## Last time:

Let $a, b \in \mathbb{Z}$. We say that $b$ divides $a$ if $a$ is a multiple of $b$, i.e.

$$
a=b k \quad \text { for some } \quad k \in \mathbb{Z}, \quad \text { written } b \mid a .
$$

If $b$ does not divide $a$, then we write $b \nmid a$.
LATEX: \nmid The divisors as the integers that divide $a$.

Examples:

$$
-15 \mid 60 \text { since } 60=(-15) *(-4) ;
$$

$15 \nmid 25$ since there is no $k \in \mathbb{Z}$ such that $25=15 \cdot k$.
In general, for any non-zero $a \in \mathbb{Z}$,

$$
\pm a|a, \quad \pm 1| a, \quad a \mid 0 \quad \text { and } 0 \nmid a .
$$

## Last time:

Let $a, b \in \mathbb{Z}$. We say that $b$ divides $a$ if $a$ is a multiple of $b$, i.e. $a=b k \quad$ for some $\quad k \in \mathbb{Z}, \quad$ written $b \mid a$.
If $b$ does not divide $a$, then we write $b \nmid a$.
LATEX: \nmid
The divisors as the integers that divide $a$.
Examples:

$$
-15 \mid 60 \quad \text { since } \quad 60=(-15) *(-4) ;
$$

$15 \nmid 25$ since there is no $k \in \mathbb{Z}$ such that $25=15 \cdot k$.
In general, for any non-zero $a \in \mathbb{Z}$,

$$
\pm a|a, \quad \pm 1| a, \quad a \mid 0 \quad \text { and } 0 \nmid a .
$$

For two numbers $a, b \in \mathbb{Z}_{>0}$, a common divisor $d$ is a divisor common to both numbers, i.e. $d \mid a$ and $d \mid b$.
For example,
3 is a divisor of 30 , but not 40 ;
4 is a divisor of 40 , but not 30 ;
$1,2,5$, and 10 are all common divisors of 30 and 40 .

The greatest common divisor of $a$ and $b$, denoted $\operatorname{gcd}(a, b)$ is largest integer that divides both $a$ and $b$. Ex: $\operatorname{gcd}(30,40)=10$.

The greatest common divisor of $a$ and $b$, denoted $\operatorname{gcd}(a, b)$ is largest integer that divides both $a$ and $b$. Ex: $\operatorname{gcd}(30,40)=10$. Claims:

$$
\text { 1. } \operatorname{gcd}(a, b)=\operatorname{gcd}(b, a) . \quad \text { 2. If } b \mid a \text {, then } \operatorname{gcd}(a, b)=b \text {. }
$$

If $\operatorname{gcd}(a, b)=1$, we say that $a$ and $b$ are relatively prime.

The greatest common divisor of $a$ and $b$, denoted $\operatorname{gcd}(a, b)$ is largest integer that divides both $a$ and $b . \quad$ Ex: $\operatorname{gcd}(30,40)=10$. Claims:

$$
\text { 1. } \operatorname{gcd}(a, b)=\operatorname{gcd}(b, a) . \quad \text { 2. If } b \mid a \text {, then } \operatorname{gcd}(a, b)=b \text {. }
$$

If $\operatorname{gcd}(a, b)=1$, we say that $a$ and $b$ are relatively prime.
Example: The divisors of 25 are $\pm 1, \pm 5$, and $\pm 25$; the divisors of 12 are $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6$, and $\pm 12$; so 25 and 12 are relatively prime (even though neither is prime).

The greatest common divisor of $a$ and $b$, denoted $\operatorname{gcd}(a, b)$ is largest integer that divides both $a$ and $b . \quad$ Ex: $\operatorname{gcd}(30,40)=10$. Claims:

$$
\text { 1. } \operatorname{gcd}(a, b)=\operatorname{gcd}(b, a) . \quad \text { 2. If } b \mid a \text {, then } \operatorname{gcd}(a, b)=b \text {. }
$$

If $\operatorname{gcd}(a, b)=1$, we say that $a$ and $b$ are relatively prime.
Example: The divisors of 25 are $\pm 1, \pm 5$, and $\pm 25$; the divisors of
12 are $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6$, and $\pm 12$; so 25 and 12 are relatively prime (even though neither is prime).
To compute the GCD of $a$ and $b \ldots$
Method 1: Compute all the divisors of $a$ and $b$, and compare.
(VERY inefficient)

The greatest common divisor of $a$ and $b$, denoted $\operatorname{gcd}(a, b)$ is largest integer that divides both $a$ and $b$. Ex: $\operatorname{gcd}(30,40)=10$. Claims:

$$
\text { 1. } \operatorname{gcd}(a, b)=\operatorname{gcd}(b, a) . \quad \text { 2. If } b \mid a \text {, then } \operatorname{gcd}(a, b)=b \text {. }
$$

If $\operatorname{gcd}(a, b)=1$, we say that $a$ and $b$ are relatively prime.
Example: The divisors of 25 are $\pm 1, \pm 5$, and $\pm 25$; the divisors of
12 are $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6$, and $\pm 12$; so 25 and 12 are relatively prime (even though neither is prime).
To compute the GCD of $a$ and $b \ldots$
Method 1: Compute all the divisors of $a$ and $b$, and compare.
(VERY inefficient)
Method 2:
Compute the prime factorizations, and take their "intersection".

The greatest common divisor of $a$ and $b$, denoted $\operatorname{gcd}(a, b)$ is largest integer that divides both $a$ and $b$. Ex: $\operatorname{gcd}(30,40)=10$. Claims:

$$
\text { 1. } \operatorname{gcd}(a, b)=\operatorname{gcd}(b, a) . \quad \text { 2. If } b \mid a \text {, then } \operatorname{gcd}(a, b)=b \text {. }
$$

If $\operatorname{gcd}(a, b)=1$, we say that $a$ and $b$ are relatively prime.
Example: The divisors of 25 are $\pm 1, \pm 5$, and $\pm 25$; the divisors of 12 are $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6$, and $\pm 12$; so 25 and 12 are relatively prime (even though neither is prime).
To compute the GCD of $a$ and $b \ldots$
Method 1: Compute all the divisors of $a$ and $b$, and compare.
(VERY inefficient)
Method 2:
Compute the prime factorizations, and take their "intersection". Example:

$$
\begin{aligned}
19500=2^{2} * 3 * 5^{3} * 13 \quad \text { and } \quad 440 & =2^{3} * 5 * 11 \\
& \text { so } \operatorname{gcd}(19500,400)=2^{2} * 5
\end{aligned}
$$

(i.e. $\operatorname{gcd}(a, b)$ is the product of primes $p$ to the highest power $n$ s.t. $p^{n} \mid a$ and $\left.p^{n} \mid b\right)$.

The greatest common divisor of $a$ and $b$, denoted $\operatorname{gcd}(a, b)$ is largest integer that divides both $a$ and $b$. Ex: $\operatorname{gcd}(30,40)=10$. Claims:

$$
\text { 1. } \operatorname{gcd}(a, b)=\operatorname{gcd}(b, a) . \quad \text { 2. If } b \mid a \text {, then } \operatorname{gcd}(a, b)=b \text {. }
$$

If $\operatorname{gcd}(a, b)=1$, we say that $a$ and $b$ are relatively prime.
Example: The divisors of 25 are $\pm 1, \pm 5$, and $\pm 25$; the divisors of 12 are $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6$, and $\pm 12$; so 25 and 12 are relatively prime (even though neither is prime).
To compute the GCD of $a$ and $b \ldots$
Method 1: Compute all the divisors of $a$ and $b$, and compare.
(VERY inefficient)
Method 2:
Compute the prime factorizations, and take their "intersection". Example:

$$
\begin{aligned}
19500=2^{2} * 3 * 5^{3} * 13 \text { and } 440 & =2^{3} * 5 * 11 \\
\text { so } \operatorname{gcd}(19500,400)=2^{2} * 5 & =20
\end{aligned}
$$

(i.e. $\operatorname{gcd}(a, b)$ is the product of primes $p$ to the highest power $n$ s.t. $p^{n} \mid a$ and $\left.p^{n} \mid b\right)$.

Not computationally efficient either, since prime factorization is computationally difficult/not possible without a list of primes.

Method 3: The Euclidean algorithm.

## Method 3: The Euclidean algorithm.

First, we'll need the division algorithm (book: division lemma), which says for any $a, b \in \mathbb{Z}$ with $b \neq 0$, there are unique integers $q$ and $r$ satisfying

$$
a=b q+r \quad \text { and } \quad 0 \leqslant r<|b| .
$$

Think: " $a$ divided by $b$ is $q$ with remainder $r$."

