Functions

Let $f: X \rightarrow Y$ be a function. Recall, the image of f is

$$
f(X)=\{y \in Y \mid f(x)=y \text { for some } x \in X\} .
$$

Further, f is...

- injective if at most one $x \in X$ maps to each $y \in Y$, i.e.

$$
\text { if } f\left(x_{1}\right)=f\left(x_{2}\right) \text { then } x_{1}=x_{2}
$$

Ex. $f: \mathbb{R}_{>0} \rightarrow \mathbb{R}$ defined by $x \mapsto x^{2}$.
Non-ex. $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $x \mapsto x^{2}$.

- surjective if every $y \in Y$ gets mapped to, i.e.
for all $y \in Y$, there exists $x \in X$ such that $f(x)=y$.
Ex. $f: \mathbb{R} \rightarrow \mathbb{R}_{\geqslant 0}$ defined by $x \mapsto x^{2}$.
Non-ex. $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $x \mapsto x^{2}$.
- bijective if it's both injective and surjective.

Ex. $f: \mathbb{R}_{\geqslant 0} \rightarrow \mathbb{R}_{\geqslant 0}$ defined by $x \mapsto x^{2}$.
Non-ex. $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $x \mapsto x^{2}$.

Injective, not surjective:

Surjective, not injective:

Injective, not surjective: Surjective, not injective:

To show $f: X \rightarrow Y$ is injective:
Start: Suppose $f\left(x_{1}\right)=f\left(x_{2}\right) \ldots \quad$ Goal: Show $x_{1}=x_{2}$.
To show $f: X \rightarrow Y$ is surjective:
Start: Let $y \in Y \ldots \quad$ Goal: Find $x \in X$ such that $f(x)=y$.

For a function $f: X \rightarrow Y$, and an element $y \in Y$, let

$$
f^{-1}(y)=\{x \in X \mid f(x)=y\} \subset X,
$$

called the inverse image or preimage of y. Note that this is abusing notation: we write f^{-1} whether or not f is invertible; and $f^{-1}(y)$ is a set, not an element.

For a function $f: X \rightarrow Y$, and an element $y \in Y$, let

$$
f^{-1}(y)=\{x \in X \mid f(x)=y\} \subset X
$$

called the inverse image or preimage of y. Note that this is abusing notation: we write f^{-1} whether or not f is invertible; and $f^{-1}(y)$ is a set, not an element.

$$
\begin{aligned}
& f^{-1}(1)=\varnothing \\
& f^{-1}(2)=\{b, c\} \\
& f^{-1}(3)=\{a\}
\end{aligned}
$$

For a function $f: X \rightarrow Y$, and an element $y \in Y$, let

$$
f^{-1}(y)=\{x \in X \mid f(x)=y\} \subset X,
$$

called the inverse image or preimage of y. Note that this is abusing notation: we write f^{-1} whether or not f is invertible; and $f^{-1}(y)$ is a set, not an element.

$$
\begin{aligned}
& f^{-1}(1)=\varnothing \\
& f^{-1}(2)=\{b, c\} \\
& f^{-1}(3)=\{a\}
\end{aligned}
$$

We say f is invertible if for all $y \in Y, f^{-1}(y)$ has exactly one element (no more, no fewer).

For a function $f: X \rightarrow Y$, and an element $y \in Y$, let

$$
f^{-1}(y)=\{x \in X \mid f(x)=y\} \subset X
$$

called the inverse image or preimage of y. Note that this is abusing notation: we write f^{-1} whether or not f is invertible; and $f^{-1}(y)$ is a set, not an element.

$$
\begin{aligned}
& f^{-1}(1)=\varnothing \\
& f^{-1}(2)=\{b, c\} \\
& f^{-1}(3)=\{a\}
\end{aligned}
$$

We say f is invertible if for all $y \in Y, f^{-1}(y)$ has exactly one element (no more, no fewer).

Thm. For nonempty sets X and Y, a function $f: X \rightarrow Y$ is invertible if and only if it is bijective.

We say f is invertible if for all $y \in Y, f^{-1}(y)$ has exactly one element (no more, no fewer).

Thm. For nonempty sets X and Y, a function $f: X \rightarrow Y$ is invertible if and only if it is bijective.
Proof.
Suppose f is bijective. Since f is surjective, for all $y \in Y$, we have $\left|f^{-1}(y)\right| \geqslant 1$. And since f is injective, for any $x_{1}, x_{2} \in f^{-1}(y)$, we have $x_{1}=x_{2}$. So $\left|f^{-1}(y)\right| \leqslant 1$. Therefore, for all $y \in Y$, we have $\left|f^{-1}(y)\right|=1$, so that f is invertible.

We say f is invertible if for all $y \in Y, f^{-1}(y)$ has exactly one element (no more, no fewer).

Thm. For nonempty sets X and Y, a function $f: X \rightarrow Y$ is invertible if and only if it is bijective.
Proof.
Suppose f is bijective. Since f is surjective, for all $y \in Y$, we have $\left|f^{-1}(y)\right| \geqslant 1$. And since f is injective, for any $x_{1}, x_{2} \in f^{-1}(y)$, we have $x_{1}=x_{2}$. So $\left|f^{-1}(y)\right| \leqslant 1$. Therefore, for all $y \in Y$, we have $\left|f^{-1}(y)\right|=1$, so that f is invertible.

Now suppose f is invertible. Thus for all $y \in Y$, we have $\left|f^{-1}(y)\right|=1$. Therefore, for all $y \in Y, f(y) \neq \varnothing$, so that f is surjective. And for all $y \in Y$, since $f^{-1}(y)$ has exactly one element, it has at most one element. So f is injective. Therefore, f is bijective.

Cardinality of sets

Two sets A and B have the same size, or cardinality, if there is a bijection $f: A \rightarrow B$.

Cardinality of sets

Two sets A and B have the same size, or cardinality, if there is a bijection $f: A \rightarrow B$.
Example: We know that set $\{a, b, c\}$ has 3 elements because we can count them:

$1:$	a
$2:$	b
$3:$	c

Cardinality of sets

Two sets A and B have the same size, or cardinality, if there is a bijection $f: A \rightarrow B$.
Example: We know that set $\{a, b, c\}$ has 3 elements because we can count them:

$$
\begin{array}{ll}
1: & a \\
2: & b \\
3: & c
\end{array}
$$

But this is essentially the same as the bijection

Cardinality of sets

Definition:
Two sets A and B have the same size, or same cardinality, if and only if there is a bijection $f: A \rightarrow B$.
(This allows us to measure the relative sizes of sets, even if they happen to be infinite!)

Cardinality of sets

Definition:

Two sets A and B have the same size, or same cardinality, if and only if there is a bijection $f: A \rightarrow B$.
(This allows us to measure the relative sizes of sets, even if they happen to be infinite!)

Example: The sets $\mathbb{Z}_{\geqslant 0}$ and $\mathbb{Z}_{>0}$ have the same cardinality since

$$
\begin{array}{rlc}
f: \mathbb{Z}_{>0} & \rightarrow & \mathbb{Z}_{\geqslant 0} \\
x & \mapsto & x-1
\end{array}
$$

is a bijective map.

Countably infinite sets

A set is countable if it is either finite or the same cardinality as the natural numbers $\left(\mathbb{N}=\mathbb{Z}_{>0}\right)$. If a set A is not finite but is countable, we say A is "countably infinite" and write $|A|=\aleph_{0}$ (pronounced "aleph naught" or "aleph null").

Countably infinite sets

A set is countable if it is either finite or the same cardinality as the natural numbers $\left(\mathbb{N}=\mathbb{Z}_{>0}\right)$. If a set A is not finite but is countable, we say A is "countably infinite" and write $|A|=\aleph_{0}$ (pronounced "aleph naught" or "aleph null"). To show that $|A|=\aleph_{0}$: show A is not finite, and give a bijection $f: \mathbb{Z}_{\geqslant 0} \rightarrow A$.

Countably infinite sets

A set is countable if it is either finite or the same cardinality as the natural numbers $\left(\mathbb{N}=\mathbb{Z}_{>0}\right)$. If a set A is not finite but is countable, we say A is "countably infinite" and write $|A|=\aleph_{0}$ (pronounced "aleph naught" or "aleph null"). To show that $|A|=\aleph_{0}$: show A is not finite, and give a bijection $f: \mathbb{Z}_{\geqslant 0} \rightarrow A$. Examples:

1. $\mathbb{Z}_{>0}$ is countably infinite

Countably infinite sets

A set is countable if it is either finite or the same cardinality as the natural numbers $\left(\mathbb{N}=\mathbb{Z}_{>0}\right)$. If a set A is not finite but is countable, we say A is "countably infinite" and write $|A|=\aleph_{0}$ (pronounced "aleph naught" or "aleph null"). To show that $|A|=\aleph_{0}$: show A is not finite, and give a bijection $f: \mathbb{Z}_{\geqslant 0} \rightarrow A$. Examples:

1. $\mathbb{Z}_{>0}$ is countably infinite:

It is not finite, and $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ by $x \mapsto x$ is a bijection.

Countably infinite sets

A set is countable if it is either finite or the same cardinality as the natural numbers $\left(\mathbb{N}=\mathbb{Z}_{>0}\right)$. If a set A is not finite but is countable, we say A is "countably infinite" and write $|A|=\aleph_{0}$ (pronounced "aleph naught" or "aleph null"). To show that $|A|=\aleph_{0}$: show A is not finite, and give a bijection $f: \mathbb{Z}_{\geqslant 0} \rightarrow A$. Examples:

1. $\mathbb{Z}_{>0}$ is countably infinite:

It is not finite, and $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ by $x \mapsto x$ is a bijection.
2. $\mathbb{Z}_{\geqslant 0}$ is countably infinite

Countably infinite sets

A set is countable if it is either finite or the same cardinality as the natural numbers $\left(\mathbb{N}=\mathbb{Z}_{>0}\right)$. If a set A is not finite but is countable, we say A is "countably infinite" and write $|A|=\aleph_{0}$ (pronounced "aleph naught" or "aleph null"). To show that $|A|=\aleph_{0}$: show A is not finite, and give a bijection $f: \mathbb{Z}_{\geqslant 0} \rightarrow A$. Examples:

1. $\mathbb{Z}_{>0}$ is countably infinite:

It is not finite, and $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ by $x \mapsto x$ is a bijection.
2. $\mathbb{Z}_{\geqslant 0}$ is countably infinite:

It is not finite, and $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{\geqslant 0}$ by $x \mapsto x-1$ is a bijection.

