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Method of Proof by Contradiction.
Assume A A —B; conclude something known to be false.
In other words, show

(A A —B) = False statement.
Conclude A A =B must be false, and hence A = B is true.
Reasoning:
The only way for
(Statement X) = (False Statement Y)
to be true is if X is false to begin with.
XY [ X=>YV]

| N S
s T i

Eal leol RanRas)




Claim: Suppose that 7 is an odd integer. Then n? is odd as well.



Claim: Suppose that 7 is an odd integer. Then n? is odd as well.

Proof 1. (Direct method) If n is odd, then n = 2k + 1 for some
keZ. So
n? = (2k +1)% = 4k? + 4k + 1 = 2(2k* + 2) + 1.

2

So since 2k? + 2 is an integer, n? must be odd as well.



Claim: Suppose that 7 is an odd integer. Then n? is odd as well.

Proof 1. (Direct method) If n is odd, then n = 2k + 1 for some
keZ. So
n? = (2k +1)% = 4k? + 4k + 1 = 2(2k* + 2) + 1.

So since 2k? + 2 is an integer, n? must be odd as well.
Proof 2. (By contradiction)

Outline:

Let A be the statement “n is an odd integer”

and B be the statement “n® is an odd integer”.

Goal: Assume (A A —B); conclude something statement.



Claim: Suppose that 7 is an odd integer. Then n? is odd as well.

Proof 1. (Direct method) If n is odd, then n = 2k + 1 for some
keZ. So
n? = (2k +1)% = 4k? + 4k + 1 = 2(2k* + 2) + 1.

2

So since 2k? + 2 is an integer, n? must be odd as well.

Proof 2. (By contradiction)

Outline:

Let A be the statement “n is an odd integer”

and B be the statement “n® is an odd integer”.

Goal: Assume (A A —B); conclude something statement.

Suppose n € Z is odd and n? is even.



Claim: Suppose that 7 is an odd integer. Then n? is odd as well.

Proof 1. (Direct method) If n is odd, then n = 2k + 1 for some
keZ. So
n? = (2k +1)% = 4k? + 4k + 1 = 2(2k* + 2) + 1.

2

So since 2k? + 2 is an integer, n? must be odd as well.

Proof 2. (By contradiction)

Outline:

Let A be the statement “n is an odd integer”

and B be the statement “n® is an odd integer”.

Goal: Assume (A A —B); conclude something statement.

Suppose n € Z is odd and n? is even. Then n = 2k + 1 and
n? = 2/ for some k,l € Z.



Claim: Suppose that 7 is an odd integer. Then n? is odd as well.

Proof 1. (Direct method) If n is odd, then n = 2k + 1 for some
keZ. So
n? = (2k +1)% = 4k? + 4k + 1 = 2(2k* + 2) + 1.

2

So since 2k? + 2 is an integer, n? must be odd as well.

Proof 2. (By contradiction)

Outline:

Let A be the statement “n is an odd integer”

and B be the statement “n® is an odd integer”.

Goal: Assume (A A —B); conclude something statement.

Suppose n € Z is odd and n? is even. Then n = 2k + 1 and
n? = 2¢ for some k, ¢ € Z. Consider n? + n.



Claim: Suppose that 7 is an odd integer. Then n? is odd as well.

Proof 1. (Direct method) If n is odd, then n = 2k + 1 for some
keZ. So
n? = (2k +1)% = 4k? + 4k + 1 = 2(2k* + 2) + 1.

2

So since 2k? + 2 is an integer, n? must be odd as well.

Proof 2. (By contradiction)

Outline:

Let A be the statement “n is an odd integer”

and B be the statement “n® is an odd integer”.

Goal: Assume (A A —B); conclude something statement.

Suppose n € Z is odd and n? is even. Then n = 2k + 1 and
n? = 2¢ for some k, ¢ € Z. Consider n2 + n. On the one hand,

n4+n=20+2k+1=20+k)+1
is odd.



Claim: Suppose that 7 is an odd integer. Then n? is odd as well.

Proof 1. (Direct method) If n is odd, then n = 2k + 1 for some
keZ. So
n? = (2k +1)% = 4k? + 4k + 1 = 2(2k* + 2) + 1.

2

So since 2k? + 2 is an integer, n? must be odd as well.

Proof 2. (By contradiction)

Outline:

Let A be the statement “n is an odd integer”

and B be the statement “n® is an odd integer”.

Goal: Assume (A A —B); conclude something statement.

Suppose n € Z is odd and n? is even. Then n = 2k + 1 and
n? = 2¢ for some k, ¢ € Z. Consider n2 + n. On the one hand,

n4+n=20+2k+1=20+k)+1
is odd. But also,
nrn=nn+1)=Qk+1)2k+1+1)=22k+1)(k+1)

is even.