## Method 3: The Euclidean algorithm.

First, we'll need the division algorithm (book: division lemma), which says for any $a, b \in \mathbb{Z}$ with $b \neq 0$, there are unique integers $q$ and $r$ satisfying

$$
a=b q+r \quad \text { and } \quad 0 \leqslant r<|b| .
$$

Think: " $a$ divided by $b$ is $q$ with remainder $r$."
Ex: if $a=17, b=5$

## Method 3: The Euclidean algorithm.

First, we'll need the division algorithm (book: division lemma), which says for any $a, b \in \mathbb{Z}$ with $b \neq 0$, there are unique integers $q$ and $r$ satisfying

$$
a=b q+r \quad \text { and } \quad 0 \leqslant r<|b| .
$$

Think: " $a$ divided by $b$ is $q$ with remainder $r$."
Ex: if $a=17, b=5$, then $q=3$ and $r=2$ since $17=5 * 3+2$.

## Method 3: The Euclidean algorithm.

First, we'll need the division algorithm (book: division lemma), which says for any $a, b \in \mathbb{Z}$ with $b \neq 0$, there are unique integers $q$ and $r$ satisfying

$$
a=b q+r \quad \text { and } \quad 0 \leqslant r<|b| .
$$

Think: " $a$ divided by $b$ is $q$ with remainder $r$."
Ex: if $a=17, b=5$, then $q=3$ and $r=2$ since $17=5 * 3+2$.
Ex: if $a=-17, b=5$

## Method 3: The Euclidean algorithm.

First, we'll need the division algorithm (book: division lemma), which says for any $a, b \in \mathbb{Z}$ with $b \neq 0$, there are unique integers $q$ and $r$ satisfying

$$
a=b q+r \quad \text { and } \quad 0 \leqslant r<|b| .
$$

Think: " $a$ divided by $b$ is $q$ with remainder $r$."
Ex: if $a=17, b=5$, then $q=3$ and $r=2$ since $17=5 * 3+2$.
Ex: if $a=-17, b=5$, then $q=-4$ and $r=3$ since $-17=5 *(-4)+2$.

## Method 3: The Euclidean algorithm.

First, we'll need the division algorithm (book: division lemma), which says for any $a, b \in \mathbb{Z}$ with $b \neq 0$, there are unique integers $q$ and $r$ satisfying

$$
a=b q+r \quad \text { and } \quad 0 \leqslant r<|b| .
$$

Think: " $a$ divided by $b$ is $q$ with remainder $r$."
Ex: if $a=17, b=5$, then $q=3$ and $r=2$ since $17=5 * 3+2$.
Ex: if $a=-17, b=5$, then $q=-4$ and $r=3$ since $-17=5 *(-4)+2$.


## Method 3: The Euclidean algorithm.

First, we'll need the division algorithm (book: division lemma), which says for any $a, b \in \mathbb{Z}$ with $b \neq 0$, there are unique integers $q$ and $r$ satisfying

$$
a=b q+r \quad \text { and } \quad 0 \leqslant r<|b| .
$$

Think: " $a$ divided by $b$ is $q$ with remainder $r$."
Ex: if $a=17, b=5$, then $q=3$ and $r=2$ since $17=5 * 3+2$.
Ex: if $a=-17, b=5$, then $q=-4$ and $r=3$ since $-17=5 *(-4)+2$.


Proof: (sketch)
Case 1: If $a$ and $b$ are the same sign, subtract $b$ from $a$ until the result is between 0 and $|b|-1$. The result is $r$ and the number of subtractions is $q$.
Case 2: If they're different signs, add $b$ to $a$ until the result is between 0 and $|b|-1$. The result is $r$ and the number of additions is $-q$.

We have
if $a=17, b=5$, then $q=3$ and $r=2$ since $17=5 * 3+2$.

We have
if $a=17, b=5$, then $q=3$ and $r=2$ since $17=5 * 3+2$.

We have
if $a=17, b=5$, then $q=3$ and $r=2$ since $17=5 * 3+2$.
If $a_{2}=5, b_{2}=2$, then $q_{2}=2$ and $r_{2}=1$ since $5=2 * 2+1$.

We have
if $a=17, b=5$, then $q=3$ and $r=2$ since $17=5 * 3+2$.
If $a_{2}=5, b_{2}=2$, then $q_{2}=2$ and $r_{2}=1$ since $5=2 * 2+1$.

We have
if $a=17, b=5$, then $q=3$ and $r=2$ since $17=5 * 3+2$.
If $a_{2}=5, b_{2}=2$, then $q_{2}=2$ and $r_{2}=1$ since $5=2 * 2+1$.
And if $a_{3}=2, b_{3}=1$, then $q_{3}=2$ and $r_{3}=0$ since $2=2 * 1+0$.

We have
if $a=17, b=5$, then $q=3$ and $r=2$ since $17=5 * 3+2$.
If $a_{2}=5, b_{2}=2$, then $q_{2}=2$ and $r_{2}=1$ since $5=2 * 2+1$.
And if $a_{3}=2, b_{3}=1$, then $q_{3}=2$ and $r_{3}=0$ since $2=2 * 1+0$. Notice: $\operatorname{gcd}(17,5)=1$.

We have
if $a=17, b=5$, then $q=3$ and $r=2$ since $17=5 * 3+2$.
If $a_{2}=5, b_{2}=2$, then $q_{2}=2$ and $r_{2}=1$ since $5=2 * 2+1$.
And if $a_{3}=2, b_{3}=1$, then $q_{3}=2$ and $r_{3}=0$ since $2=2 * 1+0$. Notice: $\operatorname{gcd}(17,5)=1$.
Play this game again with new $a$ and $b$ :

1. Start with $a_{1}=a$ and $b_{1}=b$.
2. Compute the quotient $q_{i}$ and remainder $r_{i}$ in dividing $a_{i}$ by $b_{i}$.
3. Repeat the division algorithm using $a_{i}=b_{i-1}$ and $b_{i}=r_{i-1}$.
4. Iterate until you get $r_{n}=0$.

Then compare $\operatorname{gcd}(a, b)$ with $r_{n-1}$.
For practice: Do this process with $a=30, b=12$, and then with
$a=84, b=30$.

We have
if $a=17, b=5$, then $q=3$ and $r=2$ since $17=5 * 3+2$.
If $a_{2}=5, b_{2}=2$, then $q_{2}=2$ and $r_{2}=1$ since $5=2 * 2+1$.
And if $a_{3}=2, b_{3}=1$, then $q_{3}=2$ and $r_{3}=0$ since $2=2 * 1+0$. Notice: $\operatorname{gcd}(17,5)=1$.
Play this game again with new $a$ and $b$ :

1. Start with $a_{1}=a$ and $b_{1}=b$.
2. Compute the quotient $q_{i}$ and remainder $r_{i}$ in dividing $a_{i}$ by $b_{i}$.
3. Repeat the division algorithm using $a_{i}=b_{i-1}$ and $b_{i}=r_{i-1}$.
4. Iterate until you get $r_{n}=0$.

Then compare $\operatorname{gcd}(a, b)$ with $r_{n-1}$.
For practice: Do this process with $a=30, b=12$, and then with $a=84, b=30$.

Claim: If $n$ is the first time that $r_{n}=0$, then $r_{n-1}=\operatorname{gcd}(a, b)$.

We have
if $a=17, b=5$, then $q=3$ and $r=2$ since $17=5 * 3+2$.
If $a_{2}=5, b_{2}=2$, then $q_{2}=2$ and $r_{2}=1$ since $5=2 * 2+1$.
And if $a_{3}=2, b_{3}=1$, then $q_{3}=2$ and $r_{3}=0$ since $2=2 * 1+0$. Notice: $\operatorname{gcd}(17,5)=1$.
Play this game again with new $a$ and $b$ :

1. Start with $a_{1}=a$ and $b_{1}=b$.
2. Compute the quotient $q_{i}$ and remainder $r_{i}$ in dividing $a_{i}$ by $b_{i}$.
3. Repeat the division algorithm using $a_{i}=b_{i-1}$ and $b_{i}=r_{i-1}$.
4. Iterate until you get $r_{n}=0$.

Then compare $\operatorname{gcd}(a, b)$ with $r_{n-1}$.
For practice: Do this process with $a=30, b=12$, and then with $a=84, b=30$.

