not integer multiples of 3
(Z — 372).

The rational numbers

Claim: Qx¢ is countably infinite. Make a table:

1 2 3 4 5

O i o e vy
3,/ /7/

> 1 BA BA

3 ﬁ/?{

o/

4 |4

5/2

273‘ 4/3 5/3 (skip prev. counted fractions)

4 3/4 4/4 5/4

10

5 |[/5] 2/5 3/5 4/5 5/5

Then use the same alternating map that we did for Z-y — 7Z to
build a bijection Q-9 — Q, yielding a bijection Z~¢y — Q-9 — Q.



Are there sets that are not countable?

Theorem. The set of real numbers in the interval [0,1) is not
countable.

Proof outline: We will prove this by contradiction.

Suppose that the set [0, 1) is countable, so that the real numbers
in [0,1) can be listed.

Take one such list.

Goal: Show that the list isn't complete. Namely, algorithmically
produce an element of [0, 1) that isn't on any fixed list.

Take this is the supposedly complete list of real numbers in [0, 1).

For example: Algorithm for producing a number that

1. 0.001240191057... s not on the list:
In the ith number in the list, highlight

2. 0.123451234512. .. ) ..
the 7th digit.

3. 0.333333333333. .. Build a new number as follows:
4..0.500000000000. .. |f the highlighted digit of the ith
5. 0.121212121212. .. number is a 0, then make the
6. 0.555555555555. . . corresponding digit of the new
7. 0.141592653589. . . number a 1.
8. 0.001850000000. .. ii. If the highlighted digit of the ith

number is not a 0, then make the
9. 0.111111111111...

corresponding digit of the new
.-0.750000000000. . . number a 0.

11. 0.948797362471. .. Example:

; 0.10010001010. ..
In this way, this new number differs from every item in the list in

at least one digit!

[E
o



Theorem. The set of real numbers in the interval [0,1) is not
countable.

Proof outline: We will prove this by contradiction. Suppose that the set
[0,1) is countable, so that the real numbers in [0,1) can be listed. Show
that any list isn't complete. Namely, algorithmically produce an element
of [0,1) that isn't on any fixed list.

Proof. For x € [0,1), denote the ith digit of = by z[i]. Note that
for x,y € [0,1), we have = = y if and only if z[i] = y[i] for all
Now, suppose f : Z~o — [0,1) is a bijection. Define z¢ € [0,1) so
that the ith digit of z is

. L if f()[i] =
zyli] = e
0 if f(i)[i] =
Then, for all i € Z~(, we have f(i)[i] # x¢[i], so that f(i) # z.
Therefore x5 ¢ f(Z=o, so that f is not surjective. This contradicts
f being bijective, so no such bijection exists. Therefore [0, 1) is
not countable. L

Theorem. The set of real numbers in the interval [0,1) is not
countable.

Proof outline: We will prove this by contradiction. Suppose that the set
[0,1) is countable, so that the real numbers in [0,1) can be listed. Show
that any list isn't complete. Namely, algorithmically produce an element
of [0,1) that isn't on any fixed list.

Proof. For z € [0,1), denote the ith digit of = by x[i]. Note that
for x,y € [0,1), we have = = y if and only if z[i] = y[i] for all

ow, suppese—f—+Zsg—f0;isabijection let [ : Z-o — [0,1).

Define ¢ € [0,1) so that the ith digit of x; is
G it f@] =
wpli] = e
0 if F@)[i] =
Then, for all i € Z~(, we have f(i)[i] # £L’f[] so that f(7) # xy.
Therefore x4 ¢ f(Z~o, so that f is not surjective. This-contradicts
f-being-bijective;so-no-such-bijection—exists: Thus, since no

function f : Z~o9 — [0, 1) can be surjective, no bijection between
Z~o and [0, 1) exists. Therefore [0,1) is not countable. [



For sets X and Y, we say | X| < |Y| if there exists an injective
function f: X — Y. And write | X| < |Y] if | X| < |Y] and
(X # Y]

Recall, the power set of as set A is the set of subsets of A, given by
P(A)={S| S c A}

Theorem. |A| < [P(A)].

Outline:
1. Show |A| < |P(A)| by showing an injective map exists (give
one example).
2. Show |A| # |P(A)| by showing that any map (not just the
example from before) cannot be surjective.
Hint. For any f: A — P(A), show f is not surjective; i.e.
construct a set S € A such that S # f(a) for all a € A.

(Need for care: 1 is a “there exists” statement; 2 is a “for all” statement.)

