
Proof by Contradiction
Suppose you want to show

Añ B.

Direct method: Assume A; conclude B.

Contrapositive: We saw this is equivalent to the contrapositive,

 B ñ  A.

Prove the contrapositive directly: Assume  B; conclude  A.
Today: Recall that

Añ B is equivalent to B _ A.

So showing Añ B is true is the same as showing  pAñ Bq is
false, is the same as showing

showing  pB _ Aq ” pA^ Bq is false.

Method of Proof by Contradiction.
Assume A^ B; conclude something known to be false.
In other words, show

pA^ Bq ñ False statement.

Conclude A^ B must be false, and hence Añ B is true.
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Method of Proof by Contradiction.
Assume A^ B; conclude something known to be false.
In other words, show

pA^ Bq ñ False statement.

Conclude A^ B must be false, and hence Añ B is true.

Reasoning:
The only way for

(Statement X) ñ (False Statement Y )

to be true is if X is false to begin with.

X Y X ñ Y
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Claim: Suppose that n is an odd integer. Then n2 is odd as well.

Proof 1. (Direct method) If n is odd, then n “ 2k ` 1 for some
k P Z. So

n2 “ p2k ` 1q2 “ 4k2 ` 4k ` 1 “ 2p2k2 ` 2q ` 1.

So since 2k2 ` 2 is an integer, n2 must be odd as well. ˝
Proof 2. (By contradiction)

Outline:
Let A be the statement “n is an odd integer”
and B be the statement “n2 is an odd integer”.
Goal: Assume pA^ Bq; conclude something statement.

Suppose n P Z is odd and n2 is even. Then n “ 2k ` 1 and
n2 “ 2` for some k, ` P Z. Consider n2 ` n. On the one hand,

n2 ` n “ 2`` 2k ` 1 “ 2p`` kq ` 1

is odd. But also,

n2 ` n “ npn` 1q “ p2k ` 1qp2k ` 1` 1q “ 2p2k ` 1qpk ` 1q

is even. Since it’s not possible for n2 ` n to be even and odd, this
is a contradiction. Therefore, if n is odd, then n2 is odd as well. ˝
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Claim.
There are no positive integers x and y such that x2 ´ y2 “ 1.

Rewriting the statement:
 
`

Dx, y P Zą0px2 ´ y2 “ 1q
˘

” @x, y P Zą0px2 ´ y2 ‰ 1q

” px, y P Zą0q ñ px2 ´ y2 ‰ 1q.

Proof. (By contradiction)

Outline:
Let A be the statement “x and y are positive integers”
and B be the statement “x2 ´ y2 ‰ 1”.
Goal: Assume pA^ Bq; conclude something statement.

Let x, y P Zą0 with x2 ´ y2 “ 1. Thus

1 “ x2 ´ y2 “ px` yqpx´ yq.

But since x, y P Zą0, we have x` y P Zą0 as well. The only
positive divisor of 1 is 1, so that x` y “ 1. But x, y ě 1 implies

1 “ x` y ě 1` 1 “ 2.

This is a contradiction. So x2 ´ y2 ‰ 1 for all x, y P Zą0. ˝
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Theorem.
If p ą 0 is prime, then

?
p is irrational.

Recall: We proved the following in Lecture 9:

Suppose that a P Q and a2 P Z. Then a P Z.

Proof. Let a be a rational number satisfying a2 P Z. Since a P Q,
there exists m,n P Z (with n ‰ 0) such that a “ m{n. Assume,
without loss of generality, that m{n is in lowest form (i.e. m and n
have no common prime factors). Thus

a2 “ pm{nq2 “ m2{n2.

But since any prime factor of m2 would also be a prime factor of
m (and similarly for n2 and n), we have m2{n2 is in lowest terms.

˚

So since m2{n2 P Z, we have n2 “ 1. So n “ ˘1. And thus
a “ m{n P Z, as desired. ˝
˚This was a subtle little proof by contradiction, nested in a direct
proof.



Theorem. There are an infinite number of prime numbers.

Proof (by contradiction).
Suppose there are a finite number of prime numbers. Let
p1, p2, . . . , p` be a complete list of the positive primes, and
consider n “ 1` p1p2 ¨ ¨ ¨ p`. Since pi ą 1 for all i, we have

pi ă 1` p1p2 ¨ ¨ ¨ p` “ n for all i.

In particular, n ‰ pi for all i; so n is not prime. Thus n has a
prime factorization; fix j such that pj is one of the prime factors of
n. Then there is some k P Z such that

pjk “ n “ 1` pj ¨
ź

i‰j
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When to consider proof by contradiction

Good indicator: “There does not exist. . . ”

For example:
There are no integers such that. . . ;
Blah is not rational. . . ;
Blah is unbounded. . . .