Claim: If $n$ is the first time that $r_{n}=0$, then $r_{n-1}=\operatorname{gcd}(a, b)$. Note that if $r=0$ in the first step, then $b \mid n$, so $\operatorname{gcd}(a, b)=b$.

Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

In general, our process looks like

$$
\begin{array}{rlclll}
a & = & b * q_{1} & + & r_{1} \\
b & = & r_{1} * q_{2} & + & r_{2} \\
r_{1} & = & r_{2} * q_{3} & + & r_{3} \\
& \vdots & & & \\
r_{n-4} & = & r_{n-3} * q_{n-2} & + & r_{n-2} & \\
r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} & \leftarrow \operatorname{gcd}(a, b) ? \\
r_{n-2} & = & r_{n-1} * q_{n} & + & 0 & \leftarrow r_{n}
\end{array}
$$

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

In general, our process looks like

$$
\begin{array}{rllll}
a & = & b * q_{1} & + & r_{1} \\
b & = & r_{1} * q_{2} & + & r_{2} \\
r_{1} & = & r_{2} * q_{3} & + & r_{3} \\
& \vdots & & & \\
r_{n-4} & = & r_{n-3} * q_{n-2} & + & r_{n-2} \\
r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & + & 0
\end{array} \leftarrow r_{n} .
$$

To make everything look the same, let $r_{-1}=a$ and $r_{0}=b$.

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

In general, our process looks like

$$
\begin{array}{rlll}
r_{-1} & & r_{0} \\
& \\
r_{0} * q_{1} & +r_{1} \\
\not W_{2} & = & r_{1} * q_{2} & +r_{2} \\
r_{1} & = & r_{2} * q_{3} & +r_{3} \\
& \vdots \\
r_{n-4} & = & r_{n-3} * q_{n-2} & +r_{n-2} \\
r_{n-3} & = & r_{n-2} * q_{n-1} & +r_{n-1} \\
r_{n-2} & =r_{n-1} * q_{n} & +0 & \leftarrow r_{n}
\end{array}
$$

To make everything look the same, let $r_{-1}=a$ and $r_{0}=b$. So every line comes in the form

$$
r_{i-2}=r_{i-1} * q_{i}+r_{i}
$$

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

Let $r_{-1}=a$ and $r_{0}=b$, so that the algorithm looks like

$$
\left.\begin{array}{rllll}
r_{-1} & = & r_{0} * q_{1} & + & r_{1} \\
r_{0} & = & r_{1} * q_{2} & + & r_{2} \\
r_{1} & = & r_{2} * q_{3} & + & r_{3} \\
& \vdots & & & \\
r_{n-4} & = & r_{n-3} * q_{n-2} & + & r_{n-2} \\
r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & + & 0
\end{array} \leftarrow r_{n} \quad l a, b\right) ? ~ \$
$$

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

Let $r_{-1}=a$ and $r_{0}=b$, so that the algorithm looks like

$$
\begin{array}{rllll}
r_{-1} & = & r_{0} * q_{1} & + & r_{1} \\
r_{0} & = & r_{1} * q_{2} & + & r_{2} \\
r_{1} & = & r_{2} * q_{3} & +r_{3} \\
& \vdots & & & \\
r_{n-4} & = & r_{n-3} * q_{n-2} & +r_{n-2} & \\
r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & + & 0
\end{array} \leftarrow r_{n} .
$$

Last line: $r_{n-2}=r_{n-1} q_{n}$.

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

Let $r_{-1}=a$ and $r_{0}=b$, so that the algorithm looks like

$$
\begin{array}{rllll}
r_{-1} & = & r_{0} * q_{1} & + & r_{1} \\
r_{0} & = & r_{1} * q_{2} & + & r_{2} \\
r_{1} & = & r_{2} * q_{3} & +r_{3} \\
& \vdots & & & \\
r_{n-4} & = & r_{n-3} * q_{n-2} & +r_{n-2} & \\
r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & + & 0
\end{array} \leftarrow r_{n} .
$$

Last line: $r_{n-2}=r_{n-1} q_{n}$.
So

$$
r_{n-3}=r_{n-2} q_{n-1}+r_{n-1}
$$

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

Let $r_{-1}=a$ and $r_{0}=b$, so that the algorithm looks like

$$
\begin{array}{rllll}
r_{-1} & = & r_{0} * q_{1} & + & r_{1} \\
r_{0} & = & r_{1} * q_{2} & + & r_{2} \\
r_{1} & = & r_{2} * q_{3} & +r_{3} \\
& \vdots & & & \\
r_{n-4} & = & r_{n-3} * q_{n-2} & +r_{n-2} & \\
r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & + & 0
\end{array} \leftarrow r_{n} .
$$

Last line: $r_{n-2}=r_{n-1} q_{n}$.
So

$$
r_{n-3}=r_{n-2} q_{n-1}+r_{n-1}=\left(r_{n-1} q_{n}\right) q_{n-1}+r_{n-1}
$$

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

Let $r_{-1}=a$ and $r_{0}=b$, so that the algorithm looks like

$$
\begin{array}{rllll}
r_{-1} & = & r_{0} * q_{1} & + & r_{1} \\
r_{0} & = & r_{1} * q_{2} & + & r_{2} \\
r_{1} & = & r_{2} * q_{3} & +r_{3} \\
& \vdots & & & \\
r_{n-4} & = & r_{n-3} * q_{n-2} & + & r_{n-2} \\
r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & + & 0
\end{array} \leftarrow r_{n} .
$$

Last line: $r_{n-2}=r_{n-1} q_{n}$.
So
$r_{n-3}=r_{n-2} q_{n-1}+r_{n-1}=\left(r_{n-1} q_{n}\right) q_{n-1}+r_{n-1}=r_{n-1}\left(q_{n} q_{n-1}+1\right)$.

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

Let $r_{-1}=a$ and $r_{0}=b$, so that the algorithm looks like

$$
\begin{array}{rllll}
r_{-1} & = & r_{0} * q_{1} & + & r_{1} \\
r_{0} & = & r_{1} * q_{2} & + & r_{2} \\
r_{1} & = & r_{2} * q_{3} & +r_{3} \\
& \vdots & & & \\
r_{n-4} & = & r_{n-3} * q_{n-2} & + & r_{n-2} \\
r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & + & 0
\end{array} \leftarrow r_{n} .
$$

Last line: $r_{n-2}=r_{n-1} q_{n}$.
So
$r_{n-3}=r_{n-2} q_{n-1}+r_{n-1}=\left(r_{n-1} q_{n}\right) q_{n-1}+r_{n-1}=r_{n-1}\left(q_{n} q_{n-1}+1\right)$.
Then

$$
r_{n-4}=r_{n-3} q_{n-2}+r_{n-2}
$$

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

Let $r_{-1}=a$ and $r_{0}=b$, so that the algorithm looks like

$$
\begin{array}{rllll}
r_{-1} & = & r_{0} * q_{1} & + & r_{1} \\
r_{0} & = & r_{1} * q_{2} & + & r_{2} \\
r_{1} & = & r_{2} * q_{3} & +r_{3} \\
& \vdots & & & \\
r_{n-4} & = & r_{n-3} * q_{n-2} & +r_{n-2} & \\
r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & + & 0
\end{array} \leftarrow r_{n} .
$$

Last line: $r_{n-2}=r_{n-1} q_{n}$.
So
$r_{n-3}=r_{n-2} q_{n-1}+r_{n-1}=\left(r_{n-1} q_{n}\right) q_{n-1}+r_{n-1}=r_{n-1}\left(q_{n} q_{n-1}+1\right)$.
Then

$$
r_{n-4}=r_{n-3} q_{n-2}+r_{n-2}=r_{n-1}\left(q_{n} q_{n-1}+1\right) q_{n-2}+r_{n-1} q_{n}
$$

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

Let $r_{-1}=a$ and $r_{0}=b$, so that the algorithm looks like

$$
\begin{array}{rllll}
r_{-1} & = & r_{0} * q_{1} & + & r_{1} \\
r_{0} & = & r_{1} * q_{2} & + & r_{2} \\
r_{1} & = & r_{2} * q_{3} & +r_{3} \\
& \vdots & & & \\
r_{n-4} & = & r_{n-3} * q_{n-2} & +r_{n-2} & \\
r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & + & 0
\end{array} \leftarrow r_{n} .
$$

