
Modular arithmetic

Question: What time will it be in 1 hour from now? In 2? In 10?
In 20?

Question: What time will it be in 5 hours? In 5 hours after that?
In 5 hours after that? In 5 hours after that? In 5 hours after that?

Question: If I run a computer program 30 times (in sequence) that
takes 5 hours to run each time, when will it be done?
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Modular arithmetic
Recall the division algorithm: For a, n P Z with n ‰ 0, there exist
unique q, r P Z with 0 ď r ă |n| satisfying a “ nq ` r.

In logic:

@a P Z, n P Z‰0, D!q P Z, r P t0, 1, . . . , |n| ´ 1upa “ bq ` rq.

(D! means “there exist(s) unique”—not only do they exist, but they’re the only ones.)

We say q is the quotient and r is the remainder of n divided into
a, also called the least residue of a modulo n.

If a and b have the same remainder when divided by n, we say

a is congruent to b modulo (mod) n

written

a ” b pmod nq or a ”n b.

LATEX: ‘”’ is \equiv, ‘ pmod bq’ is \pmod{b}
Warning: Even though the book does this, DO NOT use ‘“’ instead of ‘”’ !

Examples:

14 ” 2 pmod 12q, 26 ” 2 pmod 12q, 14 ” 26 pmod 12q,

´10 ” 26 pmod 12q, ´2 ı 2 pmod 12q.
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Lemma. For a, b, n P Z with n ‰ 0, we have a ” b pmod nq if and
only if n|a´ b.

Proof. Fix a, b P Z. By the division algorithm, there exist
q1, q2, r1, r2 P Z with 0 ď r1, r2 ă |n| satisfying

a “ q1n` r1 and b “ q2n` r2.

If a ”n b, then r1 “ r2, so that
a´ b “ q1n` r1 ´ pq2n` r2q “ pq1 ´ q2qn.

Since q1 ´ q2 P Z, we have n|a´ b, as desired.

Conversely, if n|a´ b, then a´ b “ kn for some k P Z. Thus,

kn “ a´ b “ q1n` r1 ´ pq2n` r2q “ pq1 ´ q2qn` pr1 ´ r2q.

Therefore,

r1 ´ r2 “ pk ´ q1 ` q2qn, so that n|r1 ´ r2.

But since 0 ď r1, r2 ă |n|, we have ´|n| ă r1 ´ r2 ă |n|.
Therefore, r1 ´ r2 “ 0, so that a ” b pmod nq, as desired. ˝



For the rest of today, fix n P Zě1, and assume all other variables
are integers.

Proposition. If a1 ” b1 pmod nq and a2 ” b2 pmod nq, then

(a) a1 ` a2 ” b1 ` b2 pmod nq, and

(b) a1a2 ” b1b2 pmod nq.

Proof outline. Recall that

a ”n b ô n|a´ b ô a´ b “ kn

for some k P Z. So since a1 ” b1 pmod nq and a2 ” b2 pmod nq,
we have

a1 ´ b1 “ k1n and a2 ´ b2 “ k2n

for some k1, k2 P Z. To prove the lemma, show (by direct
computation) that

pa1 ` a2q ´ pb1 ` b2q “ kn and a1a2 ´ b1b2 “ `n

for some k, ` P Z.
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Arithmetic

If a1 ” b1 pmod nq and a2 ” b2 pmod nq, then

(a) a1 ` a2 ” b1 ` b2 pmod nq, and

(b) a1a2 ” b1b2 pmod nq.

Division. In the integers, suppose you want to solve
ax “ b, a, b P Z.

Either b{a P Z, or there is no solution.

In modular arithmetic, there are three possibilities:
The equation ax ” b pmod nq either

1. has no solutions;

2. has one solution (up to congruence);

3. has multiple solutions (up to congruence).

Here, up to congruence means that we consider two solutions
x1 ‰ x2 to be the “same” if x1 ” x2 pmod nq.
For example, x “ 2 is a solution to 3x ” 6 pmod 10q. But so are

12, 22, 31, . . . , as well as ´8, ´18, ´28, . . . .
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Division

Homework: If gcdpc, nq “ 1, then

ac ” bc pmod nq implies a ” b pmod nq.

This can be strengthened into an if and only if statement!
(What is the converse?)

Prop. If gcdpc, nq ‰ 1, then there are a and b such that

ac ” bc pmod nq but a ı b pmod nq.

