
Functions
Let f : X Ñ Y be a function. Recall, the image of f is

fpXq “ ty P Y | fpxq “ y for some x P Xu.

Further, f is. . .

‚ injective if at most one x P X maps to each y P Y , i.e.

if fpx1q “ fpx2q then x1 “ x2.

Ex. f : Rą0 Ñ R defined by x ÞÑ x2.

Non-ex. f : RÑ R defined by x ÞÑ x2.

‚ surjective if every y P Y gets mapped to, i.e.

for all y P Y , there exists x P X such that fpxq “ y.

Ex. f : RÑ Rě0 defined by x ÞÑ x2.

Non-ex. f : RÑ R defined by x ÞÑ x2.

‚ bijective if it’s both injective and surjective.

Ex. f : Rě0 Ñ Rě0 defined by x ÞÑ x2.

Non-ex. f : RÑ R defined by x ÞÑ x2.
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To show f : X Ñ Y is injective:

Start: Suppose fpx1q “ fpx2q. . . Goal: Show x1 “ x2.

To show f : X Ñ Y is surjective:

Start: Let y P Y . . . Goal: Find x P X such that fpxq “ y.
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For a function f : X Ñ Y , and an element y P Y , let

f´1pyq “ tx P X | fpxq “ yu Ă X,

called the inverse image or preimage of y. Note that this is abusing
notation: we write f´1 whether or not f is invertible; and f´1pyq
is a set, not an element.
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1
f´1p1q “ H

f´1p2q “ tb, cu

f´1p3q “ tau

We say f is invertible if for all y P Y , f´1pyq has exactly one
element (no more, no fewer).

Thm. For nonempty sets X and Y , a function f : X Ñ Y is
invertible if and only if it is bijective.
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We say f is invertible if for all y P Y , f´1pyq has exactly one
element (no more, no fewer).

Thm. For nonempty sets X and Y , a function f : X Ñ Y is
invertible if and only if it is bijective.

Proof.
Suppose f is bijective. Since f is surjective, for all y P Y , we have
|f´1pyq| ě 1. And since f is injective, for any x1, x2 P f

´1pyq, we
have x1 “ x2. So |f´1pyq| ď 1. Therefore, for all y P Y , we have
|f´1pyq| “ 1, so that f is invertible.

Now suppose f is invertible. Thus for all y P Y , we have
|f´1pyq| “ 1. Therefore, for all y P Y , fpyq ‰ H, so that f is
surjective. And for all y P Y , since f´1pyq has exactly one
element, it has at most one element. So f is injective. Therefore,
f is bijective.
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Cardinality of sets
Two sets A and B have the same size, or cardinality, if there is a
bijection f : AÑ B.

Example: We know that set ta, b, cu has 3 elements because we
can count them:

1 : a
2 : b
3 : c

But this is essentially the same as the bijection
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Cardinality of sets

Definition:
Two sets A and B have the same size, or same cardinality, if and
only if there is a bijection f : AÑ B.

(This allows us to measure the relative sizes of sets, even if they
happen to be infinite!)

Example: The sets Zě0 and Zą0 have the same cardinality since

f : Zą0 Ñ Zě0
x ÞÑ x´ 1

is a bijective map.
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Countably infinite sets

A set is countable if it is either finite or the same cardinality as the
natural numbers (N “ Zą0). If a set A is not finite but is
countable, we say A is “countably infinite” and write |A| “ ℵ0

(pronounced “aleph naught” or “aleph null”).

To show that
|A| “ ℵ0: show A is not finite, and give a bijection f : Zě0 Ñ A.
Examples:

1. Zą0 is countably infinite:
It is not finite, and f : Zą0 Ñ Zą0 by x ÞÑ x is a bijection.

2. Zě0 is countably infinite:
It is not finite, and f : Zą0 Ñ Zě0 by x ÞÑ x´ 1 is a bijection.

3. Z is countably infinite:

Not finite, and f : Zą0 Ñ Z by
x ÞÑ p´1qxtx{2u is a bijection.

Z: ´4 ´3 ´2 ´1 0 1 2 3 4¨ ¨ ¨ ¨ ¨ ¨

Zą0:

1 23 45 67 89¨ ¨ ¨ ¨ ¨ ¨
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A set is countable if it is either finite or the same cardinality as the
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(pronounced “aleph naught” or “aleph null”). To show that
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Countably infinite sets

A set is countable if it is either finite or the same cardinality as the
natural numbers (N “ Zą0). If a set A is not finite but is
countable, we say A is “countably infinite” and write |A| “ ℵ0

(pronounced “aleph naught” or “aleph null”). To show that
|A| “ ℵ0: show A is not finite, and give a bijection f : Zě0 Ñ A.
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2. Zě0 is countably infinite:
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Countably infinite sets

A set is countable if it is either finite or the same cardinality as the
natural numbers (N “ Zą0). If a set A is not finite but is
countable, we say A is “countably infinite” and write |A| “ ℵ0

(pronounced “aleph naught” or “aleph null”). To show that
|A| “ ℵ0: show A is not finite, and give a bijection f : Zě0 Ñ A.
Examples:

1. Zą0 is countably infinite:
It is not finite, and f : Zą0 Ñ Zą0 by x ÞÑ x is a bijection.

2. Zě0 is countably infinite:
It is not finite, and f : Zą0 Ñ Zě0 by x ÞÑ x´ 1 is a bijection.

3. Z is countably infinite:

Not finite, and f : Zą0 Ñ Z by
x ÞÑ p´1qxtx{2u is a bijection.