Last line: $r_{n-2}=r_{n-1} q_{n}$.
So
$r_{n-3}=r_{n-2} q_{n-1}+r_{n-1}=\left(r_{n-1} q_{n}\right) q_{n-1}+r_{n-1}=r_{n-1}\left(q_{n} q_{n-1}+1\right)$.
Then

$$
\begin{gathered}
r_{n-4}=r_{n-3} q_{n-2}+r_{n-2}=r_{n-1}\left(q_{n} q_{n-1}+1\right) q_{n-2}+r_{n-1} q_{n} \\
=r_{n-1}\left(q_{n} q_{n-1} q_{n-2}+q_{n-2}+1\right)
\end{gathered}
$$

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

Let $r_{-1}=a$ and $r_{0}=b$, so that the algorithm looks like

$$
\begin{array}{rllll}
r_{-1} & = & r_{0} * q_{1} & + & r_{1} \\
r_{0} & = & r_{1} * q_{2} & + & r_{2} \\
r_{1} & = & r_{2} * q_{3} & +r_{3} \\
& \vdots & & & \\
r_{n-4} & = & r_{n-3} * q_{n-2} & +r_{n-2} & \\
r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & + & 0
\end{array} \leftarrow r_{n} .
$$

Last line: $r_{n-2}=r_{n-1} q_{n}$.
So
$r_{n-3}=r_{n-2} q_{n-1}+r_{n-1}=\left(r_{n-1} q_{n}\right) q_{n-1}+r_{n-1}=r_{n-1}\left(q_{n} q_{n-1}+1\right)$.
Then

$$
\begin{array}{r}
r_{n-4}=r_{n-3} q_{n-2}+r_{n-2}=r_{n-1}\left(q_{n} q_{n-1}+1\right) q_{n-2}+r_{n-1} q_{n} \\
=r_{n-1}\left(q_{n} q_{n-1} q_{n-2}+q_{n-2}+1\right) . \quad \text { And so on. } .
\end{array}
$$

Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

Example: We have

$$
\begin{aligned}
& 84=30 * 2+24 \\
& 30=24 * 1+6 \\
& 24=6 * 4+0
\end{aligned}
$$

Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

Example: We have

$$
\begin{aligned}
& 84=30 * 2+24 \\
& 30=24 * 1+6 \\
& 24=6 * 4+0
\end{aligned}
$$

$$
r_{n-1}=6
$$

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

Example: We have

$$
\begin{aligned}
& 84=30 * 2+24 \\
& 30=24 * 1+6 \\
& 24=6 * 4+0 . \quad r_{n-1}=6
\end{aligned}
$$

So

$$
30=24 * 1+6
$$

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

Example: We have

$$
\begin{aligned}
& 84=30 * 2+24 \\
& 30=24 * 1+6 \\
& 24=6 * 4+0 . \quad r_{n-1}=6
\end{aligned}
$$

So

$$
30=24 * 1+6=(6 * 4) * 1+6
$$

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

Example: We have

$$
\begin{aligned}
& 84=30 * 2+24 \\
& 30=24 * 1+6 \\
& 24=6 * 4+0 . \quad r_{n-1}=6
\end{aligned}
$$

So

$$
30=24 * 1+6=(6 * 4) * 1+6=6(4 * 1+1)=6 * 5
$$

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

Example: We have

$$
\begin{aligned}
& 84=30 * 2+24 \\
& 30=24 * 1+6 \\
& 24=6 * 4+0 . \quad r_{n-1}=6
\end{aligned}
$$

So

$$
\begin{aligned}
& 30=24 * 1+6=(6 * 4) * 1+6=6(4 * 1+1)=6 * 5 \\
& 84=30 * 2+24
\end{aligned}
$$

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

Example: We have

$$
\begin{aligned}
& 84=30 * 2+24 \\
& 30=24 * 1+6 \\
& 24=6 * 4+0 .
\end{aligned}
$$

So

$$
\begin{aligned}
& 30=24 * 1+6=(6 * 4) * 1+6=6(4 * 1+1)=6 * 5 \\
& 84=30 * 2+24=(6 * 5) * 2+(6 * 4)
\end{aligned}
$$

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

Example: We have

$$
\begin{aligned}
& 84=30 * 2+24 \\
& 30=24 * 1+6 \\
& 24=6 * 4+0 . \quad r_{n-1}=6
\end{aligned}
$$

So

$$
\begin{aligned}
& 30=24 * 1+6=(6 * 4) * 1+6=6(4 * 1+1)=6 * 5 \\
& 84=30 * 2+24=(6 * 5) * 2+(6 * 4)=6(5 * 2+4)=6 * 24
\end{aligned}
$$

Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

Example: We have

$$
\begin{aligned}
& 84=30 * 2+24 \\
& 30=24 * 1+6 \\
& 24=6 * 4+0 . \quad r_{n-1}=6
\end{aligned}
$$

So

$$
\begin{aligned}
& 30=24 * 1+6=(6 * 4) * 1+6=6(4 * 1+1)=6 * 5 \\
& 84=30 * 2+24=(6 * 5) * 2+(6 * 4)=6(5 * 2+4)=6 * 24
\end{aligned}
$$

So 6 is a common divisor of 84 and 30 .

For $a=100, b=36$ :

$$
\begin{aligned}
100 & =36 * 2+28 \\
36 & =28 * 1+8 \\
28 & =8 * 3+4 \\
8 & =4 * 2+0
\end{aligned}
$$

For $a=100, b=36$ :

$$
\begin{aligned}
100 & =36 * 2+28 \\
36 & =28 * 1+8 \\
28 & =8 * 3+4 \\
8 & =4 * 2+0 .
\end{aligned}
$$

$$
r_{n-1}=4
$$

For $a=100, b=36$ :

$$
\begin{aligned}
100 & =36 * 2+28 \\
36 & =28 * 1+8 \\
28 & =8 * 3+4 \\
8 & =4 * 2+0
\end{aligned}
$$

$$
r_{n-1}=4
$$

So

$$
28=8 * 3+4
$$

For $a=100, b=36$ :

$$
\begin{aligned}
100 & =36 * 2+28 \\
36 & =28 * 1+8 \\
28 & =8 * 3+4 \\
8 & =4 * 2+0 .
\end{aligned}
$$

$$
r_{n-1}=4
$$

So

$$
28=8 * 3+4=(4 * 2) * 3+4
$$

For $a=100, b=36$ :

$$
\begin{aligned}
100 & =36 * 2+28 \\
36 & =28 * 1+8 \\
28 & =8 * 3+4 \\
8 & =4 * 2+0 .
\end{aligned}
$$

$$
r_{n-1}=4
$$

So

$$
28=8 * 3+4=(4 * 2) * 3+4=4(2 * 3+1)=4 * 7
$$

For $a=100, b=36$ :

$$
\begin{aligned}
100 & =36 * 2+28 \\
36 & =28 * 1+8 \\
28 & =8 * 3+4 \\
8 & =4 * 2+0 .
\end{aligned}
$$

$$
r_{n-1}=4
$$

So

$$
\begin{aligned}
& 28=8 * 3+4=(4 * 2) * 3+4=4(2 * 3+1)=4 * 7 \\
& 36=28 * 1+8
\end{aligned}
$$

For $a=100, b=36$ :

$$
\begin{aligned}
100 & =36 * 2+28 \\
36 & =28 * 1+8 \\
28 & =8 * 3+4 \\
8 & =4 * 2+0 .
\end{aligned}
$$

$$
r_{n-1}=4
$$

So

$$
\begin{aligned}
& 28=8 * 3+4=(4 * 2) * 3+4=4(2 * 3+1)=4 * 7 \\
& 36=28 * 1+8=(4 * 7) * 1+(4 * 2)
\end{aligned}
$$

For $a=100, b=36$ :

$$
\begin{aligned}
100 & =36 * 2+28 \\
36 & =28 * 1+8 \\
28 & =8 * 3+4 \\
8 & =4 * 2+0 .
\end{aligned}
$$

$$
r_{n-1}=4
$$

So

$$
\begin{aligned}
& 28=8 * 3+4=(4 * 2) * 3+4=4(2 * 3+1)=4 * 7 \\
& 36=28 * 1+8=(4 * 7) * 1+(4 * 2)=4(7 * 1+2)=4 * 9
\end{aligned}
$$

For $a=100, b=36$ :

$$
\begin{aligned}
100 & =36 * 2+28 \\
36 & =28 * 1+8 \\
28 & =8 * 3+4 \\
8 & =4 * 2+0 .
\end{aligned}
$$

$$
r_{n-1}=4
$$

So

$$
\begin{aligned}
28 & =8 * 3+4=(4 * 2) * 3+4=4(2 * 3+1)=4 * 7 \\
36 & =28 * 1+8=(4 * 7) * 1+(4 * 2)=4(7 * 1+2)=4 * 9 \\
100 & =36 * 2+28
\end{aligned}
$$