Proof. Letting gcdpn, cq “ g ą 1, there are 2 ď k ă n and
2 ď ` ă c such that kg “ n and `g “ c. So ck “ `gk “ `n.
Therefore

ck ”n 0 ”n c ¨ 0.

But since 2 ď k ă n , k ı 0 pmod 0q.
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If a1 ” b1 pmod nq and a2 ” b2 pmod nq, then

(a) a1 ` a2 ” b1 ` b2 pmod nq, and

(b) a1a2 ” b1b2 pmod nq.

And if gcdpn, cq “ 1 and ac ” bc pmod nq, then a ” b pmod nq.

Solving congruences.

Solving addition problems involves subtraction, which is
straightforward:
If a` x ” b pmod nq, then

x ”n a` x´ a ”n b´ a.

For example, if 2` x ”5 3, then

x ”5 2´ 3 “ ´1 ”5 4 .
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Solving congruences.

Solving multiplication problems involves division, which is less
straightforward.

Example: 4x ” 1 pmod 7q.
Since gcdp4, 7q “ 1, there will be a unique solution (up to congruence).
And since 1 ”7 8 “ 4 ¨ 2, we have x ” 2 pmod 7q is that solution.

Example: 4x ” 8 pmod 10q.
Since gcdp4, 10q “ 2, we end up having more than one solution. . .

x 0 1 2 3 4 5 6 7 8 9

4x 0 4 8 12 16 20 24 28 32 36

least residue 0 4 8 2 6 0 4 8 2 6
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Division

Example: Solve 4x ” 3 pmod 19q.

“Dividing by 4” becomes “multiply by m s.t. 4m ” 1 pmod 19q.

If gcdpa, nq “ 1, then there are k, ` P Z satisfying

ka` `n “ 1. So 1´ ka “ `n, implying ka ”n 1.

Therefore

if ax ” b pmod nq, then x ”n kax ” kb.

In our example above, 5 ¨ 4 “ 20 ” 1 pmod 19q. So

x ”19 5 ¨ 4 ¨ x ”19 5 ¨ 3 ”19 15.
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Division
Example: Solve 4x ” 3 pmod 6q.

This is equivalent to 6|p4x´ 3q. (This is not possible!)

Claim: If you want to solve congruences of the form

ax ” b pmod nq,

you have two cases, based on d “ gcdpa, nq.

1. If d - b, then there are no solutions.

2. If d|b, then there are exactly d solutions (mod n).
To find them, compute u, v P Z such that ua` vn “ d. Then

b “ pb{dqd “ pb{dqua` pb{dqvn,

so that x “ pb{dqu is one solution. For the rest, add n{d until
you have a full set.

(Very Important) Corollary. An integer b has a (unique)
multiplicative inverse modulo n if and only if gcdpb, nq “ 1.
Namely, if p is prime, then b has a multiplicative inverse modulo p
if and only if b ıp 0.
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Theorem. (Fermat’s little theorem)
If p is prime, then xp ”p x for all x P Z.

Proof. First note that either p “ 2, or p´xqp “ ´xp. And for
p “ 2, then ´a ”2 a for all a P Z, so that p´xq2 ”2 ´x

p. So

p´xqp ”p ´x
p for all primes p.

Therefore, if we can prove that the theorem holds for x ě 0, then

p´xqp ”p ´x
p “ p´1qxp ” p´1qx “ ´x

as well. So we may assume henceforth that x ě 0.

(Aside: we often do this in mathematics with conjectures. If we think a

powerful statement is true, but we can’t yet prove it, we can state it as

conjecture. Then, we might use that conjecture to prove other things. This

either sets us up for a potential disproof by contradiction, or queues up a bunch

of results that will have been proven true as soon as someone actually proves

the conjecture. Here, the useful conjecture is xp
”p x for all x P Zě0.)

We will prove the theorem for x ě 0 by induction on x. First, we
have 0p “ 0 ”p 0, as desired. Next, fix x ě 0, and assume
xp ”p x. Then, using the binomial theorem,

px` 1qp ”p ¨ ¨ ¨ Homework!
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Wrapping up elementary number theory. . .

Chapters 27–29 in “How to think. . . ” (on primes, divisors, gcd,
Euclidean algorithm, modular arithmetic, etc.) are a brief
introduction to elementary number theory.

To learn more: Take “Theory of Numbers” (Math 345).

Where else this is used: Modular arithmetic is a Very Important
Example in “Modern Algebra” (a.k.a. “abstract algebra”), Math
347/A49.