Z: ´4 ´3 ´2 ´1 0 1 2 3 4¨ ¨ ¨ ¨ ¨ ¨

Zą0: 1 23 45 6
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(pronounced “aleph naught” or “aleph null”). To show that
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(pronounced “aleph naught” or “aleph null”). To show that
|A| “ ℵ0: show A is not finite, and give a bijection f : Zě0 Ñ A.
Examples:

1. Zą0 is countably infinite:
It is not finite, and f : Zą0 Ñ Zą0 by x ÞÑ x is a bijection.

2. Zě0 is countably infinite:
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countable, we say A is “countably infinite” and write |A| “ ℵ0

(pronounced “aleph naught” or “aleph null”). To show that
|A| “ ℵ0: show A is not finite, and give a bijection f : Zě0 Ñ A.
Examples:

1. Zą0 is countably infinite:
It is not finite, and f : Zą0 Ñ Zą0 by x ÞÑ x is a bijection.

2. Zě0 is countably infinite:
It is not finite, and f : Zą0 Ñ Zě0 by x ÞÑ x´ 1 is a bijection.

3. Z is countably infinite:

Not finite, and f : Zą0 Ñ Z by
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Countably infinite sets

A set is countable if it is either finite or the same cardinality as the
natural numbers (N “ Zą0). If a set A is not finite but is
countable, we say A is “countably infinite” and write |A| “ ℵ0

(pronounced “aleph naught” or “aleph null”). To show that
|A| “ ℵ0: show A is not finite, and give a bijection f : Zě0 Ñ A.
Examples:

1. Zą0 is countably infinite:
It is not finite, and f : Zą0 Ñ Zą0 by x ÞÑ x is a bijection.

2. Zě0 is countably infinite:
It is not finite, and f : Zą0 Ñ Zě0 by x ÞÑ x´ 1 is a bijection.

3. Z is countably infinite: Not finite, and f : Zą0 Ñ Z by
x ÞÑ p´1qxtx{2u is a bijection.

Z: ´4 ´3 ´2 ´1 0 1 2 3 4¨ ¨ ¨ ¨ ¨ ¨

Zą0: 1 23 45 67 89¨ ¨ ¨ ¨ ¨ ¨



More on this last example, |Z| “ ℵ0:

We started with the picture

Z: ´4 ´3 ´2 ´1 0 1 2 3 4¨ ¨ ¨ ¨ ¨ ¨

Zě0: 1 23 45 67 89¨ ¨ ¨ ¨ ¨ ¨

This at least gives us a “list” of integers,
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Recall that |A| “ |B| if and only if there is a bijection f : AÑ B.

If we know that |A| “ ℵ0 and f : AÑ B is a bijection, then
|B| “ |A| “ ℵ0.

Example: To show that 2Z “ t even integers u is countably
infinite, we could construct a bijection like in the previous example.
But it’s a little more straightforward to note that

f : Z Ñ 2Z
x ÞÑ 2x

is a bijection,

so that |2Z| “ |Z| “ ℵ0.
Examples: For each of the following, show that the set is countably
infinite. (Define a bijective function to something that we know to
be countably infinite if it’s not too hard; otherwise, explain how to
make the list.)

1. The set of negative integers (Ză0).

2. The set of integers less than 100 (Ză100).

3. The set of integers that are integer multiples of 3 ( 3Z).

4. The set of integers that are not integer multiples of 3
(Z´ 3Z).
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The rational numbers

Claim: Qą0 is countably infinite.

Make a table:

1

1 1{1

1{2

1{3

1{4

1{5

2

2

2{1

2{2

2{3

2{4

2{5

3

3

3{1

3{2

3{3

3{4

3{5

4

4

4{1

4{2

4{3

4{4

4{5

5

5

5{1

5{2

5{3

5{4

5{5
...

¨ ¨ ¨

1{1
1

2{1
2

1{2
3

1{3
4

2{2

3{1
5

4{1
6

3{2
7

2{3
8

1{4
9

1{5
10

5{1
11

¨ ¨ ¨

(skip prev. counted fractions)

Then use the same alternating map that we did for Zą0 Ñ Z to
build a bijection Qą0 Ñ Q, yielding a bijection Zą0 Ñ Qą0 Ñ Q.
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Are there sets that are not countable?