Countably infinite sets

A set is countable if it is either finite or the same cardinality as the natural numbers $\left(\mathbb{N}=\mathbb{Z}_{>0}\right)$. If a set A is not finite but is countable, we say A is "countably infinite" and write $|A|=\aleph_{0}$ (pronounced "aleph naught" or "aleph null"). To show that $|A|=\aleph_{0}$: show A is not finite, and give a bijection $f: \mathbb{Z}_{\geqslant 0} \rightarrow A$. Examples:

1. $\mathbb{Z}_{>0}$ is countably infinite:

It is not finite, and $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ by $x \mapsto x$ is a bijection.
2. $\mathbb{Z}_{\geqslant 0}$ is countably infinite:

It is not finite, and $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{\geqslant 0}$ by $x \mapsto x-1$ is a bijection.
3. \mathbb{Z} is countably infinite

Countably infinite sets

A set is countable if it is either finite or the same cardinality as the natural numbers $\left(\mathbb{N}=\mathbb{Z}_{>0}\right)$. If a set A is not finite but is countable, we say A is "countably infinite" and write $|A|=\aleph_{0}$ (pronounced "aleph naught" or "aleph null"). To show that $|A|=\aleph_{0}$: show A is not finite, and give a bijection $f: \mathbb{Z}_{\geqslant 0} \rightarrow A$. Examples:

1. $\mathbb{Z}_{>0}$ is countably infinite:

It is not finite, and $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ by $x \mapsto x$ is a bijection.
2. $\mathbb{Z}_{\geqslant 0}$ is countably infinite:

It is not finite, and $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{\geqslant 0}$ by $x \mapsto x-1$ is a bijection.
3. \mathbb{Z} is countably infinite:
$\mathbb{Z}_{>0}$:

Countably infinite sets

A set is countable if it is either finite or the same cardinality as the natural numbers $\left(\mathbb{N}=\mathbb{Z}_{>0}\right)$. If a set A is not finite but is countable, we say A is "countably infinite" and write $|A|=\aleph_{0}$ (pronounced "aleph naught" or "aleph null"). To show that $|A|=\aleph_{0}$: show A is not finite, and give a bijection $f: \mathbb{Z}_{\geqslant 0} \rightarrow A$. Examples:

1. $\mathbb{Z}_{>0}$ is countably infinite:

It is not finite, and $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ by $x \mapsto x$ is a bijection.
2. $\mathbb{Z}_{\geqslant 0}$ is countably infinite:

It is not finite, and $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{\geqslant 0}$ by $x \mapsto x-1$ is a bijection.
3. \mathbb{Z} is countably infinite:

Countably infinite sets

A set is countable if it is either finite or the same cardinality as the natural numbers $\left(\mathbb{N}=\mathbb{Z}_{>0}\right)$. If a set A is not finite but is countable, we say A is "countably infinite" and write $|A|=\aleph_{0}$ (pronounced "aleph naught" or "aleph null"). To show that $|A|=\aleph_{0}$: show A is not finite, and give a bijection $f: \mathbb{Z}_{\geqslant 0} \rightarrow A$. Examples:

1. $\mathbb{Z}_{>0}$ is countably infinite:

It is not finite, and $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ by $x \mapsto x$ is a bijection.
2. $\mathbb{Z}_{\geqslant 0}$ is countably infinite:

It is not finite, and $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{\geqslant 0}$ by $x \mapsto x-1$ is a bijection.
3. \mathbb{Z} is countably infinite:

Countably infinite sets

A set is countable if it is either finite or the same cardinality as the natural numbers $\left(\mathbb{N}=\mathbb{Z}_{>0}\right)$. If a set A is not finite but is countable, we say A is "countably infinite" and write $|A|=\aleph_{0}$ (pronounced "aleph naught" or "aleph null"). To show that $|A|=\aleph_{0}$: show A is not finite, and give a bijection $f: \mathbb{Z}_{\geqslant 0} \rightarrow A$. Examples:

1. $\mathbb{Z}_{>0}$ is countably infinite:

It is not finite, and $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ by $x \mapsto x$ is a bijection.
2. $\mathbb{Z}_{\geqslant 0}$ is countably infinite:

It is not finite, and $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{\geqslant 0}$ by $x \mapsto x-1$ is a bijection.
3. \mathbb{Z} is countably infinite:

Countably infinite sets

A set is countable if it is either finite or the same cardinality as the natural numbers $\left(\mathbb{N}=\mathbb{Z}_{>0}\right)$. If a set A is not finite but is countable, we say A is "countably infinite" and write $|A|=\aleph_{0}$ (pronounced "aleph naught" or "aleph null"). To show that $|A|=\aleph_{0}$: show A is not finite, and give a bijection $f: \mathbb{Z}_{\geqslant 0} \rightarrow A$. Examples:

1. $\mathbb{Z}_{>0}$ is countably infinite:

It is not finite, and $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ by $x \mapsto x$ is a bijection.
2. $\mathbb{Z}_{\geqslant 0}$ is countably infinite:

It is not finite, and $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{\geqslant 0}$ by $x \mapsto x-1$ is a bijection.
3. \mathbb{Z} is countably infinite:

Countably infinite sets

A set is countable if it is either finite or the same cardinality as the natural numbers $\left(\mathbb{N}=\mathbb{Z}_{>0}\right)$. If a set A is not finite but is countable, we say A is "countably infinite" and write $|A|=\aleph_{0}$ (pronounced "aleph naught" or "aleph null"). To show that $|A|=\aleph_{0}$: show A is not finite, and give a bijection $f: \mathbb{Z}_{\geqslant 0} \rightarrow A$. Examples:

1. $\mathbb{Z}_{>0}$ is countably infinite:

It is not finite, and $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ by $x \mapsto x$ is a bijection.
2. $\mathbb{Z}_{\geqslant 0}$ is countably infinite:

It is not finite, and $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{\geqslant 0}$ by $x \mapsto x-1$ is a bijection.
3. \mathbb{Z} is countably infinite:
$\begin{array}{lccccccccc}\mathbb{Z}_{>0}: & & 5 & 3 & 1 & 2 & 4 & & & \\ \mathbb{Z}: \cdots & -4 & -3 & -2 & I & I & I & I & & \\ -1 & 0 & 1 & 2 & 3 & 4 & \cdots\end{array}$

Countably infinite sets

A set is countable if it is either finite or the same cardinality as the natural numbers $\left(\mathbb{N}=\mathbb{Z}_{>0}\right)$. If a set A is not finite but is countable, we say A is "countably infinite" and write $|A|=\aleph_{0}$ (pronounced "aleph naught" or "aleph null"). To show that $|A|=\aleph_{0}$: show A is not finite, and give a bijection $f: \mathbb{Z}_{\geqslant 0} \rightarrow A$. Examples:

1. $\mathbb{Z}_{>0}$ is countably infinite:

It is not finite, and $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ by $x \mapsto x$ is a bijection.
2. $\mathbb{Z}_{\geqslant 0}$ is countably infinite:

It is not finite, and $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{\geqslant 0}$ by $x \mapsto x-1$ is a bijection.
3. \mathbb{Z} is countably infinite:
$\begin{array}{llcccccccc}\mathbb{Z}_{>0}: & & 5 & 3 & 1 & 2 & 4 & 6 & & \\ & & I & I & I & I & I & I & & \\ \mathbb{Z}: \cdots & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\ \cdots\end{array}$

Countably infinite sets

A set is countable if it is either finite or the same cardinality as the natural numbers $\left(\mathbb{N}=\mathbb{Z}_{>0}\right)$. If a set A is not finite but is countable, we say A is "countably infinite" and write $|A|=\aleph_{0}$ (pronounced "aleph naught" or "aleph null"). To show that $|A|=\aleph_{0}$: show A is not finite, and give a bijection $f: \mathbb{Z}_{\geqslant 0} \rightarrow A$. Examples:

1. $\mathbb{Z}_{>0}$ is countably infinite:

It is not finite, and $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ by $x \mapsto x$ is a bijection.
2. $\mathbb{Z}_{\geqslant 0}$ is countably infinite:

It is not finite, and $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{\geqslant 0}$ by $x \mapsto x-1$ is a bijection.
3. \mathbb{Z} is countably infinite:

$\mathbb{Z}_{>0}:$		7	5	3	1	2	4	6		
		I								
$\mathbb{Z}: \cdots$	-4	-3	-2	-1	0	1	2	3	4	\cdots

Countably infinite sets

A set is countable if it is either finite or the same cardinality as the natural numbers $\left(\mathbb{N}=\mathbb{Z}_{>0}\right)$. If a set A is not finite but is countable, we say A is "countably infinite" and write $|A|=\aleph_{0}$ (pronounced "aleph naught" or "aleph null"). To show that $|A|=\aleph_{0}$: show A is not finite, and give a bijection $f: \mathbb{Z}_{\geqslant 0} \rightarrow A$. Examples:

1. $\mathbb{Z}_{>0}$ is countably infinite:

It is not finite, and $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ by $x \mapsto x$ is a bijection.
2. $\mathbb{Z}_{\geqslant 0}$ is countably infinite:

It is not finite, and $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{\geqslant 0}$ by $x \mapsto x-1$ is a bijection.
3. \mathbb{Z} is countably infinite:

$\mathbb{Z}_{>0}:$		7	5	3	1	2	4	6	8	
		I								
$\mathbb{Z}: \cdots$	-4	-3	-2	-1	0	1	2	3	4	\cdots

Countably infinite sets

A set is countable if it is either finite or the same cardinality as the natural numbers $\left(\mathbb{N}=\mathbb{Z}_{>0}\right)$. If a set A is not finite but is countable, we say A is "countably infinite" and write $|A|=\aleph_{0}$ (pronounced "aleph naught" or "aleph null"). To show that $|A|=\aleph_{0}$: show A is not finite, and give a bijection $f: \mathbb{Z}_{\geqslant 0} \rightarrow A$. Examples:

1. $\mathbb{Z}_{>0}$ is countably infinite:

It is not finite, and $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ by $x \mapsto x$ is a bijection.
2. $\mathbb{Z}_{\geqslant 0}$ is countably infinite:

It is not finite, and $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{\geqslant 0}$ by $x \mapsto x-1$ is a bijection.
3. \mathbb{Z} is countably infinite:

$\mathbb{Z}_{>0}:$	9	7	5	3	1	2	4	6	8	
	I									
$\mathbb{Z}: \cdots$	-4	-3	-2	-1	0	1	2	3	4	\cdots

Countably infinite sets

A set is countable if it is either finite or the same cardinality as the natural numbers $\left(\mathbb{N}=\mathbb{Z}_{>0}\right)$. If a set A is not finite but is countable, we say A is "countably infinite" and write $|A|=\aleph_{0}$ (pronounced "aleph naught" or "aleph null"). To show that $|A|=\aleph_{0}$: show A is not finite, and give a bijection $f: \mathbb{Z}_{\geqslant 0} \rightarrow A$. Examples:

1. $\mathbb{Z}_{>0}$ is countably infinite:

It is not finite, and $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ by $x \mapsto x$ is a bijection.
2. $\mathbb{Z}_{\geqslant 0}$ is countably infinite:

It is not finite, and $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{\geqslant 0}$ by $x \mapsto x-1$ is a bijection.
3. \mathbb{Z} is countably infinite:

$\mathbb{Z}_{>0}:$	\cdots	9	7	5	3	1	2	4	6	8
		I								
$\mathbb{Z}: \cdots$	-4	-3	-2	-1	0	1	2	3	4	\cdots

Countably infinite sets

A set is countable if it is either finite or the same cardinality as the natural numbers $\left(\mathbb{N}=\mathbb{Z}_{>0}\right)$. If a set A is not finite but is countable, we say A is "countably infinite" and write $|A|=\aleph_{0}$ (pronounced "aleph naught" or "aleph null"). To show that $|A|=\aleph_{0}$: show A is not finite, and give a bijection $f: \mathbb{Z}_{\geqslant 0} \rightarrow A$.

Examples:

1. $\mathbb{Z}_{>0}$ is countably infinite:

It is not finite, and $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ by $x \mapsto x$ is a bijection.
2. $\mathbb{Z}_{\geqslant 0}$ is countably infinite:

It is not finite, and $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{\geqslant 0}$ by $x \mapsto x-1$ is a bijection.
3. \mathbb{Z} is countably infinite: Not finite, and $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}$ by $x \mapsto(-1)^{x}\lfloor x / 2\rfloor$ is a bijection.