For $a=100, b=36$ :

$$
\begin{aligned}
100 & =36 * 2+28 \\
36 & =28 * 1+8 \\
28 & =8 * 3+4 \\
8 & =4 * 2+0 .
\end{aligned}
$$

$$
r_{n-1}=4
$$

So

$$
\begin{aligned}
28 & =8 * 3+4=(4 * 2) * 3+4=4(2 * 3+1)=4 * 7 \\
36 & =28 * 1+8=(4 * 7) * 1+(4 * 2)=4(7 * 1+2)=4 * 9 \\
100 & =36 * 2+28=(4 * 9) * 2+(4 * 7)
\end{aligned}
$$

For $a=100, b=36$ :

$$
\begin{aligned}
100 & =36 * 2+28 \\
36 & =28 * 1+8 \\
28 & =8 * 3+4 \\
8 & =4 * 2+0 .
\end{aligned}
$$

$$
r_{n-1}=4
$$

So

$$
\begin{aligned}
28 & =8 * 3+4=(4 * 2) * 3+4=4(2 * 3+1)=4 * 7 \\
36 & =28 * 1+8=(4 * 7) * 1+(4 * 2)=4(7 * 1+2)=4 * 9 \\
100 & =36 * 2+28=(4 * 9) * 2+(4 * 7)=4(9 * 2+7)=4 * 25
\end{aligned}
$$

For $a=100, b=36$ :

$$
\begin{aligned}
100 & =36 * 2+28 \\
36 & =28 * 1+8 \\
28 & =8 * 3+4 \\
8 & =4 * 2+0
\end{aligned}
$$

$$
r_{n-1}=4
$$

So

$$
\begin{aligned}
28 & =8 * 3+4=(4 * 2) * 3+4=4(2 * 3+1)=4 * 7 \\
36 & =28 * 1+8=(4 * 7) * 1+(4 * 2)=4(7 * 1+2)=4 * 9 \\
100 & =36 * 2+28=(4 * 9) * 2+(4 * 7)=4(9 * 2+7)=4 * 25
\end{aligned}
$$

So 4 is a common divisor of 100 and 36 .

For $a=100, b=36$ :

$$
\begin{aligned}
100 & =36 * 2+28 \\
36 & =28 * 1+8 \\
28 & =8 * 3+4 \\
8 & =4 * 2+0 . \quad r_{n-1}=4
\end{aligned}
$$

So

$$
\begin{aligned}
28 & =8 * 3+4=(4 * 2) * 3+4=4(2 * 3+1)=4 * 7 \\
36 & =28 * 1+8=(4 * 7) * 1+(4 * 2)=4(7 * 1+2)=4 * 9 \\
100 & =36 * 2+28=(4 * 9) * 2+(4 * 7)=4(9 * 2+7)=4 * 25
\end{aligned}
$$

So 4 is a common divisor of 100 and 36 .
You try: use the following computations, working backwards, to show that 2 is a common divisor of 100 and 26 :

$$
\begin{array}{rlrl}
100 & =26 * 3+22 & 26 & =22 * 1+4 \\
22 & =4 * 5+2 & 4 & =2 * 2+0
\end{array}
$$

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

Letting $r_{-1}=a$ and $r_{0}=b$, and computing

$$
\begin{array}{rllll}
r_{-1} & = & r_{0} * q_{1} & + & r_{1} \\
r_{0} & = & r_{1} * q_{2} & + & r_{2} \\
r_{1} & = & r_{2} * q_{3} & + & r_{3} \\
& \vdots & & & \\
r_{n-4} & = & r_{n-3} * q_{n-2} & + & r_{n-2} \\
r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & + & 0
\end{array} \leftarrow r_{n} .
$$

we can reverse this process to show that $r_{n-1}$ is, at the very least, a common divisor to $a=r_{-1}$ and $b=r_{0}$.

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

Letting $r_{-1}=a$ and $r_{0}=b$, and computing

$$
\begin{array}{rllll}
r_{-1} & = & r_{0} * q_{1} & + & r_{1} \\
r_{0} & = & r_{1} * q_{2} & + & r_{2} \\
r_{1} & = & r_{2} * q_{3} & +r_{3} \\
& \vdots & & & \\
r_{n-4} & = & r_{n-3} * q_{n-2} & + & r_{n-2} \\
r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & + & \operatorname{gcd}(a, b) ? \\
\leftarrow r_{n}
\end{array}
$$

we can reverse this process to show that $r_{n-1}$ is, at the very least, a common divisor to $a=r_{-1}$ and $b=r_{0}$.
Wait! How do we know we ever get 0 ??

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

Letting $r_{-1}=a$ and $r_{0}=b$, and computing

$$
\begin{array}{rllll}
r_{-1} & = & r_{0} * q_{1} & + & r_{1} \\
r_{0} & = & r_{1} * q_{2} & + & r_{2} \\
r_{1} & = & r_{2} * q_{3} & + & r_{3} \\
& \vdots & & & \\
r_{n-4} & = & r_{n-3} * q_{n-2} & + & r_{n-2} \\
r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & + & 0
\end{array} \leftarrow r_{n} .
$$

we can reverse this process to show that $r_{n-1}$ is, at the very least, a common divisor to $a=r_{-1}$ and $b=r_{0}$.
Wait! How do we know we ever get 0??
The division algorithm ensures that each remainder is strictly smaller than the last, and always non-negative:

$$
b=r_{0}>r_{1}>r_{2}>\cdots \geqslant 0
$$

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

Letting $r_{-1}=a$ and $r_{0}=b$, and computing

$$
\begin{array}{rllll}
r_{-1} & = & r_{0} * q_{1} & + & r_{1} \\
r_{0} & = & r_{1} * q_{2} & + & r_{2} \\
r_{1} & = & r_{2} * q_{3} & +r_{3} \\
& \vdots & & & \\
r_{n-4} & = & r_{n-3} * q_{n-2} & + & r_{n-2} \\
r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & + & 0
\end{array} \leftarrow r_{n} .
$$

we can reverse this process to show that $r_{n-1}$ is, at the very least, a common divisor to $a=r_{-1}$ and $b=r_{0}$.
Wait! How do we know we ever get 0??
The division algorithm ensures that each remainder is strictly smaller than the last, and always non-negative:

$$
b=r_{0}>r_{1}>r_{2}>\cdots \geqslant 0
$$

So since the $r_{i}$ 's are all integers, this process ends at some point.

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

We have that $r_{n-1}$ is a common divisor to $a$ an $b$. Now why is it the greatest common divisor?

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

We have that $r_{n-1}$ is a common divisor to $a$ an $b$. Now why is it the greatest common divisor?
Suppose $d$ is a common divisor of $a$ and $b$, i.e. $d \mid a$ and $d \mid b$.

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

We have that $r_{n-1}$ is a common divisor to $a$ an $b$. Now why is it the greatest common divisor?
Suppose $d$ is a common divisor of $a$ and $b$, i.e. $d \mid a$ and $d \mid b$. This means

$$
a=d \alpha \quad \text { and } b=d \beta \quad \text { for some } \alpha, \beta \in \mathbb{Z}
$$

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

We have that $r_{n-1}$ is a common divisor to $a$ an $b$. Now why is it the greatest common divisor?
Suppose $d$ is a common divisor of $a$ and $b$, i.e. $d \mid a$ and $d \mid b$. This means

$$
a=d \alpha \quad \text { and } b=d \beta \quad \text { for some } \alpha, \beta \in \mathbb{Z}
$$

Back to our division calculation, and substitute these equations in:

| $a$ | $=$ | $b * q_{1}$ | + |
| ---: | :--- | :--- | :--- |
| $b$ | $=$ | $r_{1}$ |  |
| $r_{1} * q_{2}$ | $=$ | + | $r_{2}$ |
|  | $\vdots$ |  | $r_{2} * q_{3}$ |
|  | + | $r_{3}$ |  |
| $r_{n-3}$ | $=$ | $r_{n-2} * q_{n-1}$ | + |
| $r_{n-2}$ | $=$ | $r_{n-1} * q_{n}$ | + |

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

We have that $r_{n-1}$ is a common divisor to $a$ an $b$. Now why is it the greatest common divisor?
Suppose $d$ is a common divisor of $a$ and $b$, i.e. $d \mid a$ and $d \mid b$. This means

$$
a=d \alpha \quad \text { and } b=d \beta \quad \text { for some } \alpha, \beta \in \mathbb{Z}
$$