Theorem. The set of real numbers in the interval r0, 1q is not
countable.

Proof outline: We will prove this by contradiction.
Suppose that the set r0, 1q is countable, so that the real numbers
in r0, 1q can be listed.
Take one such list.

Goal: Show that the list isn’t complete. Namely, algorithmically
produce an element of r0, 1q that isn’t on any fixed list.
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Take this is the supposedly complete list of real numbers in r0, 1q.

For example:

1. 0.001240191057. . .

2. 0.123451234512. . .

3. 0.333333333333. . .

4. 0.500000000000. . .

5. 0.121212121212. . .

6. 0.555555555555. . .

7. 0.141592653589. . .

8. 0.001850000000. . .

9. 0.111111111111. . .

10. 0.750000000000. . .

11. 0.948797362471. . .
...

Algorithm for producing a number that
is not on the list:
In the ith number in the list, highlight
the ith digit.
Build a new number as follows:

i. If the highlighted digit of the ith
number is a 0, then make the
corresponding digit of the new
number a 1.

ii. If the highlighted digit of the ith
number is not a 0, then make the
corresponding digit of the new
number a 0.

Example:
0.10010001010. . .

In this way, this new number differs from every item in the list in
at least one digit!
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1. 0.001240191057. . .

2. 0.123451234512. . .

3. 0.333333333333. . .

4. 0.500000000000. . .

5. 0.121212121212. . .

6. 0.555555555555. . .

7. 0.141592653589. . .

8. 0.001850000000. . .

9. 0.111111111111. . .

10. 0.750000000000. . .

11. 0.948797362471. . .
...

Algorithm for producing a number that
is not on the list:

In the ith number in the list, highlight
the ith digit.
Build a new number as follows:

i. If the highlighted digit of the ith
number is a 0, then make the
corresponding digit of the new
number a 1.

ii. If the highlighted digit of the ith
number is not a 0, then make the
corresponding digit of the new
number a 0.

Example:
0.10010001010. . .

In this way, this new number differs from every item in the list in
at least one digit!



Take this is the supposedly complete list of real numbers in r0, 1q.

For example:

1. 0.001240191057. . .

2. 0.123451234512. . .

3. 0.333333333333. . .

4. 0.500000000000. . .

5. 0.121212121212. . .

6. 0.555555555555. . .

7. 0.141592653589. . .

8. 0.001850000000. . .

9. 0.111111111111. . .

10. 0.750000000000. . .

11. 0.948797362471. . .
...

Algorithm for producing a number that
is not on the list:
In the ith number in the list, highlight
the ith digit.

Build a new number as follows:

i. If the highlighted digit of the ith
number is a 0, then make the
corresponding digit of the new
number a 1.

ii. If the highlighted digit of the ith
number is not a 0, then make the
corresponding digit of the new
number a 0.

Example:
0.10010001010. . .

In this way, this new number differs from every item in the list in
at least one digit!



Take this is the supposedly complete list of real numbers in r0, 1q.

For example:

1. 0.001240191057. . .

2. 0.123451234512. . .

3. 0.333333333333. . .

4. 0.500000000000. . .

5. 0.121212121212. . .

6. 0.555555555555. . .

7. 0.141592653589. . .

8. 0.001850000000. . .

9. 0.111111111111. . .

10. 0.750000000000. . .

11. 0.948797362471. . .
...

Algorithm for producing a number that
is not on the list:
In the ith number in the list, highlight
the ith digit.

Build a new number as follows:

i. If the highlighted digit of the ith
number is a 0, then make the
corresponding digit of the new
number a 1.

ii. If the highlighted digit of the ith
number is not a 0, then make the
corresponding digit of the new
number a 0.

Example:
0.10010001010. . .

In this way, this new number differs from every item in the list in
at least one digit!



Take this is the supposedly complete list of real numbers in r0, 1q.

For example:

1. 0.001240191057. . .

2. 0.123451234512. . .

3. 0.333333333333. . .

4. 0.500000000000. . .

5. 0.121212121212. . .

6. 0.555555555555. . .

7. 0.141592653589. . .

8. 0.001850000000. . .

9. 0.111111111111. . .

10. 0.750000000000. . .

11. 0.948797362471. . .
...

Algorithm for producing a number that
is not on the list:
In the ith number in the list, highlight
the ith digit.
Build a new number as follows:

i. If the highlighted digit of the ith
number is a 0, then make the
corresponding digit of the new
number a 1.

ii. If the highlighted digit of the ith
number is not a 0, then make the
corresponding digit of the new
number a 0.

Example:
0.10010001010. . .

In this way, this new number differs from every item in the list in
at least one digit!



Take this is the supposedly complete list of real numbers in r0, 1q.

For example:

1. 0.001240191057. . .

2. 0.123451234512. . .

3. 0.333333333333. . .

4. 0.500000000000. . .

5. 0.121212121212. . .

6. 0.555555555555. . .