$\mathbb{Z}_{>0}:$	\cdots	9	7	5	3	1	2	4	6	8
		I								
$\mathbb{Z}: \cdots$	-4	-3	-2	-1	0	1	2	3	4	\cdots

More on this last example, $|\mathbb{Z}|=\aleph_{0}$:

More on this last example, $|\mathbb{Z}|=\aleph_{0}$:
We started with the picture

$\mathbb{Z}_{\geqslant 0}:$	\cdots	9	7	5	3	1	2	4	6	8
	I									
$\mathbb{Z}:$	\cdots	-4	-3	-2	-1	0	1	2	3	4
	-1									

More on this last example, $|\mathbb{Z}|=\aleph_{0}$:
We started with the picture

$\mathbb{Z}_{\geqslant 0}:$	\cdots	9	7	5	3	1	2	4	6	8
	I									
$\mathbb{Z}: \cdots$	-4	-3	-2	-1	0	1	2	3	4	\cdots

This at least gives us a "list" of integers,

$$
1: 0, \quad 2: 1, \quad 3:-1, \quad 4: 2, \quad 5:-2, \quad \ldots
$$

If I know that every integer appears on this list somewhere, then I know that the integers are countable. (Ok answer)

More on this last example, $|\mathbb{Z}|=\aleph_{0}$:
We started with the picture

$\mathbb{Z}_{\geqslant 0}:$	\cdots	9	7	5	3	1	2	4	6	8
	I									
$\mathbb{Z}: \cdots$	-4	-3	-2	-1	0	1	2	3	4	\cdots

This at least gives us a "list" of integers,

$$
1: 0, \quad 2: 1, \quad 3:-1, \quad 4: 2, \quad 5:-2,
$$

If I know that every integer appears on this list somewhere, then I know that the integers are countable. (Ok answer) The next step in giving a more sophisticated, more robust, answer is to try to get the formula written down

More on this last example, $|\mathbb{Z}|=\aleph_{0}$:
We started with the picture

This at least gives us a "list" of integers,

$$
1: 0, \quad 2: 1, \quad 3:-1, \quad 4: 2, \quad 5:-2,
$$

If I know that every integer appears on this list somewhere, then I know that the integers are countable. (Ok answer)
The next step in giving a more sophisticated, more robust, answer is to try to get the formula written down:
$f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z} \quad x \mapsto \begin{cases}x / 2 & \text { if } x \text { is even }, \\ -(x-1) / 2 & \text { if } x \text { is odd. }\end{cases}$

More on this last example, $|\mathbb{Z}|=\aleph_{0}$:
We started with the picture

$\mathbb{Z}_{\geqslant 0}:$	\cdots	9	7	5	3	1	2	4	6	8
	I									
$\mathbb{Z}: \cdots$	-4	-3	-2	-1	0	1	2	3	4	\cdots

This at least gives us a "list" of integers,

$$
1: 0, \quad 2: 1, \quad 3:-1, \quad 4: 2, \quad 5:-2,
$$

If I know that every integer appears on this list somewhere, then I know that the integers are countable. (Ok answer)
The next step in giving a more sophisticated, more robust, answer is to try to get the formula written down:
$f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z} \quad x \mapsto \begin{cases}x / 2 & \text { if } x \text { is even, } \\ -(x-1) / 2 & \text { if } x \text { is odd. }\end{cases}$
To be even more sophisticated, we used the floor function to get a closed form answer:

$$
\left\{\begin{array} { l l }
{ \{ \begin{array} { l l }
{ x / 2 } & { \text { if } x \text { is even, } } \\
{ - (x - 1) / 2 } & { \text { if } x \text { is odd } }
\end{array} = (- 1) ^ { x } \lfloor x / 2 \rfloor , }
\end{array} \left\{\begin{array}{l}
\text { (Best answer) }
\end{array}\right.\right.
$$

Recall that $|A|=|B|$ if and only if there is a bijection $f: A \rightarrow B$.

Recall that $|A|=|B|$ if and only if there is a bijection $f: A \rightarrow B$. If we know that $|A|=\aleph_{0}$ and $f: A \rightarrow B$ is a bijection, then $|B|=|A|=\aleph_{0}$.

Recall that $|A|=|B|$ if and only if there is a bijection $f: A \rightarrow B$. If we know that $|A|=\aleph_{0}$ and $f: A \rightarrow B$ is a bijection, then $|B|=|A|=\aleph_{0}$.
Example: To show that $2 \mathbb{Z}=\{$ even integers $\}$ is countably infinite, we could construct a bijection like in the previous example.

Recall that $|A|=|B|$ if and only if there is a bijection $f: A \rightarrow B$. If we know that $|A|=\aleph_{0}$ and $f: A \rightarrow B$ is a bijection, then $|B|=|A|=\aleph_{0}$.

Example: To show that $2 \mathbb{Z}=\{$ even integers $\}$ is countably infinite, we could construct a bijection like in the previous example. But it's a little more straightforward to note that

$$
\begin{aligned}
f: \mathbb{Z} & \rightarrow 2 \mathbb{Z} \\
x & \mapsto 2 x
\end{aligned} \quad \text { is a bijection, }
$$

Recall that $|A|=|B|$ if and only if there is a bijection $f: A \rightarrow B$.
If we know that $|A|=\aleph_{0}$ and $f: A \rightarrow B$ is a bijection, then $|B|=|A|=\aleph_{0}$.

Example: To show that $2 \mathbb{Z}=\{$ even integers $\}$ is countably infinite, we could construct a bijection like in the previous example. But it's a little more straightforward to note that

$$
\begin{aligned}
f: \mathbb{Z} & \rightarrow 2 \mathbb{Z} \\
x & \mapsto 2 x
\end{aligned} \quad \text { is a bijection, }
$$

so that $|2 \mathbb{Z}|=|\mathbb{Z}|=\aleph_{0}$.

Recall that $|A|=|B|$ if and only if there is a bijection $f: A \rightarrow B$. If we know that $|A|=\aleph_{0}$ and $f: A \rightarrow B$ is a bijection, then $|B|=|A|=\aleph_{0}$.

Example: To show that $2 \mathbb{Z}=\{$ even integers $\}$ is countably infinite, we could construct a bijection like in the previous example. But it's a little more straightforward to note that

$$
\begin{aligned}
f: \mathbb{Z} & \rightarrow 2 \mathbb{Z} \\
x & \mapsto 2 x
\end{aligned} \quad \text { is a bijection, }
$$

so that $|2 \mathbb{Z}|=|\mathbb{Z}|=\aleph_{0}$.
Examples: For each of the following, show that the set is countably infinite. (Define a bijective function to something that we know to be countably infinite if it's not too hard; otherwise, explain how to make the list.)

1. The set of negative integers $\left(\mathbb{Z}_{<0}\right)$.
2. The set of integers less than $100\left(\mathbb{Z}_{<100}\right)$.
3. The set of integers that are integer multiples of $3(3 \mathbb{Z})$.
4. The set of integers that are not integer multiples of 3 $(\mathbb{Z}-3 \mathbb{Z})$.

The rational numbers

Claim: $\mathbb{Q}_{>0}$ is countably infinite.

The rational numbers

Claim: $\mathbb{Q}_{>0}$ is countably infinite. Make a table:

	1	2	3	4	5	\cdots
1	$1 / 1$	$2 / 1$	$3 / 1$	$4 / 1$	$5 / 1$	
2	$1 / 2$	$2 / 2$	$3 / 2$	$4 / 2$	$5 / 2$	
3	$1 / 3$	$2 / 3$	$3 / 3$	$4 / 3$	$5 / 3$	
4	$1 / 4$	$2 / 4$	$3 / 4$	$4 / 4$	$5 / 4$	
5	$1 / 5$	$2 / 5$	$3 / 5$	$4 / 5$	$5 / 5$	
\vdots						

The rational numbers

Claim: $\mathbb{Q}_{>0}$ is countably infinite. Make a table:

	1	2	3	4	5	\cdots
1	$1 / 1$	$2 / 1$	$3 / 1$	$4 / 1$	$5 / 1$	
2	$1 / 2$	$2 / 2$	$3 / 2$	$4 / 2$	$5 / 2$	
3	$1 / 3$	$2 / 3$	$3 / 3$	$4 / 3$	$5 / 3$	
4	$1 / 4$	$2 / 4$	$3 / 4$	$4 / 4$	$5 / 4$	
5	$1 / 5$	$2 / 5$	$3 / 5$	$4 / 5$	$5 / 5$	
\vdots						

The rational numbers

Claim: $\mathbb{Q}_{>0}$ is countably infinite. Make a table:

	1	2	3	4	5	\cdots
1	$1 / 1$	$\frac{2}{2 / 1}$	$3 / 1$	$4 / 1$	$5 / 1$	
2	$1 / 2$	$2 / 2$	$3 / 2$	$4 / 2$	$5 / 2$	
3	$1 / 3$	$2 / 3$	$3 / 3$	$4 / 3$	$5 / 3$	
4	$1 / 4$	$2 / 4$	$3 / 4$	$4 / 4$	$5 / 4$	
5	$1 / 5$	$2 / 5$	$3 / 5$	$4 / 5$	$5 / 5$	
\vdots						

The rational numbers

Claim: $\mathbb{Q}_{>0}$ is countably infinite. Make a table:

	1	2	3	4	5	\cdots
1	$1 / 1$	$\frac{2}{2 / 1}$	$3 / 1$	$4 / 1$	$5 / 1$	
2	$1 / 2$	$2 / 2$	$3 / 2$	$4 / 2$	$5 / 2$	
3	$1 / 3$	$2 / 3$	$3 / 3$	$4 / 3$	$5 / 3$	
4	$1 / 4$	$2 / 4$	$3 / 4$	$4 / 4$	$5 / 4$	
5	$1 / 5$	$2 / 5$	$3 / 5$	$4 / 5$	$5 / 5$	
\vdots						

The rational numbers

Claim: $\mathbb{Q}_{>0}$ is countably infinite. Make a table:

	1	2	3	4	5	\cdots
1	$1 / 1$	$\frac{2}{2 / 1}$	$3 / 1$	$4 / 1$	$5 / 1$	
2	$1 / 2$	$2 / 2$	$3 / 2$	$4 / 2$	$5 / 2$	
3	$\frac{4}{3}$					
4	$1 / 3$	$2 / 3$	$3 / 3$	$4 / 3$	$5 / 3$	
4	$1 / 4$	$2 / 4$	$3 / 4$	$4 / 4$	$5 / 4$	
5	$1 / 5$	$2 / 5$	$3 / 5$	$4 / 5$	$5 / 5$	
\vdots						

The rational numbers

Claim: $\mathbb{Q}_{>0}$ is countably infinite. Make a table:

	1	2	3	4	5	\cdots
1	$1 / 1$	$\frac{2}{2 / 1}$	$3 / 1$	$4 / 1$	$5 / 1$	
2	$1 / 2$	$2 / 2$	$3 / 2$	$4 / 2$	$5 / 2$	
3	$\frac{4}{3}$					
4	$1 / 3$	$2 / 3$	$3 / 3$	$4 / 3$	$5 / 3$	
4	$1 / 4$	$2 / 4$	$3 / 4$	$4 / 4$	$5 / 4$	
5	$1 / 5$	$2 / 5$	$3 / 5$	$4 / 5$	$5 / 5$	
\vdots						

The rational numbers

Claim: $\mathbb{Q}_{>0}$ is countably infinite. Make a table:

	1	2	3	4	5	
1		$\stackrel{2}{2 / 1}$	${ }^{5}$	4/1	$5 / 1$	
2	1/2	12		$4 / 2$	$5 / 2$	
3	1/3	$2 / 3$	$3 / 3$	$4 / 3$	$5 / 3$	(skip prev. counted fractions)
4	1/4	$2 / 4$	3/4	4/4	5/4	
5	1/5	$2 / 5$	$3 / 5$	4/5	5/5	

The rational numbers

Claim: $\mathbb{Q}_{>0}$ is countably infinite. Make a table:

	1	2	3	4	5	
1		$\stackrel{2}{2 / 1}$	$\begin{gathered} 5 \\ 3 / 1 \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ 4 / 1 \end{gathered}$	5/1	
2	1/2	2	$3 / 2$		$5 / 2$	
3	1/3	$2 / 3$	$3 / 3$	$4 / 3$	$5 / 3$	(skip prev. counted fractions)
4	1/4	$2 / 4$	$3 / 4$	4/4	5/4	
5	1/5	$2 / 5$	$3 / 5$	4/5	5/5	

The rational numbers

Claim: $\mathbb{Q}_{>0}$ is countably infinite. Make a table:

	1	2	3	4	5
1					
2					
3					
4					

The rational numbers

Claim: $\mathbb{Q}_{>0}$ is countably infinite. Make a table:

	1	2	3	4	5	
1						(skip prev. counted fractions)
3						
4						
5						

The rational numbers

Claim: $\mathbb{Q}_{>0}$ is countably infinite. Make a table:

	1	2	3	4	5	
1						(skip prev. counted fractions)
3						
4						
5						

Then use the same alternating map that we did for $\mathbb{Z}_{>0} \rightarrow \mathbb{Z}$ to build a bijection $\mathbb{Q}_{>0} \rightarrow \mathbb{Q}$, yielding a bijection $\mathbb{Z}_{>0} \rightarrow \mathbb{Q}>0 \rightarrow \mathbb{Q}$.

Are there sets that are not countable?

Are there sets that are not countable?
Theorem. The set of real numbers in the interval $[0,1)$ is not countable.

Are there sets that are not countable?
Theorem. The set of real numbers in the interval $[0,1)$ is not countable.

Proof outline: We will prove this by contradiction.
Suppose that the set $[0,1)$ is countable, so that the real numbers in $[0,1)$ can be listed.
Take one such list.
Goal: Show that the list isn't complete. Namely, algorithmically produce an element of $[0,1)$ that isn't on any fixed list.