Claim: Suppose that 7 is an odd integer. Then n? is odd as well.

Proof 1. (Direct method) If n is odd, then n = 2k + 1 for some
keZ. So
n? = (2k +1)% = 4k? + 4k + 1 = 2(2k* + 2) + 1.

2

So since 2k? + 2 is an integer, n? must be odd as well. o

Proof 2. (By contradiction)

Outline:

Let A be the statement “n is an odd integer”

and B be the statement “n® is an odd integer”.

Goal: Assume (A A —B); conclude something statement.

Suppose n € Z is odd and n? is even. Then n = 2k + 1 and
n? = 2¢ for some k, ¢ € Z. Consider n2 + n. On the one hand,

n4+n=20+2k+1=20+k)+1
is odd. But also,
nrn=nn+1)=Qk+1)2k+1+1)=22k+1)(k+1)

is even. Since it's not possible for n? + n to be even and odd, this
is a contradiction.



Claim: Suppose that 7 is an odd integer. Then n? is odd as well.

Proof 1. (Direct method) If n is odd, then n = 2k + 1 for some
keZ. So
n? = (2k +1)% = 4k? + 4k + 1 = 2(2k* + 2) + 1.
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So since 2k? + 2 is an integer, n? must be odd as well. o

Proof 2. (By contradiction)

Outline:

Let A be the statement “n is an odd integer”

and B be the statement “n® is an odd integer”.

Goal: Assume (A A —B); conclude something statement.

Suppose n € Z is odd and n? is even. Then n = 2k + 1 and
n? = 2¢ for some k, ¢ € Z. Consider n2 + n. On the one hand,

n4+n=20+2k+1=20+k)+1
is odd. But also,
nrn=nn+1)=Qk+1)2k+1+1)=22k+1)(k+1)

is even. Since it's not possible for n? + n to be even and odd, this
is a contradiction. Therefore, if n is odd, then n? is odd as well. O
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(since p # 0), so that p|b?. Therefore, by Euclid’'s lemma again,

plb. But that means that p|a and p|b, which contradicts a/b being
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Let p > 0 be prime, and suppose that ,/p is rational. Namely,
that there are a,b € Z with b # 0 and so that VP = a/b, in lowest
terms (ged(a, b) = 1). Thus since p > 0,
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plb. But that means that p|a and p|b, which contradicts a/b being
in lowest terms. Thus no such a and b exist, so that /p ¢ Q. o

You try: (1) Retrace this proof for p = 2. (2) Retrace this proof for
p = 4 and identify where the “contradiction” fails if p is not prime.



Theorem.
If p> 0 is prime, then \/p is irrational.

Recall: We proved the following in Lecture 9:

Suppose that a € Q and a®> € Z. Then a € Z.

Proof. Let a be a rational number satisfying a? € Z. Since a € Q,
there exists m,n € Z (with n # 0) such that a = m/n. Assume,
without loss of generality, that m/n is in lowest form (i.e. m and n
have no common prime factors). Thus

a? = (m/n)? = m?/n?.

But since any prime factor of m? would also be a prime factor of |
m (and similarly for n? and n), we have m?/n? is in lowest terms.
So since m?/n? € Z, we have n? = 1. Son = +1. And thus

a =m/n € Z, as desired. o
*This was a subtle little proof by contradiction, nested in a direct
proof.
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Theorem. There are an infinite number of prime numbers.
Proof (by contradiction).

Suppose there are a finite number of prime numbers. Let
P1,P2,- .., ¢ be a complete list of the positive primes, and
consider n = 1 4+ p1po - - - pg. Since p; > 1 for all 7, we have

pi <l+pipa---pe=n foralli.

In particular, n # p; for all 4; so n is not prime. Thus n has a
prime factorization; fix j such that p; is one of the prime factors of
n. Then there is some k € Z such that

pk=n =149 I

i
Thus
1=p; (k - Hm)
i#j
[ —

EZ



Theorem. There are an infinite number of prime numbers.
Proof (by contradiction).

Suppose there are a finite number of prime numbers. Let
P1,P2,- .., ¢ be a complete list of the positive primes, and
consider n = 1 4+ p1po - - - pg. Since p; > 1 for all 7, we have

pi <l+pipa---pe=n foralli.

In particular, n # p; for all 4; so n is not prime. Thus n has a
prime factorization; fix j such that p; is one of the prime factors of
n. Then there is some k € Z such that

pk=n =149 I

i#j
Thus
1=p; (k_l_[pi> ;
i#]
[ ——
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so that pj|1, which is a contradiction.