Relations

A binary relation on a set A is a subset R € A x A, where
elements (a,b) are written as a ~ b.

Example: A=Zand R={a ~b|a<b}.
In words:
Let ~ be the relation on 7Z given by a ~ b if a < b.
(Note that we use language like in definitions, where “if" actually
means "“if and only if".)
Example: A=Rand R={a ~0b|a=b}.
In words:
Let ~ be the relation on R given by a ~ b if a = b.
Example: A=Zand R={a ~b|a=b (mod 3)}.
In words:
Let ~ be the relation on Z given by a ~ b ifa = b (mod 3).



More examples of (binary) relations:

1. For A a number system, leta ~bifa=0. R, S, T

2. For A a number system, let a ~bif a <b. not R, not S, T
3. ForA=R,leta~bifab=0. not R, S, not T
4

. For A a set of people, let a ~ b if a is a (full) sibling of b.
not R, S, T

5. For A a set of people, let a ~ b if a and b speak a common
language. R, S, not T

A binary relation on a set A is. ..

(R) reflexive if a ~ a for all a € A;

(S) symmetric if a ~ b implies b ~ a;

(T) transitive if a ~ b and b ~ ¢ implies a ~ ¢, i.e.
(a~bArb~c)=a~c

An equivalence relation on a set A is a binary relation that is
reflexive, symmetric, and transitive. (Only #1)

Fix n € Z~¢ and define the relation on Z given by

[43

a~b ifa=b (modn).
Is ~ is an equivalence relation?

Check: we have a = b (mod n) if and only if a — b = kn for some
kelZ.

reflexivity: a—a=0=0-n v
symmetry: If a —b = kn, thenb—a = —kn = (—k)n. v
transitivity: If a —b = kn and b — ¢ = ¥n, then

a—c=(a—b)+(b—c)=kn+In=(k+{nv

Yes! This is an equivalence relation!



Let A be a set. Consider the relation on P(A) by
S~T if ScT

Is ~ is an equivalence relation?

Check: This is reflexive and transitive, but not symmetric.
So no, it is not an equivalence relation.

s
S~T if ScToScT
an equivalence relation on P(A)?

Check: This is reflexive and symmetric, but not transitive.
So still no, it is not an equivalence relation.

s
S~T if S| = |T|
an equivalence relation on P(A)?

Read: Why reflexivity doesn’t follow from symmetry and
transitivity.

Let ~ be an equivalence relation on a set A, and let a € A. The
set of all elements b € A such that a ~ b is called the equivalence
class of a, denoted by [a].

Example: Consider the equivalence relation on A = {a, b, ¢} given
by

a~a, b~b c~c, a~c, and c~a.
Then

[a] = {a,c} =[c], and
[6] = {b}
are the two equivalence classes in A (with respect to this relation).

(We say there are two, not three, since “the equivalence classes”
refers to the sets themselves, not to the elements that generate
them.)



Let ~ be an equivalence relation on a set A, and let a € A. The

set of all elements b € A such that a ~ b is called the equivalence

class of a, denoted by [a].

Example: We showed that

‘a~b ifa=b (mod5)"
is an equivalence relation on Z. Then
[0] = {5n | ne Z} = 5Z [1]={fn+1|neZ}=5Z+1
2] ={bn+2|neZ}=5Z+2 [B]={hn+3|neZ}=5Z+3
[4] ={bn+4 | neZ} =5Z+4

[5] ={5n+5 | neZ}={5m | meZ}=[0] =[-5] = [10] = --

[6] ={dn+6|neZ}={m+1 \ meZ}=[1] =[-4] =[11] =

In general, if z € [y], that means y ~ .
Sox ~y. Soy € [x].
Claim: x € [y] if and only if [z] = [y].

We call any element a of a class C representative of C' (since we
can write C' = [a] for any a € C).

Theorem. The equivalence classes of A partition A into subsets,
meaning

1. the equivalence classes are subsets of A:
[a] € A for all a € A;

2. any two equivalence classes are either equal or disjoint:
for all a,b e A, either [a] = [b] or [a] n [b] = &; and

3. the union of all the equivalence classes is all of A:

A={]ld]

acA
We say that A is the disjoint union of equivalency classes, written

A= |_|[a], IATEX: \bigsqcup, \sqcup
aceA
For example, in our last example, there are exactly 5 equivalence
classes: [0], [1], [2], [3], and [4]. Any other seemingly different
class is actually one of these (for example, [5] = [0]). And
[0l v [1]u 2] v [3] v [4] = Z.

So|Z = [0] w([1] w[2]w[3]ul4]]