7. 0.141592653589. . .

8. 0.001850000000. . .

9. 0.111111111111. . .

10. 0.750000000000. . .

11. 0.948797362471. . .
...

Algorithm for producing a number that
is not on the list:
In the ith number in the list, highlight
the ith digit.
Build a new number as follows:

i. If the highlighted digit of the ith
number is a 0, then make the
corresponding digit of the new
number a 1.

ii. If the highlighted digit of the ith
number is not a 0, then make the
corresponding digit of the new
number a 0.

Example:

0.10010001010. . .
In this way, this new number differs from every item in the list in
at least one digit!



Take this is the supposedly complete list of real numbers in r0, 1q.

For example:

1. 0.001240191057. . .

2. 0.123451234512. . .

3. 0.333333333333. . .

4. 0.500000000000. . .

5. 0.121212121212. . .

6. 0.555555555555. . .

7. 0.141592653589. . .

8. 0.001850000000. . .

9. 0.111111111111. . .

10. 0.750000000000. . .

11. 0.948797362471. . .
...

Algorithm for producing a number that
is not on the list:
In the ith number in the list, highlight
the ith digit.
Build a new number as follows:

i. If the highlighted digit of the ith
number is a 0, then make the
corresponding digit of the new
number a 1.

ii. If the highlighted digit of the ith
number is not a 0, then make the
corresponding digit of the new
number a 0.

Example:
0.1

0010001010. . .
In this way, this new number differs from every item in the list in
at least one digit!



Take this is the supposedly complete list of real numbers in r0, 1q.

For example:

1. 0.001240191057. . .

2. 0.123451234512. . .

3. 0.333333333333. . .

4. 0.500000000000. . .

5. 0.121212121212. . .

6. 0.555555555555. . .

7. 0.141592653589. . .

8. 0.001850000000. . .

9. 0.111111111111. . .

10. 0.750000000000. . .

11. 0.948797362471. . .
...

Algorithm for producing a number that
is not on the list:
In the ith number in the list, highlight
the ith digit.
Build a new number as follows:

i. If the highlighted digit of the ith
number is a 0, then make the
corresponding digit of the new
number a 1.

ii. If the highlighted digit of the ith
number is not a 0, then make the
corresponding digit of the new
number a 0.

Example:
0.10

010001010. . .
In this way, this new number differs from every item in the list in
at least one digit!



Take this is the supposedly complete list of real numbers in r0, 1q.

For example:

1. 0.001240191057. . .

2. 0.123451234512. . .

3. 0.333333333333. . .

4. 0.500000000000. . .

5. 0.121212121212. . .

6. 0.555555555555. . .

7. 0.141592653589. . .

8. 0.001850000000. . .

9. 0.111111111111. . .

10. 0.750000000000. . .

11. 0.948797362471. . .
...

Algorithm for producing a number that
is not on the list:
In the ith number in the list, highlight
the ith digit.
Build a new number as follows:

i. If the highlighted digit of the ith
number is a 0, then make the
corresponding digit of the new
number a 1.

ii. If the highlighted digit of the ith
number is not a 0, then make the
corresponding digit of the new
number a 0.

Example:
0.100

10001010. . .
In this way, this new number differs from every item in the list in
at least one digit!



Take this is the supposedly complete list of real numbers in r0, 1q.

For example:

1. 0.001240191057. . .

2. 0.123451234512. . .

3. 0.333333333333. . .

4. 0.500000000000. . .

5. 0.121212121212. . .

6. 0.555555555555. . .

7. 0.141592653589. . .

8. 0.001850000000. . .

9. 0.111111111111. . .

10. 0.750000000000. . .

11. 0.948797362471. . .
...

Algorithm for producing a number that
is not on the list:
In the ith number in the list, highlight
the ith digit.
Build a new number as follows:

i. If the highlighted digit of the ith
number is a 0, then make the
corresponding digit of the new
number a 1.

ii. If the highlighted digit of the ith
number is not a 0, then make the
corresponding digit of the new
number a 0.

Example:
0.1001

0001010. . .
In this way, this new number differs from every item in the list in
at least one digit!



Take this is the supposedly complete list of real numbers in r0, 1q.

For example:

1. 0.001240191057. . .

2. 0.123451234512. . .

3. 0.333333333333. . .

4. 0.500000000000. . .

5. 0.121212121212. . .

6. 0.555555555555. . .

7. 0.141592653589. . .

8. 0.001850000000. . .

9. 0.111111111111. . .

10. 0.750000000000. . .

11. 0.948797362471. . .
...

Algorithm for producing a number that
is not on the list:
In the ith number in the list, highlight
the ith digit.
Build a new number as follows:

i. If the highlighted digit of the ith
number is a 0, then make the
corresponding digit of the new
number a 1.

ii. If the highlighted digit of the ith
number is not a 0, then make the
corresponding digit of the new
number a 0.