Back to our division calculation, and substitute these equations in:

$$
\begin{array}{rlll}
d \alpha & = & d \beta * q_{1} & + \\
r_{1} \\
b & = & r_{1} * q_{2} & + \\
r_{2} & = & r_{2} * q_{3} & + \\
& r_{3} \\
& \vdots & & \\
r_{n-3} & =r_{n-2} * q_{n-1} & + & r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & +
\end{array} 00
$$

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

We have that $r_{n-1}$ is a common divisor to $a$ an $b$. Now why is it the greatest common divisor?
Suppose $d$ is a common divisor of $a$ and $b$, i.e. $d \mid a$ and $d \mid b$. This means

$$
a=d \alpha \quad \text { and } b=d \beta \quad \text { for some } \alpha, \beta \in \mathbb{Z}
$$

Back to our division calculation, and substitute these equations in:

$$
\begin{array}{rlllll}
d \alpha & = & d \beta * q_{1} & + & r_{1} & \text { so } r_{1}=d\left(\alpha-\beta q_{1}\right) \\
b & = & r_{1} * q_{2} & + & r_{2} & \\
r_{1} & = & r_{2} * q_{3} & + & r_{3} \\
& \vdots & & & \\
r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & + & 0
\end{array}
$$

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

We have that $r_{n-1}$ is a common divisor to $a$ an $b$. Now why is it the greatest common divisor?
Suppose $d$ is a common divisor of $a$ and $b$, i.e. $d \mid a$ and $d \mid b$. This means

$$
a=d \alpha \quad \text { and } b=d \beta \quad \text { for some } \alpha, \beta \in \mathbb{Z}
$$

Back to our division calculation, and substitute these equations in:

$$
\begin{array}{rllll}
d \alpha & = & d \beta * q_{1} & + & r_{1} \\
b & = & r_{1} * q_{2} & + & r_{2} \\
r_{1} & = & r_{2} * q_{3} & +r_{1}=d\left(\alpha-\beta q_{1}\right)=d m_{1} \\
& \vdots & & \\
r_{n-3} & = & r_{n-2} * q_{n-1} & +r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & +0
\end{array}
$$

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

We have that $r_{n-1}$ is a common divisor to $a$ an $b$. Now why is it the greatest common divisor?
Suppose $d$ is a common divisor of $a$ and $b$, i.e. $d \mid a$ and $d \mid b$. This means

$$
a=d \alpha \quad \text { and } b=d \beta \quad \text { for some } \alpha, \beta \in \mathbb{Z}
$$

Back to our division calculation, and substitute these equations in:

$$
\begin{array}{rllll}
d \alpha & = & d \beta * q_{1} & + & r_{1} \quad \text { so } r_{1}=d\left(\alpha-\beta q_{1}\right)=d m_{1} \\
d \beta & = & d m_{1} * q_{2} & + & r_{2} \\
r_{1} & = & r_{2} * q_{3} & + & r_{3} \\
& \vdots & & \\
r_{n-3} & =r_{n-2} * q_{n-1} & +r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & +0
\end{array}
$$

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

We have that $r_{n-1}$ is a common divisor to $a$ an $b$. Now why is it the greatest common divisor?
Suppose $d$ is a common divisor of $a$ and $b$, i.e. $d \mid a$ and $d \mid b$. This means

$$
a=d \alpha \quad \text { and } b=d \beta \quad \text { for some } \alpha, \beta \in \mathbb{Z}
$$

Back to our division calculation, and substitute these equations in:

$$
\left.\begin{array}{rllll}
d \alpha & = & d \beta * q_{1} & + & r_{1}
\end{array} \text { so } r_{1}=d\left(\alpha-\beta q_{1}\right)=d m_{1}\right) \text { so } r_{2}=d\left(\beta-m_{1} q_{2}\right)
$$

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

We have that $r_{n-1}$ is a common divisor to $a$ an $b$. Now why is it the greatest common divisor?
Suppose $d$ is a common divisor of $a$ and $b$, i.e. $d \mid a$ and $d \mid b$. This means

$$
a=d \alpha \quad \text { and } b=d \beta \quad \text { for some } \alpha, \beta \in \mathbb{Z}
$$

Back to our division calculation, and substitute these equations in:

$$
\left.\begin{array}{rllll}
d \alpha & = & d \beta * q_{1} & + & r_{1}
\end{array} \begin{array}{l}
\text { so } r_{1}=d\left(\alpha-\beta q_{1}\right)=d m_{1} \\
d \beta
\end{array}=m_{1} * q_{2}+r_{2} \quad \text { so } r_{2}=d\left(\beta-m_{1} q_{2}\right)=d m_{2}\right)
$$

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

We have that $r_{n-1}$ is a common divisor to $a$ an $b$. Now why is it the greatest common divisor?
Suppose $d$ is a common divisor of $a$ and $b$, i.e. $d \mid a$ and $d \mid b$. This means

$$
a=d \alpha \quad \text { and } b=d \beta \quad \text { for some } \alpha, \beta \in \mathbb{Z}
$$

Back to our division calculation, and substitute these equations in:

$$
\begin{array}{rlll}
d \alpha & =d \beta * q_{1} & + & r_{1} \\
\text { so } r_{1}=d\left(\alpha-\beta q_{1}\right)=d m_{1} \\
d \beta & =d m_{1} * q_{2} & +r_{2} & \text { so } r_{2}=d\left(\beta-m_{1} q_{2}\right)=d m_{2} \\
d m_{1} & =d m_{2} * q_{3}+r_{3} \\
& \vdots \\
r_{n-3} & =r_{n-2} * q_{n-1}+r_{n-1} \\
r_{n-2} & =r_{n-1} * q_{n}+0
\end{array}
$$

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

We have that $r_{n-1}$ is a common divisor to $a$ an $b$. Now why is it the greatest common divisor?
Suppose $d$ is a common divisor of $a$ and $b$, i.e. $d \mid a$ and $d \mid b$. This means

$$
a=d \alpha \quad \text { and } b=d \beta \quad \text { for some } \alpha, \beta \in \mathbb{Z}
$$

Back to our division calculation, and substitute these equations in:

$$
\begin{array}{rlll}
d \alpha & =d \beta * q_{1} & + & r_{1} \\
\text { so } r_{1}=d\left(\alpha-\beta q_{1}\right)=d m_{1} \\
d \beta & =d m_{1} * q_{2} & +r_{2} & \text { so } r_{2}=d\left(\beta-m_{1} q_{2}\right)=d m_{2} \\
d m_{1} & =d m_{2} * q_{3}+r_{3} \quad \text { so } r_{3}=\cdots=d m_{3} \\
& \vdots \\
r_{n-3} & =r_{n-2} * q_{n-1} & +r_{n-1} \\
r_{n-2} & =r_{n-1} * q_{n}+0
\end{array}
$$

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

We have that $r_{n-1}$ is a common divisor to $a$ an $b$. Now why is it the greatest common divisor?
Suppose $d$ is a common divisor of $a$ and $b$, i.e. $d \mid a$ and $d \mid b$. This means

$$
a=d \alpha \quad \text { and } b=d \beta \quad \text { for some } \alpha, \beta \in \mathbb{Z}
$$

Back to our division calculation, and substitute these equations in:

$$
\begin{array}{ccccc}
d \alpha & = & d \beta * q_{1} & + & r_{1} \\
d \beta & = & \text { so } r_{1}=d\left(\alpha-\beta q_{1}\right)=d m_{1} \\
d m_{1} * q_{2} & + & r_{2} & \text { so } r_{2}=d\left(\beta-m_{1} q_{2}\right)=d m_{2} \\
d m_{1} & = & d m_{2} * q_{3} & + & r_{3} \\
& \vdots & \text { so } r_{3}=\cdots=d m_{3} \\
& \vdots & & & \\
d m_{n-3} & = & d m_{n-2} * q_{n-1} & + & r_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & + & \text { so } r_{n-1}=\cdots=d m_{n-1} \\
\end{array}
$$

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

We have that $r_{n-1}$ is a common divisor to $a$ an $b$. Now why is it the greatest common divisor?
Suppose $d$ is a common divisor of $a$ and $b$, i.e. $d \mid a$ and $d \mid b$. This means

$$
a=d \alpha \quad \text { and } b=d \beta \quad \text { for some } \alpha, \beta \in \mathbb{Z}
$$