Take this is the supposedly complete list of real numbers in $[0,1)$.
For example:

1. $0.001240191057 .$.
2. $0.123451234512 \ldots$
3. $0.333333333333 .$.
4. 0.500000000000 ...
5. $0.121212121212 \ldots$
6. $0.555555555555 \ldots$
7. $0.141592653589 .$.
8. 0.001850000000 ...
9. $0.111111111111 \ldots$
10. $0.750000000000 \ldots$
11. 0.948797362471 ...

Take this is the supposedly complete list of real numbers in $[0,1)$.

For example:

1. $0.001240191057 .$.
2. $0.123451234512 \ldots$
3. $0.333333333333 .$.
4. 0.500000000000 ..
5. $0.121212121212 \ldots$
6. $0.555555555555 \ldots$
7. $0.141592653589 \ldots$
8. 0.001850000000 ...
9. $0.111111111111 \ldots$
10. $0.750000000000 \ldots$
11. 0.948797362471 ...

Algorithm for producing a number that is not on the list:

Take this is the supposedly complete list of real numbers in $[0,1)$.
For example:

1. $0.001240191057 .$.
2. $0.123451234512 .$.
3. $0.333333333333 .$.
4. 0.500000000000 ...
5. $0.121212121212 \ldots$
6. $0.555555555555 \ldots$
7. $0.141592653589 \ldots$
8. 0.001850000000 ...
9. $0.111111111111 .$.
10. $0.750000000000 \ldots$
11. 0.948797362471 ...

Take this is the supposedly complete list of real numbers in $[0,1)$.
For example:

1. $0.001240191057 .$.
2. $0.123451234512 \ldots$
3. $0.333333333333 .$.
4. 0.500000000000 ...
5. $0.121212121212 \ldots$
6. $0.555555555555 \ldots$
7. $0.141592653589 \ldots$
8. $0.001850000000 \ldots$
9. $0.111111111111 \ldots$
10. $0.750000000000 \ldots$
11. 0.948797362471 ...

Take this is the supposedly complete list of real numbers in $[0,1)$.
For example:

1. $0.001240191057 .$.
2. $0.123451234512 .$.
3. $0.333333333333 .$.
4. 0.500000000000 ...
5. $0.121212121212 \ldots$
6. $0.555555555555 \ldots$
7. 0.141592653589 ...
8. $0.001850000000 \ldots$
9. $0.111111111111 .$.
10. 0.750000000000 ...
11. 0.948797362471 ...

Take this is the supposedly complete list of real numbers in $[0,1)$.

For example:

1. $0.001240191057 .$.
2. $0.123451234512 .$.
3. $0.333333333333 .$.
4. 0.500000000000 ...
5. $0.121212121212 \ldots$
6. $0.555555555555 \ldots$
7. 0.141592653589 ...
8. $0.001850000000 \ldots$
9. $0.111111111111 .$.
10. 0.750000000000 ...
11. $0.948797362471 \ldots$

Algorithm for producing a number that
is not on the list:
In the i th number in the list, highlight the i th digit.
Build a new number as follows:
i. If the highlighted digit of the i th number is a 0 , then make the corresponding digit of the new number a 1.
ii. If the highlighted digit of the i th number is not a 0 , then make the corresponding digit of the new number a 0 .
Example:

Take this is the supposedly complete list of real numbers in $[0,1)$.

For example:

1. $0.001240191057 .$.
2. $0.123451234512 .$.
3. $0.333333333333 .$.
4. 0.500000000000 ...
5. $0.121212121212 \ldots$
6. $0.555555555555 \ldots$
7. 0.141592653589 ...
8. $0.001850000000 \ldots$
9. $0.111111111111 .$.
10. 0.750000000000 ...
11. $0.948797362471 .$.

Algorithm for producing a number that
is not on the list:
In the i th number in the list, highlight the i th digit.
Build a new number as follows:
i. If the highlighted digit of the i th number is a 0 , then make the corresponding digit of the new number a 1.
ii. If the highlighted digit of the i th number is not a 0 , then make the corresponding digit of the new number a 0 .
Example:
0.1

Take this is the supposedly complete list of real numbers in $[0,1)$.

For example:

1. $0.001240191057 .$.
2. $0.123451234512 .$.
3. $0.333333333333 .$.
4. 0.500000000000 ...
5. $0.121212121212 \ldots$
6. $0.555555555555 \ldots$
7. 0.141592653589 ...
8. $0.001850000000 \ldots$
9. $0.111111111111 .$.
10. 0.7500000000000...
11. $0.948797362471 .$.

Algorithm for producing a number that
is not on the list:
In the i th number in the list, highlight the i th digit.
Build a new number as follows:
i. If the highlighted digit of the i th number is a 0 , then make the corresponding digit of the new number a 1.
ii. If the highlighted digit of the i th number is not a 0 , then make the corresponding digit of the new number a 0 .
Example:
0.10

Take this is the supposedly complete list of real numbers in $[0,1)$.

For example:

1. $0.001240191057 .$.
2. $0.123451234512 .$.
3. $0.333333333333 .$.
4. 0.500000000000 ...
5. $0.121212121212 \ldots$
6. $0.555555555555 \ldots$
7. 0.141592653589 ...
8. $0.001850000000 \ldots$
9. $0.111111111111 .$.
10. 0.750000000000 ...
11. $0.948797362471 .$.

Algorithm for producing a number that
is not on the list:
In the i th number in the list, highlight the i th digit.
Build a new number as follows:
i. If the highlighted digit of the i th number is a 0 , then make the corresponding digit of the new number a 1.
ii. If the highlighted digit of the i th number is not a 0 , then make the corresponding digit of the new number a 0 .
Example:
0.100

Take this is the supposedly complete list of real numbers in $[0,1)$.

For example:

1. $0.001240191057 .$.
2. $0.123451234512 .$.
3. $0.333333333333 .$.
4. 0.500000000000 ...
5. $0.121212121212 \ldots$
6. $0.555555555555 \ldots$
7. 0.141592653589 ...
8. $0.001850000000 \ldots$
9. $0.111111111111 .$.
10. 0.750000000000 ...
11. $0.948797362471 .$.

Algorithm for producing a number that
is not on the list:
In the i th number in the list, highlight the i th digit.
Build a new number as follows:
i. If the highlighted digit of the i th number is a 0 , then make the corresponding digit of the new number a 1.
ii. If the highlighted digit of the i th number is not a 0 , then make the corresponding digit of the new number a 0 .
Example:
0.1001

Take this is the supposedly complete list of real numbers in $[0,1)$.

For example:

1. $0.001240191057 .$.
2. $0.123451234512 .$.
3. $0.333333333333 .$.
4. 0.500000000000 ...
5. $0.121212121212 \ldots$
6. $0.555555555555 \ldots$
7. 0.141592653589 ...
8. $0.001850000000 \ldots$
9. $0.111111111111 .$.
10. 0.7500000000000...
11. $0.948797362471 .$.

Algorithm for producing a number that
is not on the list:
In the i th number in the list, highlight the i th digit.
Build a new number as follows:
i. If the highlighted digit of the i th number is a 0 , then make the corresponding digit of the new number a 1.
ii. If the highlighted digit of the i th number is not a 0 , then make the corresponding digit of the new number a 0 .
Example:
0.10010

Take this is the supposedly complete list of real numbers in $[0,1)$.

For example:

1. $0.001240191057 .$.
2. $0.123451234512 .$.
3. $0.333333333333 .$.
4. 0.500000000000 ...
5. $0.121212121212 \ldots$
6. $0.555555555555 \ldots$
7. 0.141592653589 ...
8. $0.001850000000 \ldots$
9. $0.111111111111 .$.
10. 0.750000000000 ...
11. $0.948797362471 \ldots$

Algorithm for producing a number that
is not on the list:
In the i th number in the list, highlight the i th digit.
Build a new number as follows:
i. If the highlighted digit of the i th number is a 0 , then make the corresponding digit of the new number a 1.
ii. If the highlighted digit of the i th number is not a 0 , then make the corresponding digit of the new number a 0 .
Example:
0.100100

Take this is the supposedly complete list of real numbers in $[0,1)$.

For example:

1. $0.001240191057 .$.
2. $0.123451234512 .$.
3. $0.333333333333 .$.
4. 0.500000000000 ...
5. $0.121212121212 \ldots$
6. $0.555555555555 \ldots$
7. 0.141592653589 ...
8. $0.001850000000 \ldots$
9. $0.111111111111 .$.
10. 0.750000000000 ...
11. 0.948797362471 ...

Algorithm for producing a number that
is not on the list:
In the i th number in the list, highlight the i th digit.
Build a new number as follows:
i. If the highlighted digit of the i th number is a 0 , then make the corresponding digit of the new number a 1.
ii. If the highlighted digit of the i th number is not a 0 , then make the corresponding digit of the new number a 0 .
Example:
0.1001000

Take this is the supposedly complete list of real numbers in $[0,1)$.

For example:

1. $0.001240191057 .$.
2. $0.123451234512 .$.
3. $0.333333333333 .$.
4. 0.500000000000 ...
5. $0.121212121212 \ldots$
6. $0.555555555555 \ldots$
7. 0.141592653589 ...
8. $0.001850000000 \ldots$
9. $0.111111111111 .$.
10. 0.750000000000 ...
11. 0.948797362471 ...

Algorithm for producing a number that
is not on the list:
In the i th number in the list, highlight the i th digit.
Build a new number as follows:
i. If the highlighted digit of the i th number is a 0 , then make the corresponding digit of the new number a 1.
ii. If the highlighted digit of the i th number is not a 0 , then make the corresponding digit of the new number a 0 .
Example:
0.10010001

Take this is the supposedly complete list of real numbers in $[0,1)$.

For example:

1. $0.001240191057 .$.
2. $0.123451234512 .$.
3. $0.333333333333 .$.
4. 0.500000000000 ...
5. $0.121212121212 \ldots$
6. $0.555555555555 \ldots$
7. 0.141592653589 ...
8. $0.001850000000 \ldots$
9. $0.111111111111 .$.
10. 0.750000000000 ...
11. 0.948797362471 ...

Algorithm for producing a number that
is not on the list:
In the i th number in the list, highlight the i th digit.
Build a new number as follows:
i. If the highlighted digit of the i th number is a 0 , then make the corresponding digit of the new number a 1.
ii. If the highlighted digit of the i th number is not a 0 , then make the corresponding digit of the new number a 0 .
Example:
0.100100010

Take this is the supposedly complete list of real numbers in $[0,1)$.

For example:

1. $0.001240191057 .$.
2. $0.123451234512 .$.
3. $0.333333333333 .$.
4. 0.500000000000 ...
5. $0.121212121212 \ldots$
6. $0.555555555555 \ldots$
7. 0.141592653589 ...
8. $0.001850000000 \ldots$
9. $0.111111111111 .$.
10. 0.750000000000 ...
11. $0.948797362471 .$.

Algorithm for producing a number that
is not on the list:
In the i th number in the list, highlight the i th digit.
Build a new number as follows:
i. If the highlighted digit of the i th number is a 0 , then make the corresponding digit of the new number a 1.
ii. If the highlighted digit of the i th number is not a 0 , then make the corresponding digit of the new number a 0 .
Example:
0.1001000101

Take this is the supposedly complete list of real numbers in $[0,1)$.

For example:

1. $0.001240191057 .$.
2. $0.123451234512 .$.
3. $0.333333333333 .$.
4. 0.500000000000 ...
5. $0.121212121212 \ldots$
6. $0.555555555555 \ldots$
7. 0.141592653589 ...
8. $0.001850000000 \ldots$
9. $0.111111111111 .$.
10. 0.750000000000 ...
11. 0.948797362471 ...

Algorithm for producing a number that
is not on the list:
In the i th number in the list, highlight the i th digit.
Build a new number as follows:
i. If the highlighted digit of the i th number is a 0 , then make the corresponding digit of the new number a 1.
ii. If the highlighted digit of the i th number is not a 0 , then make the corresponding digit of the new number a 0 .
Example:
0.10010001010...

Take this is the supposedly complete list of real numbers in $[0,1)$.

For example:

1. $0.001240191057 .$.
2. $0.123451234512 .$.
3. $0.333333333333 .$.
4. $0.500000000000 \ldots$
5. $0.121212121212 \ldots$
6. $0.555555555555 \ldots$
7. $0.141592653589 \ldots$
8. $0.001850000000 \ldots$
9. $0.111111111111 .$.
10. 0.750000000000 ...