Example:
0.10010

001010. . .
In this way, this new number differs from every item in the list in
at least one digit!



Take this is the supposedly complete list of real numbers in r0, 1q.

For example:

1. 0.001240191057. . .

2. 0.123451234512. . .

3. 0.333333333333. . .

4. 0.500000000000. . .

5. 0.121212121212. . .

6. 0.555555555555. . .

7. 0.141592653589. . .

8. 0.001850000000. . .

9. 0.111111111111. . .

10. 0.750000000000. . .

11. 0.948797362471. . .
...

Algorithm for producing a number that
is not on the list:
In the ith number in the list, highlight
the ith digit.
Build a new number as follows:

i. If the highlighted digit of the ith
number is a 0, then make the
corresponding digit of the new
number a 1.

ii. If the highlighted digit of the ith
number is not a 0, then make the
corresponding digit of the new
number a 0.

Example:
0.100100

01010. . .
In this way, this new number differs from every item in the list in
at least one digit!



Take this is the supposedly complete list of real numbers in r0, 1q.

For example:

1. 0.001240191057. . .

2. 0.123451234512. . .

3. 0.333333333333. . .

4. 0.500000000000. . .

5. 0.121212121212. . .

6. 0.555555555555. . .

7. 0.141592653589. . .

8. 0.001850000000. . .

9. 0.111111111111. . .

10. 0.750000000000. . .

11. 0.948797362471. . .
...

Algorithm for producing a number that
is not on the list:
In the ith number in the list, highlight
the ith digit.
Build a new number as follows:

i. If the highlighted digit of the ith
number is a 0, then make the
corresponding digit of the new
number a 1.

ii. If the highlighted digit of the ith
number is not a 0, then make the
corresponding digit of the new
number a 0.

Example:
0.1001000

1010. . .
In this way, this new number differs from every item in the list in
at least one digit!



Take this is the supposedly complete list of real numbers in r0, 1q.

For example:

1. 0.001240191057. . .

2. 0.123451234512. . .

3. 0.333333333333. . .

4. 0.500000000000. . .

5. 0.121212121212. . .

6. 0.555555555555. . .

7. 0.141592653589. . .

8. 0.001850000000. . .

9. 0.111111111111. . .

10. 0.750000000000. . .

11. 0.948797362471. . .
...

Algorithm for producing a number that
is not on the list:
In the ith number in the list, highlight
the ith digit.
Build a new number as follows:

i. If the highlighted digit of the ith
number is a 0, then make the
corresponding digit of the new
number a 1.

ii. If the highlighted digit of the ith
number is not a 0, then make the
corresponding digit of the new
number a 0.

Example:
0.10010001

010. . .
In this way, this new number differs from every item in the list in
at least one digit!



Take this is the supposedly complete list of real numbers in r0, 1q.

For example:

1. 0.001240191057. . .

2. 0.123451234512. . .

3. 0.333333333333. . .

4. 0.500000000000. . .

5. 0.121212121212. . .

6. 0.555555555555. . .

7. 0.141592653589. . .

8. 0.001850000000. . .

9. 0.111111111111. . .

10. 0.750000000000. . .

11. 0.948797362471. . .
...

Algorithm for producing a number that
is not on the list:
In the ith number in the list, highlight
the ith digit.
Build a new number as follows:

i. If the highlighted digit of the ith
number is a 0, then make the
corresponding digit of the new
number a 1.

ii. If the highlighted digit of the ith
number is not a 0, then make the
corresponding digit of the new
number a 0.

Example:
0.100100010

10. . .
In this way, this new number differs from every item in the list in
at least one digit!



Take this is the supposedly complete list of real numbers in r0, 1q.

For example:

1. 0.001240191057. . .

2. 0.123451234512. . .

3. 0.333333333333. . .

4. 0.500000000000. . .

5. 0.121212121212. . .

6. 0.555555555555. . .

7. 0.141592653589. . .

8. 0.001850000000. . .

9. 0.111111111111. . .

10. 0.750000000000. . .

11. 0.948797362471. . .
...

Algorithm for producing a number that
is not on the list:
In the ith number in the list, highlight
the ith digit.
Build a new number as follows:

i. If the highlighted digit of the ith
number is a 0, then make the
corresponding digit of the new
number a 1.

ii. If the highlighted digit of the ith
number is not a 0, then make the
corresponding digit of the new
number a 0.

Example:
0.1001000101

0. . .
In this way, this new number differs from every item in the list in
at least one digit!



Take this is the supposedly complete list of real numbers in r0, 1q.

For example:

1. 0.001240191057. . .

2. 0.123451234512. . .

3. 0.333333333333. . .

4. 0.500000000000. . .

5. 0.121212121212. . .

6. 0.555555555555. . .

7. 0.141592653589. . .

8. 0.001850000000. . .

9. 0.111111111111. . .

10. 0.750000000000. . .

11. 0.948797362471. . .
...