Back to our division calculation, and substitute these equations in:

$$
\begin{array}{rllll}
d \alpha & = & d \beta * q_{1} & + & r_{1} \\
\text { so } r_{1}=d\left(\alpha-\beta q_{1}\right)=d m_{1} \\
d \beta & = & d m_{1} * q_{2} & + & r_{2} \\
\text { so } r_{2}=d\left(\beta-m_{1} q_{2}\right)=d m_{2} \\
d m_{1} & = & d m_{2} * q_{3} & + & r_{3} \\
& \text { so } r_{3}=\cdots=d m_{3} \\
& \vdots & & \\
d m_{n-3} & = & d m_{n-2} * q_{n-1} & + & r_{n-1} \\
r_{n-2} & = & \text { so } r_{n-1}=\cdots=d m_{n-1}
\end{array}
$$

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

We have that $r_{n-1}$ is a common divisor to $a$ an $b$. Now why is it the greatest common divisor?
Suppose $d$ is a common divisor of $a$ and $b$, i.e. $d \mid a$ and $d \mid b$. This means

$$
a=d \alpha \quad \text { and } b=d \beta \quad \text { for some } \alpha, \beta \in \mathbb{Z}
$$

Back to our division calculation, and substitute these equations in:

$$
\begin{array}{rlllll}
d \alpha & = & d \beta * q_{1} & + & r_{1} & \text { so } r_{1}=d\left(\alpha-\beta q_{1}\right)=d m_{1} \\
d \beta & = & d m_{1} * q_{2} & + & r_{2} & \text { so } r_{2}=d\left(\beta-m_{1} q_{2}\right)=d m_{2} \\
d m_{1} & = & d m_{2} * q_{3} & + & r_{3} & \text { so } r_{3}=\cdots=d m_{3} \\
& \vdots & & & \\
d m_{n-3} & = & d m_{n-2} * q_{n-1} & +r_{n-1} & \text { so } r_{n-1}=\cdots=d m_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & + & 0 &
\end{array}
$$

So $d$ is a divisor of $r_{n-1}$.

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

We have that $r_{n-1}$ is a common divisor to $a$ an $b$. Now why is it the greatest common divisor?
Suppose $d$ is a common divisor of $a$ and $b$, i.e. $d \mid a$ and $d \mid b$. This means

$$
a=d \alpha \quad \text { and } b=d \beta \quad \text { for some } \alpha, \beta \in \mathbb{Z}
$$

Back to our division calculation, and substitute these equations in:

$$
\begin{array}{rlllll}
d \alpha & = & d \beta * q_{1} & + & r_{1} & \text { so } r_{1}=d\left(\alpha-\beta q_{1}\right)=d m_{1} \\
d \beta & = & d m_{1} * q_{2} & + & r_{2} & \text { so } r_{2}=d\left(\beta-m_{1} q_{2}\right)=d m_{2} \\
d m_{1} & = & d m_{2} * q_{3} & + & r_{3} & \text { so } r_{3}=\cdots=d m_{3} \\
& \vdots & & & \\
d m_{n-3} & = & d m_{n-2} * q_{n-1} & +r_{n-1} & \text { so } r_{n-1}=\cdots=d m_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & +\quad 0 &
\end{array}
$$

So $d$ is a divisor of $r_{n-1}$. In particular, since $r_{n-1}>0$, we have

$$
d \mid r_{n-1} \quad \text { and } \quad d \leqslant r_{n-1}
$$

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

We have that $r_{n-1}$ is a common divisor to $a$ an $b$. Now why is it the greatest common divisor?
Suppose $d$ is a common divisor of $a$ and $b$, i.e. $d \mid a$ and $d \mid b$. This means

$$
a=d \alpha \quad \text { and } b=d \beta \quad \text { for some } \alpha, \beta \in \mathbb{Z}
$$

Back to our division calculation, and substitute these equations in:

$$
\begin{array}{cccccl}
d \alpha & = & d \beta * q_{1} & + & r_{1} & \text { so } r_{1}=d\left(\alpha-\beta q_{1}\right)=d m_{1} \\
d \beta & = & d m_{1} * q_{2} & + & r_{2} & \text { so } r_{2}=d\left(\beta-m_{1} q_{2}\right)=d m_{2} \\
d m_{1} & = & d m_{2} * q_{3} & + & r_{3} & \text { so } r_{3}=\cdots=d m_{3} \\
& \vdots & & & \\
d m_{n-3} & = & d m_{n-2} * q_{n-1} & +r_{n-1} & \text { so } r_{n-1}=\cdots=d m_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & +\quad 0 &
\end{array}
$$

So $d$ is a divisor of $r_{n-1}$. In particular, since $r_{n-1}>0$, we have

$$
d \mid r_{n-1} \quad \text { and } \quad d \leqslant r_{n-1}
$$

In other words, $r_{n-1}$ is a common divisor to $a$ and $b$, and any other common divisor is less than or equal to $r_{n-1}$.

## Why does $r_{n-1}=\operatorname{gcd}(a, b)$ ?

We have that $r_{n-1}$ is a common divisor to $a$ an $b$. Now why is it the greatest common divisor?
Suppose $d$ is a common divisor of $a$ and $b$, i.e. $d \mid a$ and $d \mid b$. This means

$$
a=d \alpha \quad \text { and } b=d \beta \quad \text { for some } \alpha, \beta \in \mathbb{Z}
$$

Back to our division calculation, and substitute these equations in:

$$
\begin{array}{cccccl}
d \alpha & = & d \beta * q_{1} & + & r_{1} & \text { so } r_{1}=d\left(\alpha-\beta q_{1}\right)=d m_{1} \\
d \beta & = & d m_{1} * q_{2} & + & r_{2} & \text { so } r_{2}=d\left(\beta-m_{1} q_{2}\right)=d m_{2} \\
d m_{1} & = & d m_{2} * q_{3} & + & r_{3} & \text { so } r_{3}=\cdots=d m_{3} \\
& \vdots & & & \\
d m_{n-3} & = & d m_{n-2} * q_{n-1} & +r_{n-1} & \text { so } r_{n-1}=\cdots=d m_{n-1} \\
r_{n-2} & = & r_{n-1} * q_{n} & +\quad 0 &
\end{array}
$$

So $d$ is a divisor of $r_{n-1}$. In particular, since $r_{n-1}>0$, we have

$$
d \mid r_{n-1} \quad \text { and } \quad d \leqslant r_{n-1}
$$

In other words, $r_{n-1}$ is a common divisor to $a$ and $b$, and any other common divisor is less than or equal to $r_{n-1}$. So $r_{n-1}=\operatorname{gcd}(a, b)$.

Theorem (Euclidean algorithm). To compute $\operatorname{gcd}(a, b)$, let $r_{-1}=a$ and $r_{0}=b$, and compute successive quotients and remainders

$$
r_{i-2}=r_{i-1} q_{i}+r_{i}
$$

for $i=1,2,3, \ldots$, until some remainder $r_{n}$ is 0 . The last nonzero remainder $r_{n-1}$ is then the greatest common divisor of $a$ and $b$.
(This takes at most $b$ steps (actually less), and is much more computationally efficient than the other methods.)

Theorem (Euclidean algorithm). To compute $\operatorname{gcd}(a, b)$, let $r_{-1}=a$ and $r_{0}=b$, and compute successive quotients and remainders

$$
r_{i-2}=r_{i-1} q_{i}+r_{i}
$$

for $i=1,2,3, \ldots$, until some remainder $r_{n}$ is 0 . The last nonzero remainder $r_{n-1}$ is then the greatest common divisor of $a$ and $b$.
(This takes at most $b$ steps (actually less), and is much more computationally efficient than the other methods.)

Proof technique: The definition of greatest common divisor is an "and" statement:

$$
\operatorname{gcd}(a, b)=d \Leftrightarrow((d|a \wedge d| b) \wedge(\delta|a \wedge \delta| b \Rightarrow \delta \leqslant d))
$$

So to show that $\operatorname{gcd}(a, b)=d$, you show that (1) $d$ is a common divisor of $a$ and $b$; and (2) if $\delta$ is a common divisor of $a$ and $b$, then $\delta \leqslant d$.

Theorem (Euclidean algorithm). To compute $\operatorname{gcd}(a, b)$, let $r_{-1}=a$ and $r_{0}=b$, and compute successive quotients and remainders

$$
r_{i-2}=r_{i-1} q_{i}+r_{i}
$$

for $i=1,2,3, \ldots$, until some remainder $r_{n}$ is 0 . The last nonzero remainder $r_{n-1}$ is then the greatest common divisor of $a$ and $b$.
(This takes at most $b$ steps (actually less), and is much more computationally efficient than the other methods.)