Algorithm for producing a number that
is not on the list:
In the i th number in the list, highlight the i th digit.
Build a new number as follows:
i. If the highlighted digit of the i th number is a 0 , then make the corresponding digit of the new number a 1.
ii. If the highlighted digit of the i th number is not a 0 , then make the corresponding digit of the new number a 0 .
11. $0.948797362471 \ldots$

Example:
0.10010001010...

In this way, this new number differs from every item in the list in at least one digit!

Theorem. The set of real numbers in the interval $[0,1)$ is not countable.

Proof outline: We will prove this by contradiction. Suppose that the set $[0,1)$ is countable, so that the real numbers in $[0,1)$ can be listed. Show that any list isn't complete. Namely, algorithmically produce an element of $[0,1)$ that isn't on any fixed list.
Proof. For $x \in[0,1)$, denote the i th digit of x by $x[i]$. Note that for $x, y \in[0,1)$, we have $x=y$ if and only if $x[i]=y[i]$ for all $i \in \mathbb{Z}_{>0}$.

Theorem. The set of real numbers in the interval $[0,1)$ is not countable.

Proof outline: We will prove this by contradiction. Suppose that the set $[0,1)$ is countable, so that the real numbers in $[0,1)$ can be listed. Show that any list isn't complete. Namely, algorithmically produce an element of $[0,1)$ that isn't on any fixed list.
Proof. For $x \in[0,1)$, denote the i th digit of x by $x[i]$. Note that for $x, y \in[0,1)$, we have $x=y$ if and only if $x[i]=y[i]$ for all $i \in \mathbb{Z}_{>0}$.
Now, suppose $f: \mathbb{Z}_{>0} \rightarrow[0,1)$ is a bijection.

Theorem. The set of real numbers in the interval $[0,1)$ is not countable.

Proof outline: We will prove this by contradiction. Suppose that the set $[0,1)$ is countable, so that the real numbers in $[0,1)$ can be listed. Show that any list isn't complete. Namely, algorithmically produce an element of $[0,1)$ that isn't on any fixed list.
Proof. For $x \in[0,1)$, denote the i th digit of x by $x[i]$. Note that for $x, y \in[0,1)$, we have $x=y$ if and only if $x[i]=y[i]$ for all $i \in \mathbb{Z}_{>0}$.
Now, suppose $f: \mathbb{Z}_{>0} \rightarrow[0,1)$ is a bijection. Define $x_{f} \in[0,1)$ so that the i th digit of x_{f} is

$$
x_{f}[i]= \begin{cases}1 & \text { if } f(i)[i]=0 \\ 0 & \text { if } f(i)[i]=1\end{cases}
$$

Theorem. The set of real numbers in the interval $[0,1)$ is not countable.

Proof outline: We will prove this by contradiction. Suppose that the set $[0,1)$ is countable, so that the real numbers in $[0,1)$ can be listed. Show that any list isn't complete. Namely, algorithmically produce an element of $[0,1)$ that isn't on any fixed list.

Proof. For $x \in[0,1)$, denote the i th digit of x by $x[i]$. Note that for $x, y \in[0,1)$, we have $x=y$ if and only if $x[i]=y[i]$ for all $i \in \mathbb{Z}_{>0}$.
Now, suppose $f: \mathbb{Z}_{>0} \rightarrow[0,1)$ is a bijection. Define $x_{f} \in[0,1)$ so that the i th digit of x_{f} is

$$
x_{f}[i]= \begin{cases}1 & \text { if } f(i)[i]=0 \\ 0 & \text { if } f(i)[i]=1\end{cases}
$$

Then, for all $i \in \mathbb{Z}_{>0}$, we have $f(i)[i] \neq x_{f}[i]$, so that $f(i) \neq x_{f}$.

Theorem. The set of real numbers in the interval $[0,1)$ is not countable.

Proof outline: We will prove this by contradiction. Suppose that the set $[0,1)$ is countable, so that the real numbers in $[0,1)$ can be listed. Show that any list isn't complete. Namely, algorithmically produce an element of $[0,1)$ that isn't on any fixed list.

Proof. For $x \in[0,1)$, denote the i th digit of x by $x[i]$. Note that for $x, y \in[0,1)$, we have $x=y$ if and only if $x[i]=y[i]$ for all $i \in \mathbb{Z}_{>0}$.
Now, suppose $f: \mathbb{Z}_{>0} \rightarrow[0,1)$ is a bijection. Define $x_{f} \in[0,1)$ so that the i th digit of x_{f} is

$$
x_{f}[i]= \begin{cases}1 & \text { if } f(i)[i]=0 \\ 0 & \text { if } f(i)[i]=1\end{cases}
$$

Then, for all $i \in \mathbb{Z}_{>0}$, we have $f(i)[i] \neq x_{f}[i]$, so that $f(i) \neq x_{f}$. Therefore $x_{f} \notin f\left(\mathbb{Z}_{>0}\right.$, so that f is not surjective. This contradicts f being bijective, so no such bijection exists. Therefore $[0,1)$ is not countable.

Theorem. The set of real numbers in the interval $[0,1)$ is not countable.

Proof outline: We will prove this by contradiction. Suppose that the set $[0,1)$ is countable, so that the real numbers in $[0,1)$ can be listed. Show that any list isn't complete. Namely, algorithmically produce an element of $[0,1)$ that isn't on any fixed list.
Proof. For $x \in[0,1)$, denote the i th digit of x by $x[i]$. Note that for $x, y \in[0,1)$, we have $x=y$ if and only if $x[i]=y[i]$ for all $i \in \mathbb{Z}_{>0}$.
Now, suppose $f: \mathbb{Z}_{>0} \rightarrow[0,1)$ is a bijection let $f: \mathbb{Z}_{>0} \rightarrow[0,1)$. Define $x_{f} \in[0,1)$ so that the i th digit of x_{f} is

$$
x_{f}[i]= \begin{cases}1 & \text { if } f(i)[i]=0 \\ 0 & \text { if } f(i)[i]=1\end{cases}
$$

Then, for all $i \in \mathbb{Z}_{>0}$, we have $f(i)[i] \neq x_{f}[i]$, so that $f(i) \neq x_{f}$. Therefore $x_{f} \notin f\left(\mathbb{Z}_{>0}\right.$, so that f is not surjective. This contradicts f being bijective, so no such bijection exists. Thus, since no function $f: \mathbb{Z}_{>0} \rightarrow[0,1)$ can be surjective, no bijection between $\mathbb{Z}_{>0}$ and $[0,1)$ exists. Therefore $[0,1)$ is not countable.

For sets X and Y, we say $|X| \leqslant|Y|$ if there exists an injective function $f: X \rightarrow Y$. And write $|X|<|Y|$ if $|X| \leqslant|Y|$ and $|X| \neq|Y|$.

For sets X and Y, we say $|X| \leqslant|Y|$ if there exists an injective function $f: X \rightarrow Y$. And write $|X|<|Y|$ if $|X| \leqslant|Y|$ and $|X| \neq|Y|$.

Recall, the power set of as set A is the set of subsets of A, given by

$$
\mathcal{P}(A)=\{S \mid S \subseteq A\}
$$

For sets X and Y, we say $|X| \leqslant|Y|$ if there exists an injective function $f: X \rightarrow Y$. And write $|X|<|Y|$ if $|X| \leqslant|Y|$ and $|X| \neq|Y|$.

Recall, the power set of as set A is the set of subsets of A, given by

$$
\mathcal{P}(A)=\{S \mid S \subseteq A\}
$$

Theorem. $|A|<|\mathcal{P}(A)|$.

For sets X and Y, we say $|X| \leqslant|Y|$ if there exists an injective function $f: X \rightarrow Y$. And write $|X|<|Y|$ if $|X| \leqslant|Y|$ and $|X| \neq|Y|$.

Recall, the power set of as set A is the set of subsets of A, given by

$$
\mathcal{P}(A)=\{S \mid S \subseteq A\}
$$

Theorem. $|A|<|\mathcal{P}(A)|$.

Outline:

1. Show $|A| \leqslant|\mathcal{P}(A)|$ by showing an injective map exists (give one example).
2. Show $|A| \neq|\mathcal{P}(A)|$ by showing that any map (not just the example from before) cannot be surjective.
Hint. For any $f: A \rightarrow \mathcal{P}(A)$, show f is not surjective; i.e. construct a set $S \subseteq A$ such that $S \neq f(a)$ for all $a \in A$.
(Need for care: 1 is a "there exists" statement; 2 is a "for all" statement.)

Relations

A binary relation on a set A is a subset $R \subseteq A \times A$, where elements (a, b) are written as $a \sim b$.

Relations

A binary relation on a set A is a subset $R \subseteq A \times A$, where elements (a, b) are written as $a \sim b$.

Example: $A=\mathbb{Z}$ and $R=\{a \sim b \mid a<b\}$.

Relations

A binary relation on a set A is a subset $R \subseteq A \times A$, where elements (a, b) are written as $a \sim b$.

Example: $A=\mathbb{Z}$ and $R=\{a \sim b \mid a<b\}$.
In words:
Let \sim be the relation on \mathbb{Z} given by $a \sim b$ if $a<b$.
(Note that we use language like in definitions, where "if" actually means "if and only if".)

Relations

A binary relation on a set A is a subset $R \subseteq A \times A$, where elements (a, b) are written as $a \sim b$.

Example: $A=\mathbb{Z}$ and $R=\{a \sim b \mid a<b\}$.
In words:
Let \sim be the relation on \mathbb{Z} given by $a \sim b$ if $a<b$.
(Note that we use language like in definitions, where "if" actually means "if and only if".)
Example: $A=\mathbb{R}$ and $R=\{a \sim b \mid a=b\}$.

Relations

A binary relation on a set A is a subset $R \subseteq A \times A$, where elements (a, b) are written as $a \sim b$.

Example: $A=\mathbb{Z}$ and $R=\{a \sim b \mid a<b\}$.
In words:
Let \sim be the relation on \mathbb{Z} given by $a \sim b$ if $a<b$.
(Note that we use language like in definitions, where "if" actually means "if and only if".)
Example: $A=\mathbb{R}$ and $R=\{a \sim b \mid a=b\}$.
In words:
Let \sim be the relation on \mathbb{R} given by $a \sim b$ if $a=b$.

Relations

A binary relation on a set A is a subset $R \subseteq A \times A$, where elements (a, b) are written as $a \sim b$.

Example: $A=\mathbb{Z}$ and $R=\{a \sim b \mid a<b\}$.
In words:
Let \sim be the relation on \mathbb{Z} given by $a \sim b$ if $a<b$.
(Note that we use language like in definitions, where "if" actually means "if and only if".)
Example: $A=\mathbb{R}$ and $R=\{a \sim b \mid a=b\}$.
In words:
Let \sim be the relation on \mathbb{R} given by $a \sim b$ if $a=b$.
Example: $A=\mathbb{Z}$ and $R=\{a \sim b \mid a \equiv b(\bmod 3)\}$.

Relations

A binary relation on a set A is a subset $R \subseteq A \times A$, where elements (a, b) are written as $a \sim b$.

Example: $A=\mathbb{Z}$ and $R=\{a \sim b \mid a<b\}$.
In words:
Let \sim be the relation on \mathbb{Z} given by $a \sim b$ if $a<b$.
(Note that we use language like in definitions, where "if" actually means "if and only if".)
Example: $A=\mathbb{R}$ and $R=\{a \sim b \mid a=b\}$.
In words:
Let \sim be the relation on \mathbb{R} given by $a \sim b$ if $a=b$.
Example: $A=\mathbb{Z}$ and $R=\{a \sim b \mid a \equiv b(\bmod 3)\}$.
In words:
Let \sim be the relation on \mathbb{Z} given by $a \sim b$ if $a \equiv b(\bmod 3)$.

More examples of (binary) relations:

More examples of (binary) relations:

1. For A a number system, let $a \sim b$ if $a=b$.

More examples of (binary) relations:

1. For A a number system, let $a \sim b$ if $a=b$.
2. For A a number system, let $a \sim b$ if $a<b$.

More examples of (binary) relations:

1. For A a number system, let $a \sim b$ if $a=b$.
2. For A a number system, let $a \sim b$ if $a<b$.
3. For $A=\mathbb{R}$, let $a \sim b$ if $a b=0$.