Algorithm for producing a number that
is not on the list:
In the ith number in the list, highlight
the ith digit.
Build a new number as follows:

i. If the highlighted digit of the ith
number is a 0, then make the
corresponding digit of the new
number a 1.

ii. If the highlighted digit of the ith
number is not a 0, then make the
corresponding digit of the new
number a 0.

Example:
0.10010001010. . .

In this way, this new number differs from every item in the list in
at least one digit!



Take this is the supposedly complete list of real numbers in r0, 1q.

For example:

1. 0.001240191057. . .

2. 0.123451234512. . .

3. 0.333333333333. . .

4. 0.500000000000. . .

5. 0.121212121212. . .

6. 0.555555555555. . .

7. 0.141592653589. . .

8. 0.001850000000. . .

9. 0.111111111111. . .

10. 0.750000000000. . .

11. 0.948797362471. . .
...

Algorithm for producing a number that
is not on the list:
In the ith number in the list, highlight
the ith digit.
Build a new number as follows:

i. If the highlighted digit of the ith
number is a 0, then make the
corresponding digit of the new
number a 1.

ii. If the highlighted digit of the ith
number is not a 0, then make the
corresponding digit of the new
number a 0.

Example:
0.10010001010. . .

In this way, this new number differs from every item in the list in
at least one digit!



Theorem. The set of real numbers in the interval r0, 1q is not
countable.

Proof outline: We will prove this by contradiction. Suppose that the set

r0, 1q is countable, so that the real numbers in r0, 1q can be listed. Show

that any list isn’t complete. Namely, algorithmically produce an element

of r0, 1q that isn’t on any fixed list.

Proof. For x P r0, 1q, denote the ith digit of x by xris. Note that
for x, y P r0, 1q, we have x “ y if and only if xris “ yris for all
i P Zą0.

Now, suppose f : Zą0 Ñ r0, 1q is a bijection. Define xf P r0, 1q so
that the ith digit of xf is

xf ris “

#

1 if fpiqris “ 0,

0 if fpiqris “ 1.

Then, for all i P Zą0, we have fpiqris ‰ xf ris, so that fpiq ‰ xf .
Therefore xf R fpZą0, so that f is not surjective. This contradicts
f being bijective, so no such bijection exists. Therefore r0, 1q is
not countable. ˝



Theorem. The set of real numbers in the interval r0, 1q is not
countable.

Proof outline: We will prove this by contradiction. Suppose that the set

r0, 1q is countable, so that the real numbers in r0, 1q can be listed. Show

that any list isn’t complete. Namely, algorithmically produce an element

of r0, 1q that isn’t on any fixed list.

Proof. For x P r0, 1q, denote the ith digit of x by xris. Note that
for x, y P r0, 1q, we have x “ y if and only if xris “ yris for all
i P Zą0.

Now, suppose f : Zą0 Ñ r0, 1q is a bijection.

Define xf P r0, 1q so
that the ith digit of xf is

xf ris “

#

1 if fpiqris “ 0,

0 if fpiqris “ 1.

Then, for all i P Zą0, we have fpiqris ‰ xf ris, so that fpiq ‰ xf .
Therefore xf R fpZą0, so that f is not surjective. This contradicts
f being bijective, so no such bijection exists. Therefore r0, 1q is
not countable. ˝



Theorem. The set of real numbers in the interval r0, 1q is not
countable.

Proof outline: We will prove this by contradiction. Suppose that the set

r0, 1q is countable, so that the real numbers in r0, 1q can be listed. Show

that any list isn’t complete. Namely, algorithmically produce an element

of r0, 1q that isn’t on any fixed list.

Proof. For x P r0, 1q, denote the ith digit of x by xris. Note that
for x, y P r0, 1q, we have x “ y if and only if xris “ yris for all
i P Zą0.

Now, suppose f : Zą0 Ñ r0, 1q is a bijection. Define xf P r0, 1q so
that the ith digit of xf is

xf ris “

#

1 if fpiqris “ 0,

0 if fpiqris “ 1.

Then, for all i P Zą0, we have fpiqris ‰ xf ris, so that fpiq ‰ xf .
Therefore xf R fpZą0, so that f is not surjective. This contradicts
f being bijective, so no such bijection exists. Therefore r0, 1q is
not countable. ˝



Theorem. The set of real numbers in the interval r0, 1q is not
countable.

Proof outline: We will prove this by contradiction. Suppose that the set

r0, 1q is countable, so that the real numbers in r0, 1q can be listed. Show

that any list isn’t complete. Namely, algorithmically produce an element

of r0, 1q that isn’t on any fixed list.

Proof. For x P r0, 1q, denote the ith digit of x by xris. Note that
for x, y P r0, 1q, we have x “ y if and only if xris “ yris for all
i P Zą0.

Now, suppose f : Zą0 Ñ r0, 1q is a bijection. Define xf P r0, 1q so
that the ith digit of xf is

xf ris “

#

1 if fpiqris “ 0,

0 if fpiqris “ 1.