Why:

It’s hard to do operations with something that does not
exist; so assuming something exists gives us something to
work with.
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Direct proofs are better than proof by contradiction!
Direct proofs explain why something if true.
Proofs by contradiction explain why something isn’t false.

Example: The book presented the following proof by contradiction.

CHAPTER 23

Techniques of proof III:
Contradiction

Let me never fall into the vulgar mistake of dreaming that
I am persecuted whenever I am contradicted.

Ralph Waldo Emerson, Journal entry, 8 November 1838

The law of the excluded middle asserts that a statement is true or it is false, it cannot
be anything in between. We can use this as another method of proof. We assume that
the statement is false and proceed logically to show that this gives a statement that we
definitely know is false such as 1 = 0 or the Moon is made of cheese. Thus our assumption
must be wrong, the statement can’t be false – it leads to something ridiculous – so the
statement is true.

This method is called proof by contradiction. The name comes from the fact that assum-
ing that the statement is false is later contradicted by some other fact. It is also known by
the name reductio ad absurdum which when translated means reduction to the absurd.

Simple examples of proof by contradiction

The first example is just to show you the idea of proof by contradiction. The statement is
easier to prove by a direct method as we have seen in Theorem 20.1.

Example 23.1

Suppose that n is an odd integer. Then n2 is an odd integer.

Proof. Assume the contrary. That is, we suppose that n is an odd integer but that the
conclusion is false, i.e. n2 is an even integer.

As n is odd, n = 2k + 1 for some k ∈ Z. Thus n2 = (2k + 1)2 = 4k + 2k + 1 which
contradicts that n2 is even. Thus our assumption that n2 is even must be wrong, i.e. n2

must be odd. !

The statement above has the form A=⇒B. In general, if we assume such a statement
is false, then we are assuming that ‘A and not(B)’ as this is the negation of A=⇒B

(see page 66). To use contradiction we then have to show that ‘A and not(B)’ leads to
something false.

The second example solves a harder problem.
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direct proof:
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Moral: After writing a PbC, always check to see if you can turn it around!
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is false, then we are assuming that ‘A and not(B)’ as this is the negation of A=⇒B

(see page 66). To use contradiction we then have to show that ‘A and not(B)’ leads to
something false.

The second example solves a harder problem.
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We can edit this down easily to turn this proof by contradiction into a
direct proof:

CHAPTER 23

Techniques of proof III:
Contradiction

Let me never fall into the vulgar mistake of dreaming that
I am persecuted whenever I am contradicted.

Ralph Waldo Emerson, Journal entry, 8 November 1838

The law of the excluded middle asserts that a statement is true or it is false, it cannot
be anything in between. We can use this as another method of proof. We assume that
the statement is false and proceed logically to show that this gives a statement that we
definitely know is false such as 1 = 0 or the Moon is made of cheese. Thus our assumption
must be wrong, the statement can’t be false – it leads to something ridiculous – so the
statement is true.

This method is called proof by contradiction. The name comes from the fact that assum-
ing that the statement is false is later contradicted by some other fact. It is also known by
the name reductio ad absurdum which when translated means reduction to the absurd.

Simple examples of proof by contradiction

The first example is just to show you the idea of proof by contradiction. The statement is
easier to prove by a direct method as we have seen in Theorem 20.1.

Example 23.1
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conclusion is false, i.e. n2 is an even integer.

As n is odd, n = 2k + 1 for some k ∈ Z. Thus n2 = (2k + 1)2 = 4 k + 2k + 1 which
contradicts that n2 is even. Thus our assumption that n2 is even must be wrong, i.e. n2

must be odd. !

The statement above has the form A=⇒B. In general, if we assume such a statement
is false, then we are assuming that ‘A and not(B)’ as this is the negation of A=⇒B

(see page 66). To use contradiction we then have to show that ‘A and not(B)’ leads to
something false.

The second example solves a harder problem.
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Moral: After writing a PbC, always check to see if you can turn it around!



Warning: When setting up the contradiction, make sure you’ve
correctly negated the statement.

Example: For any natural number n, the sum of all natural
numbers less than n is not equal to n.

An incorrect proof by contradiction: Assume that for any natural
number n, the sum of all smaller natural numbers is equal to n.
But this is clearly false, because, for example,

5 ‰ 1` 2` 3` 4.

We have reached a contradiction, so our assumption was false and
the theorem must be true. ˝
The error: The statement is

@n P Zą0

˜

n´1
ÿ

i“1

i ‰ n

¸

.