More examples of (binary) relations:

1. For A a number system, let $a \sim b$ if $a=b$.
2. For A a number system, let $a \sim b$ if $a<b$.
3. For $A=\mathbb{R}$, let $a \sim b$ if $a b=0$.
4. For A a set of people, let $a \sim b$ if a is a (full) sibling of b.

More examples of (binary) relations:

1. For A a number system, let $a \sim b$ if $a=b$.
2. For A a number system, let $a \sim b$ if $a<b$.
3. For $A=\mathbb{R}$, let $a \sim b$ if $a b=0$.
4. For A a set of people, let $a \sim b$ if a is a (full) sibling of b.
5. For A a set of people, let $a \sim b$ if a and b speak a common language.

More examples of (binary) relations:

1. For A a number system, let $a \sim b$ if $a=b$.
2. For A a number system, let $a \sim b$ if $a<b$.
3. For $A=\mathbb{R}$, let $a \sim b$ if $a b=0$.
4. For A a set of people, let $a \sim b$ if a is a (full) sibling of b.
5. For A a set of people, let $a \sim b$ if a and b speak a common language.

A binary relation on a set A is...
(R) reflexive if $a \sim a$ for all $a \in A$;

More examples of (binary) relations:

1. For A a number system, let $a \sim b$ if $a=b$. R
2. For A a number system, let $a \sim b$ if $a<b$. not R
3. For $A=\mathbb{R}$, let $a \sim b$ if $a b=0$. not R
4. For A a set of people, let $a \sim b$ if a is a (full) sibling of b. not R
5. For A a set of people, let $a \sim b$ if a and b speak a common language. R

A binary relation on a set A is...
(R) reflexive if $a \sim a$ for all $a \in A$;

More examples of (binary) relations:

1. For A a number system, let $a \sim b$ if $a=b$. R
2. For A a number system, let $a \sim b$ if $a<b$. not R
3. For $A=\mathbb{R}$, let $a \sim b$ if $a b=0$. not R
4. For A a set of people, let $a \sim b$ if a is a (full) sibling of b. not R
5. For A a set of people, let $a \sim b$ if a and b speak a common language. R

A binary relation on a set A is...
(R) reflexive if $a \sim a$ for all $a \in A$;
(S) symmetric if $a \sim b$ implies $b \sim a$;

More examples of (binary) relations:

1. For A a number system, let $a \sim b$ if $a=b$. R, S
2. For A a number system, let $a \sim b$ if $a<b$. not R , not S
3. For $A=\mathbb{R}$, let $a \sim b$ if $a b=0$. not R, S
4. For A a set of people, let $a \sim b$ if a is a (full) sibling of b. not R, S
5. For A a set of people, let $a \sim b$ if a and b speak a common language. R, S

A binary relation on a set A is...
(R) reflexive if $a \sim a$ for all $a \in A$;
(S) symmetric if $a \sim b$ implies $b \sim a$;

More examples of (binary) relations:

1. For A a number system, let $a \sim b$ if $a=b$. R, S
2. For A a number system, let $a \sim b$ if $a<b$. not R , not S
3. For $A=\mathbb{R}$, let $a \sim b$ if $a b=0$. not R, S
4. For A a set of people, let $a \sim b$ if a is a (full) sibling of b. not R, S
5. For A a set of people, let $a \sim b$ if a and b speak a common language. R, S

A binary relation on a set A is...
(R) reflexive if $a \sim a$ for all $a \in A$;
(S) symmetric if $a \sim b$ implies $b \sim a$;
(T) transitive if $a \sim b$ and $b \sim c$ implies $a \sim c$, i.e.

$$
(a \sim b \wedge b \sim c) \Rightarrow a \sim c
$$

More examples of (binary) relations:

1. For A a number system, let $a \sim b$ if $a=b$. R, S, T
2. For A a number system, let $a \sim b$ if $a<b$. not R , not S, T
3. For $A=\mathbb{R}$, let $a \sim b$ if $a b=0$. not R, S, not T
4. For A a set of people, let $a \sim b$ if a is a (full) sibling of b. not R, S, T
5. For A a set of people, let $a \sim b$ if a and b speak a common language. R, S, not T

A binary relation on a set A is...
(R) reflexive if $a \sim a$ for all $a \in A$;
(S) symmetric if $a \sim b$ implies $b \sim a$;
(T) transitive if $a \sim b$ and $b \sim c$ implies $a \sim c$, i.e.

$$
(a \sim b \wedge b \sim c) \Rightarrow a \sim c
$$

More examples of (binary) relations:

1. For A a number system, let $a \sim b$ if $a=b$. R, S, T
2. For A a number system, let $a \sim b$ if $a<b$. not R , not S, T
3. For $A=\mathbb{R}$, let $a \sim b$ if $a b=0$. not R, S, not T
4. For A a set of people, let $a \sim b$ if a is a (full) sibling of b. not R, S, T
5. For A a set of people, let $a \sim b$ if a and b speak a common language. R, S, not T

A binary relation on a set A is...
(R) reflexive if $a \sim a$ for all $a \in A$;
(S) symmetric if $a \sim b$ implies $b \sim a$;
(T) transitive if $a \sim b$ and $b \sim c$ implies $a \sim c$, i.e.

$$
(a \sim b \wedge b \sim c) \Rightarrow a \sim c
$$

An equivalence relation on a set A is a binary relation that is reflexive, symmetric, and transitive.

More examples of (binary) relations:

1. For A a number system, let $a \sim b$ if $a=b$. R, S, T
2. For A a number system, let $a \sim b$ if $a<b$. not R , not S, T
3. For $A=\mathbb{R}$, let $a \sim b$ if $a b=0$. not R, S, not T
4. For A a set of people, let $a \sim b$ if a is a (full) sibling of b. not R, S, T
5. For A a set of people, let $a \sim b$ if a and b speak a common language. R, S, not T

A binary relation on a set A is...
(R) reflexive if $a \sim a$ for all $a \in A$;
(S) symmetric if $a \sim b$ implies $b \sim a$;
(T) transitive if $a \sim b$ and $b \sim c$ implies $a \sim c$, i.e.

$$
(a \sim b \wedge b \sim c) \Rightarrow a \sim c
$$

An equivalence relation on a set A is a binary relation that is reflexive, symmetric, and transitive. (Only \#1)

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
" a \sim b \quad \text { if } a \equiv b \quad(\bmod n) . "
$$

Is \sim is an equivalence relation?

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
" a \sim b \quad \text { if } a \equiv b \quad(\bmod n) . "
$$

Is \sim is an equivalence relation?
Check: we have $a \equiv b(\bmod n)$ if and only if $a-b=k n$ for some $k \in \mathbb{Z}$.

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
" a \sim b \quad \text { if } a \equiv b \quad(\bmod n) . "
$$

Is \sim is an equivalence relation?
Check: we have $a \equiv b(\bmod n)$ if and only if $a-b=k n$ for some $k \in \mathbb{Z}$.
reflexivity:

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
" a \sim b \quad \text { if } a \equiv b \quad(\bmod n) . "
$$

Is \sim is an equivalence relation?
Check: we have $a \equiv b(\bmod n)$ if and only if $a-b=k n$ for some $k \in \mathbb{Z}$.
reflexivity: $\quad a-a=0=0 \cdot n \checkmark$

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
" a \sim b \quad \text { if } a \equiv b \quad(\bmod n) . "
$$

Is \sim is an equivalence relation?
Check: we have $a \equiv b(\bmod n)$ if and only if $a-b=k n$ for some $k \in \mathbb{Z}$.
reflexivity: $\quad a-a=0=0 \cdot n \checkmark$
symmetry:

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
" a \sim b \quad \text { if } a \equiv b \quad(\bmod n) . "
$$

Is \sim is an equivalence relation?
Check: we have $a \equiv b(\bmod n)$ if and only if $a-b=k n$ for some $k \in \mathbb{Z}$.
reflexivity: $\quad a-a=0=0 \cdot n \checkmark$
symmetry: If $a-b=k n$

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
" a \sim b \quad \text { if } a \equiv b \quad(\bmod n) . "
$$

Is \sim is an equivalence relation?
Check: we have $a \equiv b(\bmod n)$ if and only if $a-b=k n$ for some $k \in \mathbb{Z}$.
reflexivity: $\quad a-a=0=0 \cdot n \checkmark$
symmetry: If $a-b=k n$, then $b-a=-k n=(-k) n$. \checkmark

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
" a \sim b \quad \text { if } a \equiv b \quad(\bmod n) . "
$$

Is \sim is an equivalence relation?
Check: we have $a \equiv b(\bmod n)$ if and only if $a-b=k n$ for some $k \in \mathbb{Z}$.
reflexivity: $\quad a-a=0=0 \cdot n \checkmark$
symmetry: If $a-b=k n$, then $b-a=-k n=(-k) n$. \checkmark transitivity:

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
" a \sim b \quad \text { if } a \equiv b \quad(\bmod n) . "
$$

Is \sim is an equivalence relation?
Check: we have $a \equiv b(\bmod n)$ if and only if $a-b=k n$ for some $k \in \mathbb{Z}$.
reflexivity: $\quad a-a=0=0 \cdot n \checkmark$
symmetry: If $a-b=k n$, then $b-a=-k n=(-k) n$. \checkmark
transitivity: If $a-b=k n$ and $b-c=\ell n$

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
" a \sim b \quad \text { if } a \equiv b \quad(\bmod n) . "
$$

Is \sim is an equivalence relation?
Check: we have $a \equiv b(\bmod n)$ if and only if $a-b=k n$ for some $k \in \mathbb{Z}$.
reflexivity: $\quad a-a=0=0 \cdot n \checkmark$
symmetry: If $a-b=k n$, then $b-a=-k n=(-k) n$. \checkmark
transitivity: If $a-b=k n$ and $b-c=\ell n$, then

$$
a-c
$$

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
" a \sim b \quad \text { if } a \equiv b \quad(\bmod n) . "
$$

Is \sim is an equivalence relation?
Check: we have $a \equiv b(\bmod n)$ if and only if $a-b=k n$ for some $k \in \mathbb{Z}$.
reflexivity: $\quad a-a=0=0 \cdot n \checkmark$
symmetry: If $a-b=k n$, then $b-a=-k n=(-k) n$. \checkmark
transitivity: If $a-b=k n$ and $b-c=\ell n$, then

$$
a-c=(a-b)+(b-c)
$$

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
" a \sim b \quad \text { if } a \equiv b \quad(\bmod n) . "
$$

Is \sim is an equivalence relation?
Check: we have $a \equiv b(\bmod n)$ if and only if $a-b=k n$ for some $k \in \mathbb{Z}$.
reflexivity: $\quad a-a=0=0 \cdot n \checkmark$
symmetry: If $a-b=k n$, then $b-a=-k n=(-k) n$. \checkmark
transitivity: If $a-b=k n$ and $b-c=\ell n$, then

$$
a-c=(a-b)+(b-c)=k n+\ell n
$$

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
" a \sim b \quad \text { if } a \equiv b \quad(\bmod n) . "
$$

Is \sim is an equivalence relation?
Check: we have $a \equiv b(\bmod n)$ if and only if $a-b=k n$ for some $k \in \mathbb{Z}$.
reflexivity: $\quad a-a=0=0 \cdot n \checkmark$
symmetry: If $a-b=k n$, then $b-a=-k n=(-k) n$. \checkmark
transitivity: If $a-b=k n$ and $b-c=\ell n$, then

$$
a-c=(a-b)+(b-c)=k n+\ell n=(k+\ell) n . \checkmark
$$

Fix $n \in \mathbb{Z}_{>0}$ and define the relation on \mathbb{Z} given by

$$
" a \sim b \quad \text { if } a \equiv b \quad(\bmod n) . "
$$

Is \sim is an equivalence relation?
Check: we have $a \equiv b(\bmod n)$ if and only if $a-b=k n$ for some $k \in \mathbb{Z}$.
reflexivity: $\quad a-a=0=0 \cdot n \checkmark$
symmetry: If $a-b=k n$, then $b-a=-k n=(-k) n$. \checkmark
transitivity: If $a-b=k n$ and $b-c=\ell n$, then

$$
a-c=(a-b)+(b-c)=k n+\ell n=(k+\ell) n . \checkmark
$$

Yes! This is an equivalence relation!