Then, for all i P Zą0, we have fpiqris ‰ xf ris, so that fpiq ‰ xf .

Therefore xf R fpZą0, so that f is not surjective. This contradicts
f being bijective, so no such bijection exists. Therefore r0, 1q is
not countable. ˝



Theorem. The set of real numbers in the interval r0, 1q is not
countable.

Proof outline: We will prove this by contradiction. Suppose that the set

r0, 1q is countable, so that the real numbers in r0, 1q can be listed. Show

that any list isn’t complete. Namely, algorithmically produce an element

of r0, 1q that isn’t on any fixed list.

Proof. For x P r0, 1q, denote the ith digit of x by xris. Note that
for x, y P r0, 1q, we have x “ y if and only if xris “ yris for all
i P Zą0.

Now, suppose f : Zą0 Ñ r0, 1q is a bijection. Define xf P r0, 1q so
that the ith digit of xf is

xf ris “

#

1 if fpiqris “ 0,

0 if fpiqris “ 1.

Then, for all i P Zą0, we have fpiqris ‰ xf ris, so that fpiq ‰ xf .
Therefore xf R fpZą0, so that f is not surjective. This contradicts
f being bijective, so no such bijection exists. Therefore r0, 1q is
not countable. ˝



Theorem. The set of real numbers in the interval r0, 1q is not
countable.

Proof outline: We will prove this by contradiction. Suppose that the set

r0, 1q is countable, so that the real numbers in r0, 1q can be listed. Show

that any list isn’t complete. Namely, algorithmically produce an element

of r0, 1q that isn’t on any fixed list.

Proof. For x P r0, 1q, denote the ith digit of x by xris. Note that
for x, y P r0, 1q, we have x “ y if and only if xris “ yris for all
i P Zą0.

Now, suppose f : Zą0 Ñ r0, 1q is a bijection let f : Zą0 Ñ r0, 1q.
Define xf P r0, 1q so that the ith digit of xf is

xf ris “

#

1 if fpiqris “ 0,

0 if fpiqris “ 1.

Then, for all i P Zą0, we have fpiqris ‰ xf ris, so that fpiq ‰ xf .
Therefore xf R fpZą0, so that f is not surjective. This contradicts
f being bijective, so no such bijection exists. Thus, since no
function f : Zą0 Ñ r0, 1q can be surjective, no bijection between
Zą0 and r0, 1q exists. Therefore r0, 1q is not countable. ˝



For sets X and Y , we say |X| ď |Y | if there exists an injective
function f : X Ñ Y . And write |X| ă |Y | if |X| ď |Y | and
|X| ‰ |Y |.

Recall, the power set of as set A is the set of subsets of A, given by

PpAq “ tS | S Ď Au.

Theorem. |A| ă |PpAq|.

Outline:

1. Show |A| ď |PpAq| by showing an injective map exists (give
one example).

2. Show |A| ‰ |PpAq| by showing that any map (not just the
example from before) cannot be surjective.

Hint. For any f : AÑ PpAq, show f is not surjective; i.e.

construct a set S Ď A such that S ‰ fpaq for all a P A.

(Need for care: 1 is a “there exists” statement; 2 is a “for all” statement.)



For sets X and Y , we say |X| ď |Y | if there exists an injective
function f : X Ñ Y . And write |X| ă |Y | if |X| ď |Y | and
|X| ‰ |Y |.

Recall, the power set of as set A is the set of subsets of A, given by

PpAq “ tS | S Ď Au.

Theorem. |A| ă |PpAq|.

Outline:

1. Show |A| ď |PpAq| by showing an injective map exists (give
one example).

2. Show |A| ‰ |PpAq| by showing that any map (not just the
example from before) cannot be surjective.

Hint. For any f : AÑ PpAq, show f is not surjective; i.e.

construct a set S Ď A such that S ‰ fpaq for all a P A.

(Need for care: 1 is a “there exists” statement; 2 is a “for all” statement.)



For sets X and Y , we say |X| ď |Y | if there exists an injective
function f : X Ñ Y . And write |X| ă |Y | if |X| ď |Y | and
|X| ‰ |Y |.

Recall, the power set of as set A is the set of subsets of A, given by

PpAq “ tS | S Ď Au.

Theorem. |A| ă |PpAq|.

Outline:

1. Show |A| ď |PpAq| by showing an injective map exists (give
one example).

2. Show |A| ‰ |PpAq| by showing that any map (not just the
example from before) cannot be surjective.

Hint. For any f : AÑ PpAq, show f is not surjective; i.e.

construct a set S Ď A such that S ‰ fpaq for all a P A.

(Need for care: 1 is a “there exists” statement; 2 is a “for all” statement.)



For sets X and Y , we say |X| ď |Y | if there exists an injective
function f : X Ñ Y . And write |X| ă |Y | if |X| ď |Y | and
|X| ‰ |Y |.
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Relations

A binary relation on a set A is a subset R Ď AˆA, where
elements pa, bq are written as a „ b.