Theorem. There are an infinite number of prime numbers.
Proof (by contradiction).

Suppose there are a finite number of prime numbers. Let
P1,P2,- .., ¢ be a complete list of the positive primes, and
consider n = 1 4+ p1po - - - pg. Since p; > 1 for all 7, we have

pi <l+pipa---pe=n foralli.

In particular, n # p; for all 4; so n is not prime. Thus n has a
prime factorization; fix j such that p; is one of the prime factors of
n. Then there is some k € Z such that

pk=n =149 I

i#j
Thus
1=p; (k_l_[pi> ;
i#]
[ ——
ez

so that pj|1, which is a contradiction. Thus, there are an infinite
number of primes. o
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When to consider proof by contradiction

Good indicator: “There does not exist..."

For example:
There are no integers such that. . .;
Blah is not rational. . .;
Blah is unbounded. . ..

Why:
It's hard to do operations with something that does not

exist; so assuming something exists gives us something to
work with.
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Direct proofs explain why something if true.
Proofs by contradiction explain why something isn't false.

Example: The book presented the following proof by contradiction.

Example 23.1

Suppose that 7 is an odd integer. Then 1 is an odd integer.

Proof. Assume the contrary. That is, we suppose that n is an odd integer but that the
conclusion is false, i.e. n2 is an even integer.

As nis odd, n = 2k + 1 for some k € Z. Thus n? = (2k + 1)? = 4k + 2k + 1 which
contradicts that n? is even. Thus our assumption that n2 is even must be wrong, i.e. n?
must be odd. (]
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Example: The book presented the following proof by contradiction.

Example 23.1

Suppose that 7 is an odd integer. Then n? is an odd integer.

Proof. Assume the contrary. That is, we suppose that n is an odd integer but that the
conclusion is false, i.e. n? is an even integer. =2(2k"2+2K) + 1

As n is odd, n = 2k + 1 for some k € Z. Thus n®> = 2k + 1)? = 4kK%F 2K which
contradicts that n? is even. Thus our assumption that n? is even must be wrong, i.e. n?
must be odd. g

We can edit this down easily to turn this proof by contradiction into a
direct proof:

Proof. -Assume-the-contrary—That-is;-we-Suppose that n is an odd integer but-that-the-
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must be odd.




Direct proofs are better than proof by contradiction!

Direct proofs explain why something if true.
Proofs by contradiction explain why something isn't false.

Example: The book presented the following proof by contradiction.

Example 23.1

Suppose that 7 is an odd integer. Then n? is an odd integer.

Proof. Assume the contrary. That is, we suppose that n is an odd integer but that the
conclusion is false, i.e. n? is an even integer. =2(2k"2+2K) + 1

As n is odd, n = 2k + 1 for some k € Z. Thus n®> = 2k + 1)? = 4kK%F 2K which
contradicts that n? is even. Thus our assumption that n? is even must be wrong, i.e. n?
must be odd. g

We can edit this down easily to turn this proof by contradiction into a
direct proof:

Proof. -Assume-the-contrary—That-is;-we-Suppose that n is an odd integer but-that-the-
. . . 2 . .
eonclusion-isfalse;i-en"isan-even-integer =2(2kA2+2k) + 1
As n is odd, n = 2k + 1 for some k € Z. Thus n? = 2k + 1) = B2 which
. 2 . . 2 . . 2
ontraarets—tnatc# S—even SO assumpton—mat+ S—everTusStoc ong,+¢: n
must be odd. hus O

Moral: After writing a PbC, always check to see if you can turn it around!
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An incorrect proof by contradiction: Assume that for any natural
number n, the sum of all smaller natural numbers is equal to n.
But this is clearly false, because, for example,

9#1+2+3+4.

We have reached a contradiction, so our assumption was false and
the theorem must be true. O
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The error: The statement is
n—1
Vn € Zg Z 1#Mn
i=1
The negation of this statement is

n—-1 n—1
ﬂ<VneZ>0<Zi7&n)) Eﬂn€Z>o<zi
=1 i=1
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The error: The statement is

n—1
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have




Warning: When setting up the contradiction, make sure you've
correctly negated the statement.

Example: For any natural number n, the sum of all natural
numbers less than n is not equal to n.

The error: The statement is
n—1
Yn € Zso (Zzsﬁn)
i=1

The negation of this statement is

n—-1 n—1
i=1 i=1

Correct proof by contradiction: Suppose that, for some n € Z~ o we
have

So
2-n. Thus0=n?>+n=n(n+1).
Therefore either n = 0 or n +1 = 0. This contradicts n > 0, so no

such n exists. O

2n=(mn—1n=n