Let A be a set. Consider the relation on $\mathcal{P}(A)$ by

$$
S \sim T \quad \text { if } \quad S \subseteq T
$$

Is \sim is an equivalence relation?

Let A be a set. Consider the relation on $\mathcal{P}(A)$ by

$$
S \sim T \quad \text { if } \quad S \subseteq T
$$

Is \sim is an equivalence relation?
Check: This is reflexive and transitive, but not symmetric.
So no, it is not an equivalence relation.

Let A be a set. Consider the relation on $\mathcal{P}(A)$ by

$$
S \sim T \quad \text { if } \quad S \subseteq T
$$

Is \sim is an equivalence relation?
Check: This is reflexive and transitive, but not symmetric.
So no, it is not an equivalence relation.
Is

$$
S \sim T \quad \text { if } \quad S \subseteq T \text { or } S \subseteq T
$$

an equivalence relation on $\mathcal{P}(A)$?

Let A be a set. Consider the relation on $\mathcal{P}(A)$ by

$$
S \sim T \quad \text { if } \quad S \subseteq T
$$

Is \sim is an equivalence relation?
Check: This is reflexive and transitive, but not symmetric.
So no, it is not an equivalence relation.
Is

$$
S \sim T \quad \text { if } \quad S \subseteq T \text { or } S \subseteq T
$$

an equivalence relation on $\mathcal{P}(A)$?
Check: This is reflexive and symmetric, but not transitive. So still no, it is not an equivalence relation.

Let A be a set. Consider the relation on $\mathcal{P}(A)$ by

$$
S \sim T \quad \text { if } \quad S \subseteq T
$$

Is \sim is an equivalence relation?
Check: This is reflexive and transitive, but not symmetric.
So no, it is not an equivalence relation.
Is

$$
S \sim T \quad \text { if } \quad S \subseteq T \text { or } S \subseteq T
$$

an equivalence relation on $\mathcal{P}(A)$?
Check: This is reflexive and symmetric, but not transitive.
So still no, it is not an equivalence relation.
Is

$$
S \sim T \quad \text { if } \quad|S|=|T|
$$

an equivalence relation on $\mathcal{P}(A)$?

Let A be a set. Consider the relation on $\mathcal{P}(A)$ by

$$
S \sim T \quad \text { if } \quad S \subseteq T
$$

Is \sim is an equivalence relation?
Check: This is reflexive and transitive, but not symmetric.
So no, it is not an equivalence relation.
Is

$$
S \sim T \quad \text { if } \quad S \subseteq T \text { or } S \subseteq T
$$

an equivalence relation on $\mathcal{P}(A)$?
Check: This is reflexive and symmetric, but not transitive. So still no, it is not an equivalence relation.

Is

$$
S \sim T \quad \text { if } \quad|S|=|T|
$$

an equivalence relation on $\mathcal{P}(A)$?
Read: Why reflexivity doesn't follow from symmetry and transitivity.

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Example: Consider the equivalence relation on $A=\{a, b, c\}$ given by

$$
a \sim a, \quad b \sim b, \quad c \sim c, \quad a \sim c, \quad \text { and } \quad c \sim a
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Example: Consider the equivalence relation on $A=\{a, b, c\}$ given by

$$
a \sim a, \quad b \sim b, \quad c \sim c, \quad a \sim c, \quad \text { and } \quad c \sim a
$$

Then

$$
[a]
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Example: Consider the equivalence relation on $A=\{a, b, c\}$ given by

$$
a \sim a, \quad b \sim b, \quad c \sim c, \quad a \sim c, \quad \text { and } \quad c \sim a
$$

Then

$$
[a]=\{a, c\}
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Example: Consider the equivalence relation on $A=\{a, b, c\}$ given by

$$
a \sim a, \quad b \sim b, \quad c \sim c, \quad a \sim c, \quad \text { and } \quad c \sim a
$$

Then

$$
[a]=\{a, c\}=[c]
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Example: Consider the equivalence relation on $A=\{a, b, c\}$ given by

$$
a \sim a, \quad b \sim b, \quad c \sim c, \quad a \sim c, \quad \text { and } \quad c \sim a
$$

Then

$$
\begin{gathered}
{[a]=\{a, c\}=[c], \quad \text { and }} \\
{[b]}
\end{gathered}
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Example: Consider the equivalence relation on $A=\{a, b, c\}$ given by

$$
a \sim a, \quad b \sim b, \quad c \sim c, \quad a \sim c, \quad \text { and } \quad c \sim a
$$

Then

$$
\begin{gathered}
{[a]=\{a, c\}=[c], \quad \text { and }} \\
\quad[b]=\{b\}
\end{gathered}
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.

Example: Consider the equivalence relation on $A=\{a, b, c\}$ given by

$$
a \sim a, \quad b \sim b, \quad c \sim c, \quad a \sim c, \quad \text { and } \quad c \sim a
$$

Then

$$
\begin{gathered}
{[a]=\{a, c\}=[c], \quad \text { and }} \\
{[b]=\{b\}}
\end{gathered}
$$

are the two equivalence classes in A (with respect to this relation).
(We say there are two, not three, since "the equivalence classes" refers to the sets themselves, not to the elements that generate them.)

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.
Example: We showed that

$$
" a \sim b \quad \text { if } a \equiv b(\bmod 5) "
$$

is an equivalence relation on \mathbb{Z}.

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.
Example: We showed that

$$
" a \sim b \quad \text { if } a \equiv b(\bmod 5) "
$$

is an equivalence relation on \mathbb{Z}. Then
[0]

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.
Example: We showed that

$$
" a \sim b \quad \text { if } a \equiv b(\bmod 5) "
$$

is an equivalence relation on \mathbb{Z}. Then

$$
[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z}
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.
Example: We showed that

$$
" a \sim b \quad \text { if } a \equiv b(\bmod 5) "
$$

is an equivalence relation on \mathbb{Z}. Then

$$
[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z}
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.
Example: We showed that

$$
" a \sim b \quad \text { if } a \equiv b(\bmod 5) "
$$

is an equivalence relation on \mathbb{Z}. Then

$$
[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z} \quad[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.
Example: We showed that

$$
" a \sim b \quad \text { if } a \equiv b(\bmod 5) "
$$

is an equivalence relation on \mathbb{Z}. Then

$$
[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z} \quad[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1
$$

[2]

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.
Example: We showed that

$$
" a \sim b \quad \text { if } a \equiv b(\bmod 5) "
$$

is an equivalence relation on \mathbb{Z}. Then

$$
\begin{aligned}
{[0]=\{5 n \mid n \in \mathbb{Z}\} } & =5 \mathbb{Z} \quad[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1 \\
{[2]=\{5 n+2 \mid n \in \mathbb{Z}\} } & =5 \mathbb{Z}+2
\end{aligned}
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.
Example: We showed that

$$
" a \sim b \quad \text { if } a \equiv b(\bmod 5) "
$$

is an equivalence relation on \mathbb{Z}. Then

$$
\begin{aligned}
{[0]=\{5 n \mid n \in \mathbb{Z}\} } & =5 \mathbb{Z} & {[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1 } \\
{[2]=\{5 n+2 \mid n \in \mathbb{Z}\} } & =5 \mathbb{Z}+2 & {[3]=\{5 n+3 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+3 }
\end{aligned}
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.
Example: We showed that

$$
" a \sim b \quad \text { if } a \equiv b(\bmod 5) "
$$

is an equivalence relation on \mathbb{Z}. Then

$$
\begin{gathered}
{[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z} \quad[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1} \\
{[2]=\{5 n+2 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+2 \quad[3]=\{5 n+3 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+3} \\
{[4]=\{5 n+4 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+4}
\end{gathered}
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.
Example: We showed that

$$
" a \sim b \quad \text { if } a \equiv b(\bmod 5) "
$$

is an equivalence relation on \mathbb{Z}. Then

$$
\begin{gathered}
{[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z} \quad[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1} \\
{[2]=\{5 n+2 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+2 \quad[3]=\{5 n+3 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+3} \\
{[4]=\{5 n+4 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+4} \\
{[5]=\{5 n+5 \mid n \in \mathbb{Z}\}}
\end{gathered}
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.
Example: We showed that

$$
" a \sim b \quad \text { if } a \equiv b(\bmod 5) "
$$

is an equivalence relation on \mathbb{Z}. Then

$$
\begin{gathered}
{[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z} \quad[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1} \\
{[2]=\{5 n+2 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+2 \quad[3]=\{5 n+3 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+3} \\
{[4]=\{5 n+4 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+4} \\
{[5]=\{5 n+5 \mid n \in \mathbb{Z}\}=\{5 m \mid m \in \mathbb{Z}\}}
\end{gathered}
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.
Example: We showed that

$$
" a \sim b \quad \text { if } a \equiv b(\bmod 5) "
$$

is an equivalence relation on \mathbb{Z}. Then

$$
\begin{gathered}
{[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z} \quad[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1} \\
{[2]=\{5 n+2 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+2 \quad[3]=\{5 n+3 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+3} \\
{[4]=\{5 n+4 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+4} \\
{[5]=\{5 n+5 \mid n \in \mathbb{Z}\}=\{5 m \mid m \in \mathbb{Z}\}=[0]}
\end{gathered}
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.
Example: We showed that

$$
" a \sim b \quad \text { if } a \equiv b(\bmod 5) "
$$

is an equivalence relation on \mathbb{Z}. Then

$$
\begin{gathered}
{[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z} \quad[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1} \\
{[2]=\{5 n+2 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+2 \quad[3]=\{5 n+3 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+3} \\
{[4]=\{5 n+4 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+4} \\
{[5]=\{5 n+5 \mid n \in \mathbb{Z}\}=\{5 m \mid m \in \mathbb{Z}\}=[0]=[-5]}
\end{gathered}
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.
Example: We showed that

$$
" a \sim b \quad \text { if } a \equiv b(\bmod 5) "
$$

is an equivalence relation on \mathbb{Z}. Then

$$
\begin{gathered}
{[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z} \quad[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1} \\
{[2]=\{5 n+2 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+2 \quad[3]=\{5 n+3 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+3} \\
{[4]=\{5 n+4 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+4} \\
{[5]=\{5 n+5 \mid n \in \mathbb{Z}\}=\{5 m \mid m \in \mathbb{Z}\}=[0]=[-5]=[10]=\cdots}
\end{gathered}
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.
Example: We showed that

$$
" a \sim b \quad \text { if } a \equiv b(\bmod 5) "
$$

is an equivalence relation on \mathbb{Z}. Then

$$
\begin{aligned}
& {[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z} \quad[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1} \\
& {[2]=\{5 n+2 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+2 \quad[3]=\{5 n+3 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+3} \\
& {[4]=\{5 n+4 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+4} \\
& {[5]=\{5 n+5 \mid n \in \mathbb{Z}\}=\{5 m \mid m \in \mathbb{Z}\}=[0]=[-5]=[10]=\cdots} \\
& {[6]=\{5 n+6 \mid n \in \mathbb{Z}\}}
\end{aligned}
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.
Example: We showed that

$$
" a \sim b \quad \text { if } a \equiv b(\bmod 5) "
$$

is an equivalence relation on \mathbb{Z}. Then

$$
\begin{gathered}
{[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z} \quad[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1} \\
{[2]=\{5 n+2 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+2 \quad[3]=\{5 n+3 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+3} \\
{[4]=\{5 n+4 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+4} \\
{[5]=\{5 n+5 \mid n \in \mathbb{Z}\}=\{5 m \mid m \in \mathbb{Z}\}=[0]=[-5]=[10]=\cdots} \\
{[6]=\{5 n+6 \mid n \in \mathbb{Z}\}=\{5 m+1 \mid m \in \mathbb{Z}\}}
\end{gathered}
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.
Example: We showed that

$$
" a \sim b \quad \text { if } a \equiv b(\bmod 5) "
$$

is an equivalence relation on \mathbb{Z}. Then

$$
\begin{gathered}
{[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z} \quad[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1} \\
{[2]=\{5 n+2 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+2 \quad[3]=\{5 n+3 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+3} \\
{[4]=\{5 n+4 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+4} \\
{[5]=\{5 n+5 \mid n \in \mathbb{Z}\}=\{5 m \mid m \in \mathbb{Z}\}=[0]=[-5]=[10]=\cdots} \\
{[6]=\{5 n+6 \mid n \in \mathbb{Z}\}=\{5 m+1 \mid m \in \mathbb{Z}\}=[1]}
\end{gathered}
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.
Example: We showed that

$$
" a \sim b \quad \text { if } a \equiv b(\bmod 5) "
$$

is an equivalence relation on \mathbb{Z}. Then

$$
\begin{gathered}
{[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z} \quad[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1} \\
{[2]=\{5 n+2 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+2 \quad[3]=\{5 n+3 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+3} \\
{[4]=\{5 n+4 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+4} \\
{[5]=\{5 n+5 \mid n \in \mathbb{Z}\}=\{5 m \mid m \in \mathbb{Z}\}=[0]=[-5]=[10]=\cdots} \\
{[6]=\{5 n+6 \mid n \in \mathbb{Z}\}=\{5 m+1 \mid m \in \mathbb{Z}\}=[1]=[-4]}
\end{gathered}
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.
Example: We showed that

$$
" a \sim b \quad \text { if } a \equiv b(\bmod 5) "
$$

is an equivalence relation on \mathbb{Z}. Then

$$
\begin{gathered}
{[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z} \quad[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1} \\
{[2]=\{5 n+2 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+2 \quad[3]=\{5 n+3 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+3} \\
{[4]=\{5 n+4 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+4} \\
{[5]=\{5 n+5 \mid n \in \mathbb{Z}\}=\{5 m \mid m \in \mathbb{Z}\}=[0]=[-5]=[10]=\cdots} \\
{[6]=\{5 n+6 \mid n \in \mathbb{Z}\}=\{5 m+1 \mid m \in \mathbb{Z}\}=[1]=[-4]=[11]=\cdots}
\end{gathered}
$$