Example: A “ Z and R “ ta „ b | a ă bu.
In words:

Let „ be the relation on Z given by a „ b if a ă b.
(Note that we use language like in definitions, where “if” actually
means “if and only if”.)

Example: A “ R and R “ ta „ b | a “ bu.
In words:

Let „ be the relation on R given by a „ b if a “ b.

Example: A “ Z and R “ ta „ b | a ” b pmod 3qu.
In words:

Let „ be the relation on Z given by a „ b if a ” b pmod 3q.
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More examples of (binary) relations:

1. For A a number system, let a „ b if a “ b.

R, S, T

2. For A a number system, let a „ b if a ă b.

not R, not S, T

3. For A “ R, let a „ b if ab “ 0.

not R, S, not T

4. For A a set of people, let a „ b if a is a (full) sibling of b.

not R, S, T

5. For A a set of people, let a „ b if a and b speak a common
language.

R, S, not T

A binary relation on a set A is. . .

(R) reflexive if a „ a for all a P A;

(S) symmetric if a „ b implies b „ a;

(T) transitive if a „ b and b „ c implies a „ c, i.e.

pa „ b^ b „ cq ñ a „ c

An equivalence relation on a set A is a binary relation that is
reflexive, symmetric, and transitive. (Only #1)
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Fix n P Zą0 and define the relation on Z given by

“a „ b if a ” b pmod nq.”

Is „ is an equivalence relation?

Check: we have a ” b pmod nq if and only if a´ b “ kn for some
k P Z.

reflexivity: a´ a “ 0 “ 0 ¨ n X

symmetry: If a´ b “ kn, then b´ a “ ´kn “ p´kqn. X

transitivity: If a´ b “ kn and b´ c “ `n, then

a´ c “ pa´ bq ` pb´ cq “ kn` `n “ pk ` `qn.X

Yes! This is an equivalence relation!
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Let A be a set. Consider the relation on PpAq by

S „ T if S Ď T

Is „ is an equivalence relation?

Check: This is reflexive and transitive, but not symmetric.
So no, it is not an equivalence relation.

Is
S „ T if S Ď T or S Ď T

an equivalence relation on PpAq?

Check: This is reflexive and symmetric, but not transitive.
So still no, it is not an equivalence relation.

Is
S „ T if |S| “ |T |

an equivalence relation on PpAq?
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Let „ be an equivalence relation on a set A, and let a P A. The
set of all elements b P A such that a „ b is called the equivalence
class of a, denoted by ras.

Example: Consider the equivalence relation on A “ ta, b, cu given
by

a „ a, b „ b, c „ c, a „ c, and c „ a.

Then

ras “ ta, cu “ rcs, and

rbs “ tbu

are the two equivalence classes in A (with respect to this relation).

(We say there are two, not three, since “the equivalence classes”
refers to the sets themselves, not to the elements that generate
them.)
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Let „ be an equivalence relation on a set A, and let a P A. The
set of all elements b P A such that a „ b is called the equivalence
class of a, denoted by ras.
Example: We showed that

“a „ b if a ” b pmod 5q”
is an equivalence relation on Z.

Then
r0s “ t5n | n P Zu “ 5Z r1s “ t5n` 1 | n P Zu “ 5Z` 1

r2s “ t5n` 2 | n P Zu “ 5Z` 2 r3s “ t5n` 3 | n P Zu “ 5Z` 3
r4s “ t5n` 4 | n P Zu “ 5Z` 4

r5s “ t5n` 5 | n P Zu “ t5m | m P Zu “ r0s “ r´5s “ r10s “ ¨ ¨ ¨
r6s “ t5n` 6 | n P Zu “ t5m` 1 | m P Zu “ r1s “ r´4s “ r11s “ ¨ ¨ ¨

...
In general, if x P rys, that means y „ x.
So x „ y. So y P rxs.
Claim: x P rys if and only if rxs “ rys.

We call any element a of a class C representative of C (since we
can write C “ ras for any a P C).
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Theorem. The equivalence classes of A partition A into subsets

,
meaning

1. the equivalence classes are subsets of A:
ras Ď A for all a P A;

2. any two equivalence classes are either equal or disjoint:
for all a, b P A, either ras “ rbs or ras X rbs “ H; and

3. the union of all the equivalence classes is all of A:
A “

ď

aPA

ras.

We say that A is the disjoint union of equivalency classes, written

A “
ğ

aPA

ras, LATEX: \bigsqcup, \sqcup

For example, in our last example, there are exactly 5 equivalence
classes: r0s, r1s, r2s, r3s, and r4s. Any other seemingly different
class is actually one of these (for example, r5s “ r0s). And

r0s Y r1s Y r2s Y r3s Y r4s “ Z.

So Z “ r0s \ r1s \ r2s \ r3s \ r4s .
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