The negation of this statement is

 

˜

@n P Zą0

˜

n´1
ÿ

i“1

i ‰ n

¸¸

” Dn P Zą0

˜

n´1
ÿ

i“1

i “ n

¸

.

Correct proof by contradiction: Suppose that, for some n P Zą0 we
have

n “
n´1
ÿ

i“1

i “
pn´ 1qn

2
.

So
2n “ pn´ 1qn “ n2 ´ n. Thus 0 “ n2 ` n “ npn` 1q.

Therefore either n “ 0 or n` 1 “ 0. This contradicts n ą 0, so no
such n exists. ˝



Warning: When setting up the contradiction, make sure you’ve
correctly negated the statement.

Example: For any natural number n, the sum of all natural
numbers less than n is not equal to n.

An incorrect proof by contradiction: Assume that for any natural
number n, the sum of all smaller natural numbers is equal to n.
But this is clearly false, because, for example,

5 ‰ 1` 2` 3` 4.

We have reached a contradiction, so our assumption was false and
the theorem must be true. ˝

The error: The statement is

@n P Zą0

˜

n´1
ÿ

i“1

i ‰ n

¸

.

The negation of this statement is

 

˜

@n P Zą0

˜

n´1
ÿ

i“1

i ‰ n

¸¸

” Dn P Zą0

˜

n´1
ÿ

i“1

i “ n

¸

.

Correct proof by contradiction: Suppose that, for some n P Zą0 we
have

n “
n´1
ÿ

i“1

i “
pn´ 1qn

2
.

So
2n “ pn´ 1qn “ n2 ´ n. Thus 0 “ n2 ` n “ npn` 1q.

Therefore either n “ 0 or n` 1 “ 0. This contradicts n ą 0, so no
such n exists. ˝



Warning: When setting up the contradiction, make sure you’ve
correctly negated the statement.

Example: For any natural number n, the sum of all natural
numbers less than n is not equal to n.

An incorrect proof by contradiction: Assume that for any natural
number n, the sum of all smaller natural numbers is equal to n.
But this is clearly false, because, for example,

5 ‰ 1` 2` 3` 4.

We have reached a contradiction, so our assumption was false and
the theorem must be true. ˝
The error: The statement is

@n P Zą0

˜

n´1
ÿ

i“1

i ‰ n

¸

.

The negation of this statement is

 

˜

@n P Zą0

˜

n´1
ÿ

i“1

i ‰ n

¸¸

” Dn P Zą0

˜

n´1
ÿ

i“1

i “ n

¸

.

Correct proof by contradiction: Suppose that, for some n P Zą0 we
have

n “
n´1
ÿ

i“1

i “
pn´ 1qn

2
.

So
2n “ pn´ 1qn “ n2 ´ n. Thus 0 “ n2 ` n “ npn` 1q.

Therefore either n “ 0 or n` 1 “ 0. This contradicts n ą 0, so no
such n exists. ˝



Warning: When setting up the contradiction, make sure you’ve
correctly negated the statement.

Example: For any natural number n, the sum of all natural
numbers less than n is not equal to n.

The error: The statement is

@n P Zą0

˜

n´1
ÿ

i“1

i ‰ n

¸

.

The negation of this statement is

 

˜

@n P Zą0

˜

n´1
ÿ

i“1

i ‰ n

¸¸

” Dn P Zą0

˜

n´1
ÿ

i“1

i “ n

¸

.

Correct proof by contradiction: Suppose that, for some n P Zą0 we
have

n “
n´1
ÿ

i“1

i “
pn´ 1qn

2
.

So
2n “ pn´ 1qn “ n2 ´ n. Thus 0 “ n2 ` n “ npn` 1q.

Therefore either n “ 0 or n` 1 “ 0. This contradicts n ą 0, so no
such n exists. ˝



Warning: When setting up the contradiction, make sure you’ve
correctly negated the statement.

Example: For any natural number n, the sum of all natural
numbers less than n is not equal to n.

The error: The statement is

@n P Zą0

˜

n´1
ÿ

i“1

i ‰ n

¸

.

The negation of this statement is

 

˜

@n P Zą0

˜

n´1
ÿ

i“1

i ‰ n

¸¸

” Dn P Zą0

˜

n´1
ÿ

i“1

i “ n

¸

.

Correct proof by contradiction: Suppose that, for some n P Zą0 we
have

n “
n´1
ÿ

i“1

i “
pn´ 1qn

2
.

So
2n “ pn´ 1qn “ n2 ´ n. Thus 0 “ n2 ` n “ npn` 1q.

Therefore either n “ 0 or n` 1 “ 0. This contradicts n ą 0, so no
such n exists. ˝