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.
Example: We showed that

$$
" a \sim b \quad \text { if } a \equiv b(\bmod 5) "
$$

is an equivalence relation on \mathbb{Z}. Then

$$
\begin{gathered}
{[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z} \quad[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1} \\
{[2]=\{5 n+2 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+2 \quad[3]=\{5 n+3 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+3} \\
{[4]=\{5 n+4 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+4} \\
{[5]=\{5 n+5 \mid n \in \mathbb{Z}\}=\{5 m \mid m \in \mathbb{Z}\}=[0]=[-5]=[10]=\cdots} \\
{[6]=\{5 n+6 \mid n \in \mathbb{Z}\}=\{5 m+1 \mid m \in \mathbb{Z}\}=[1]=[-4]=[11]=\cdots}
\end{gathered}
$$

In general, if $x \in[y]$, that means $y \sim x$.

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.
Example: We showed that

$$
" a \sim b \quad \text { if } a \equiv b(\bmod 5) "
$$

is an equivalence relation on \mathbb{Z}. Then

$$
\begin{gathered}
{[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z} \quad[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1} \\
{[2]=\{5 n+2 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+2 \quad[3]=\{5 n+3 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+3} \\
{[4]=\{5 n+4 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+4} \\
{[5]=\{5 n+5 \mid n \in \mathbb{Z}\}=\{5 m \mid m \in \mathbb{Z}\}=[0]=[-5]=[10]=\cdots} \\
{[6]=\{5 n+6 \mid n \in \mathbb{Z}\}=\{5 m+1 \mid m \in \mathbb{Z}\}=[1]=[-4]=[11]=\cdots}
\end{gathered}
$$

In general, if $x \in[y]$, that means $y \sim x$.
So $x \sim y$.

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.
Example: We showed that

$$
" a \sim b \quad \text { if } a \equiv b(\bmod 5) "
$$

is an equivalence relation on \mathbb{Z}. Then

$$
\begin{gathered}
{[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z} \quad[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1} \\
{[2]=\{5 n+2 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+2 \quad[3]=\{5 n+3 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+3} \\
{[4]=\{5 n+4 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+4} \\
{[5]=\{5 n+5 \mid n \in \mathbb{Z}\}=\{5 m \mid m \in \mathbb{Z}\}=[0]=[-5]=[10]=\cdots} \\
{[6]=\{5 n+6 \mid n \in \mathbb{Z}\}=\{5 m+1 \mid m \in \mathbb{Z}\}=[1]=[-4]=[11]=\cdots}
\end{gathered}
$$

In general, if $x \in[y]$, that means $y \sim x$.
So $x \sim y$. So $y \in[x]$.

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.
Example: We showed that

$$
" a \sim b \quad \text { if } a \equiv b(\bmod 5) "
$$

is an equivalence relation on \mathbb{Z}. Then

$$
\begin{gathered}
{[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z} \quad[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1} \\
{[2]=\{5 n+2 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+2 \quad[3]=\{5 n+3 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+3} \\
{[4]=\{5 n+4 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+4} \\
{[5]=\{5 n+5 \mid n \in \mathbb{Z}\}=\{5 m \mid m \in \mathbb{Z}\}=[0]=[-5]=[10]=\cdots} \\
{[6]=\{5 n+6 \mid n \in \mathbb{Z}\}=\{5 m+1 \mid m \in \mathbb{Z}\}=[1]=[-4]=[11]=\cdots}
\end{gathered}
$$

In general, if $x \in[y]$, that means $y \sim x$.
So $x \sim y$. So $y \in[x]$.
Claim: $x \in[y]$ if and only if $[x]=[y]$.

Let \sim be an equivalence relation on a set A, and let $a \in A$. The set of all elements $b \in A$ such that $a \sim b$ is called the equivalence class of a, denoted by $[a]$.
Example: We showed that

$$
" a \sim b \quad \text { if } a \equiv b(\bmod 5) "
$$

is an equivalence relation on \mathbb{Z}. Then

$$
\begin{gathered}
{[0]=\{5 n \mid n \in \mathbb{Z}\}=5 \mathbb{Z} \quad[1]=\{5 n+1 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+1} \\
{[2]=\{5 n+2 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+2 \quad[3]=\{5 n+3 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+3} \\
{[4]=\{5 n+4 \mid n \in \mathbb{Z}\}=5 \mathbb{Z}+4} \\
{[5]=\{5 n+5 \mid n \in \mathbb{Z}\}=\{5 m \mid m \in \mathbb{Z}\}=[0]=[-5]=[10]=\cdots} \\
{[6]=\{5 n+6 \mid n \in \mathbb{Z}\}=\{5 m+1 \mid m \in \mathbb{Z}\}=[1]=[-4]=[11]=\cdots}
\end{gathered}
$$

In general, if $x \in[y]$, that means $y \sim x$.
So $x \sim y$. So $y \in[x]$.
Claim: $x \in[y]$ if and only if $[x]=[y]$.
We call any element a of a class C representative of C (since we can write $C=[a]$ for any $a \in C$).

Theorem. The equivalence classes of A partition A into subsets

Theorem. The equivalence classes of A partition A into subsets, meaning

1. the equivalence classes are subsets of A :
$[a] \subseteq A$ for all $a \in A ;$

Theorem. The equivalence classes of A partition A into subsets, meaning

1. the equivalence classes are subsets of A :
$[a] \subseteq A$ for all $a \in A ;$
2. any two equivalence classes are either equal or disjoint: for all $a, b \in A$, either $[a]=[b]$ or $[a] \cap[b]=\varnothing$;

Theorem. The equivalence classes of A partition A into subsets, meaning

1. the equivalence classes are subsets of A :

$$
[a] \subseteq A \text { for all } a \in A ;
$$

2. any two equivalence classes are either equal or disjoint: for all $a, b \in A$, either $[a]=[b]$ or $[a] \cap[b]=\varnothing$; and
3. the union of all the equivalence classes is all of A :

$$
A=\bigcup_{a \in A}[a] .
$$

Theorem. The equivalence classes of A partition A into subsets, meaning

1. the equivalence classes are subsets of A :

$$
[a] \subseteq A \text { for all } a \in A ;
$$

2. any two equivalence classes are either equal or disjoint:
for all $a, b \in A$, either $[a]=[b]$ or $[a] \cap[b]=\varnothing$; and
3. the union of all the equivalence classes is all of A :

$$
A=\bigcup_{a \in A}[a] .
$$

We say that A is the disjoint union of equivalency classes, written

$$
A=\bigsqcup_{a \in A}[a], \quad \text { AT } \mathrm{E}_{\mathrm{E}} \mathrm{X}: \backslash \text { bigsqcup, } \backslash \text { sqcup }
$$

Theorem. The equivalence classes of A partition A into subsets, meaning

1. the equivalence classes are subsets of A :

$$
[a] \subseteq A \text { for all } a \in A ;
$$

2. any two equivalence classes are either equal or disjoint:

$$
\text { for all } a, b \in A \text {, either }[a]=[b] \text { or }[a] \cap[b]=\varnothing \text {; and }
$$

3. the union of all the equivalence classes is all of A :

$$
A=\bigcup_{a \in A}[a] .
$$

We say that A is the disjoint union of equivalency classes, written

$$
A=\bigsqcup_{a \in A}[a], \quad\left\lfloor\Delta T_{\mathrm{E}} \mathrm{X}: \backslash \text { bigsqcup, } \backslash\right. \text { sqcup }
$$

For example, in our last example, there are exactly 5 equivalence classes: [0], [1], [2], [3], and [4].

Theorem. The equivalence classes of A partition A into subsets, meaning

1. the equivalence classes are subsets of A :

$$
[a] \subseteq A \text { for all } a \in A ;
$$

2. any two equivalence classes are either equal or disjoint:

$$
\text { for all } a, b \in A \text {, either }[a]=[b] \text { or }[a] \cap[b]=\varnothing \text {; and }
$$

3. the union of all the equivalence classes is all of A :

$$
A=\bigcup_{a \in A}[a] .
$$

We say that A is the disjoint union of equivalency classes, written

$$
A=\bigsqcup_{a \in A}[a], \quad \text { AT } \mathrm{E}_{\mathrm{E}} \mathrm{X}: \backslash \text { bigsqcup, } \backslash \text { sqcup }
$$

For example, in our last example, there are exactly 5 equivalence classes: [0], [1], [2], [3], and [4]. Any other seemingly different class is actually one of these (for example, [5] = [0]).

Theorem. The equivalence classes of A partition A into subsets, meaning

1. the equivalence classes are subsets of A :

$$
[a] \subseteq A \text { for all } a \in A ;
$$

2. any two equivalence classes are either equal or disjoint:

$$
\text { for all } a, b \in A \text {, either }[a]=[b] \text { or }[a] \cap[b]=\varnothing \text {; and }
$$

3. the union of all the equivalence classes is all of A :

$$
A=\bigcup_{a \in A}[a] .
$$

We say that A is the disjoint union of equivalency classes, written

$$
A=\bigsqcup_{a \in A}[a], \quad \text { AT } \mathrm{E}_{\mathrm{E}} \mathrm{X}: \backslash \text { bigsqcup, } \backslash \text { sqcup }
$$

For example, in our last example, there are exactly 5 equivalence classes: [0], [1], [2], [3], and [4]. Any other seemingly different class is actually one of these (for example, [5] = [0]). And

$$
[0] \cup[1] \cup[2] \cup[3] \cup[4]=\mathbb{Z} .
$$

Theorem. The equivalence classes of A partition A into subsets, meaning

1. the equivalence classes are subsets of A :

$$
[a] \subseteq A \text { for all } a \in A
$$

2. any two equivalence classes are either equal or disjoint:

$$
\text { for all } a, b \in A \text {, either }[a]=[b] \text { or }[a] \cap[b]=\varnothing \text {; and }
$$

3. the union of all the equivalence classes is all of A :

$$
A=\bigcup_{a \in A}[a] .
$$

We say that A is the disjoint union of equivalency classes, written

$$
A=\bigsqcup_{a \in A}[a], \quad \text { AT } \mathrm{E}_{\mathrm{E}} \mathrm{X}: \backslash \text { bigsqcup, } \backslash \text { sqcup }
$$

For example, in our last example, there are exactly 5 equivalence classes: [0], [1], [2], [3], and [4]. Any other seemingly different class is actually one of these (for example, [5] = [0]). And

$$
[0] \cup[1] \cup[2] \cup[3] \cup[4]=\mathbb{Z}
$$

So $\mathbb{Z}=[0] \sqcup[1] \sqcup[2] \sqcup[3] \sqcup[4]$.