Proof technique: The definition of greatest common divisor is an "and" statement:

$$
\operatorname{gcd}(a, b)=d \Leftrightarrow((d|a \wedge d| b) \wedge(\delta|a \wedge \delta| b \Rightarrow \delta \leqslant d))
$$

So to show that $\operatorname{gcd}(a, b)=d$, you show that (1) $d$ is a common divisor of $a$ and $b$; and (2) if $\delta$ is a common divisor of $a$ and $b$, then $\delta \leqslant d$.

Claim (on homework): For any non-zero $a, b \in \mathbb{Z}$, there exist $x, y \in \mathbb{Z}$ such that $\operatorname{gcd}(a, b)=a x+b y$, i.e. $\operatorname{gcd}(a, b)$ is an integral combination of $a$ and $b$.

Theorem. For any non-zero $a, b \in \mathbb{Z}$, there exist $x, y \in \mathbb{Z}$ such that

$$
\operatorname{gcd}(a, b)=a x+b y .
$$

Corollary (Euclid's Lemma). Suppose that $n, a$, and $b$ are non-zero integers. If $n \mid a b$ and $\operatorname{gcd}(n, a)=1$, then $n \mid b$.

Theorem. For any non-zero $a, b \in \mathbb{Z}$, there exist $x, y \in \mathbb{Z}$ such that

$$
\operatorname{gcd}(a, b)=a x+b y .
$$

Corollary (Euclid's Lemma). Suppose that $n, a$, and $b$ are non-zero integers. If $n \mid a b$ and $\operatorname{gcd}(n, a)=1$, then $n \mid b$.
You think: Analyze this theorem.
(Examples, non-examples, similar theorems, etc.)

Theorem. For any non-zero $a, b \in \mathbb{Z}$, there exist $x, y \in \mathbb{Z}$ such that

$$
\operatorname{gcd}(a, b)=a x+b y .
$$

Corollary (Euclid's Lemma). Suppose that $n, a$, and $b$ are non-zero integers. If $n \mid a b$ and $\operatorname{gcd}(n, a)=1$, then $n \mid b$.
You think: Analyze this theorem.
(Examples, non-examples, similar theorems, etc.)
Proof. Since $n \mid a b$, we have $\square$
Since $\operatorname{gcd}(n, a)=1$, we have
... Conclusion: we have $\square$

Theorem. For any non-zero $a, b \in \mathbb{Z}$, there exist $x, y \in \mathbb{Z}$ such that

$$
\operatorname{gcd}(a, b)=a x+b y
$$

Corollary (Euclid's Lemma). Suppose that $n, a$, and $b$ are non-zero integers. If $n \mid a b$ and $\operatorname{gcd}(n, a)=1$, then $n \mid b$.
You think: Analyze this theorem.
(Examples, non-examples, similar theorems, etc.)
Proof. Since $n \mid a b$, we have $a b=k n$ for some $k \in \mathbb{Z}$.
Since $\operatorname{gcd}(n, a)=1$, we have $n x+a y=1$ for some $x, y \in \mathbb{Z}$.

$$
\ldots \text { Conclusion: we have } b=\ell n \text { for some } \ell \in \mathbb{Z} \text {. }
$$

Theorem. For any non-zero $a, b \in \mathbb{Z}$, there exist $x, y \in \mathbb{Z}$ such that

$$
\operatorname{gcd}(a, b)=a x+b y .
$$

Corollary (Euclid's Lemma). Suppose that $n, a$, and $b$ are non-zero integers. If $n \mid a b$ and $\operatorname{gcd}(n, a)=1$, then $n \mid b$.
You think: Analyze this theorem.
(Examples, non-examples, similar theorems, etc.)
Proof. Since $n \mid a b$, we have $a b=k n$ for some $k \in \mathbb{Z}$.
Since $\operatorname{gcd}(n, a)=1$, we have $n x+a y=1$ for some $x, y \in \mathbb{Z}$. So
$b=b \cdot 1=b(n x+a y)$
... Conclusion: we have $b=\ell n$ for some $\ell \in \mathbb{Z}$.

Theorem. For any non-zero $a, b \in \mathbb{Z}$, there exist $x, y \in \mathbb{Z}$ such that

$$
\operatorname{gcd}(a, b)=a x+b y .
$$

Corollary (Euclid's Lemma). Suppose that $n, a$, and $b$ are non-zero integers. If $n \mid a b$ and $\operatorname{gcd}(n, a)=1$, then $n \mid b$.
You think: Analyze this theorem.
(Examples, non-examples, similar theorems, etc.)
Proof. Since $n \mid a b$, we have $a b=k n$ for some $k \in \mathbb{Z}$.
Since $\operatorname{gcd}(n, a)=1$, we have $n x+a y=1$ for some $x, y \in \mathbb{Z}$. So

$$
b=b \cdot 1=b(n x+a y)=n b x+(a b) y
$$

... Conclusion: we have $b=\ell n$ for some $\ell \in \mathbb{Z}$.

Theorem. For any non-zero $a, b \in \mathbb{Z}$, there exist $x, y \in \mathbb{Z}$ such that

$$
\operatorname{gcd}(a, b)=a x+b y .
$$

Corollary (Euclid's Lemma). Suppose that $n, a$, and $b$ are non-zero integers. If $n \mid a b$ and $\operatorname{gcd}(n, a)=1$, then $n \mid b$.
You think: Analyze this theorem.
(Examples, non-examples, similar theorems, etc.)
Proof. Since $n \mid a b$, we have $a b=k n$ for some $k \in \mathbb{Z}$.
Since $\operatorname{gcd}(n, a)=1$, we have $n x+a y=1$ for some $x, y \in \mathbb{Z}$. So

$$
b=b \cdot 1=b(n x+a y)=n b x+(a b) y=n b x+n k y=n(b x+k y) .
$$

... Conclusion: we have $b=\ell n$ for some $\ell \in \mathbb{Z}$.

Theorem. For any non-zero $a, b \in \mathbb{Z}$, there exist $x, y \in \mathbb{Z}$ such that

$$
\operatorname{gcd}(a, b)=a x+b y .
$$

Corollary (Euclid's Lemma). Suppose that $n, a$, and $b$ are non-zero integers. If $n \mid a b$ and $\operatorname{gcd}(n, a)=1$, then $n \mid b$.
You think: Analyze this theorem.
(Examples, non-examples, similar theorems, etc.)
Proof. Since $n \mid a b$, we have $a b=k n$ for some $k \in \mathbb{Z}$.
Since $\operatorname{gcd}(n, a)=1$, we have $n x+a y=1$ for some $x, y \in \mathbb{Z}$. So
$b=b \cdot 1=b(n x+a y)=n b x+(a b) y=n b x+n k y=n(b x+k y)$.
So since $b x+k y \in \mathbb{Z}$, we have $b=\ell n$ for some $\ell \in \mathbb{Z}$.

Theorem. For any non-zero $a, b \in \mathbb{Z}$, there exist $x, y \in \mathbb{Z}$ such that

$$
\operatorname{gcd}(a, b)=a x+b y .
$$

Corollary (Euclid's Lemma). Suppose that $n, a$, and $b$ are non-zero integers. If $n \mid a b$ and $\operatorname{gcd}(n, a)=1$, then $n \mid b$.
You think: Analyze this theorem.
(Examples, non-examples, similar theorems, etc.)
Proof. Since $n \mid a b$, we have $a b=k n$ for some $k \in \mathbb{Z}$.
Since $\operatorname{gcd}(n, a)=1$, we have $n x+a y=1$ for some $x, y \in \mathbb{Z}$. So
$b=b \cdot 1=b(n x+a y)=n b x+(a b) y=n b x+n k y=n(b x+k y)$.
So since $b x+k y \in \mathbb{Z}$, we have $b=\ell n$ for some $\ell \in \mathbb{Z}$.
You try: Let $a$ and $b$ be non-zero integers. Outline proofs of the following claims.

1. If $\delta$ is a common divisor of $a$ and $b$, then $\delta \mid \operatorname{gcd}(a, b)$.
2. We call $\ell \in \mathbb{Z}$ a common multiple of $a$ and $b$ if $a \mid \ell$ and $b \mid \ell$. The smallest (positive) such $\ell$ is called the least common multiple of $a$ and $b$, denoted $\operatorname{lcm}(a, b)$. For example, $\operatorname{lcm}(12,66)=132$.
(i) If $a \mid m$ and $b \mid m$, then $\operatorname{lcm}(a, b) \mid m$.
(ii) For any $r \in \mathbb{Z}, \operatorname{lcm}(r a, r b)=r \operatorname{lcm}(a, b)$.
