Last time:

Let $a, b \in \mathbb{Z}$. We say that b divides a if a is a multiple of b, i.e.

a = bk for some $k \in \mathbb{Z}$, written b|a. If b does not divide a, then we write $b \nmid a$. The divisors as the integers that divide a.

Examples:

$$\begin{split} -15|60 \quad \text{since} \quad 60 = (-15)*(-4);\\ 15 \nmid 25 \quad \text{since there is no } k \in \mathbb{Z} \text{ such that } 25 = 15 \cdot k. \end{split}$$

In general, for any non-zero $a \in \mathbb{Z}$,

 $\pm a|a, \quad \pm 1|a, \quad a|0 \quad \text{ and } 0 \nmid a.$

Last time:

Let $a, b \in \mathbb{Z}$. We say that b divides a if a is a multiple of b, i.e.

a = bk for some $k \in \mathbb{Z}$, written b|a. If b does not divide a, then we write $b \nmid a$. The divisors as the integers that divide a.

Examples:

$$\begin{split} -15|60 \quad \text{since} \quad 60 = (-15)*(-4);\\ 15 \nmid 25 \quad \text{since there is no } k \in \mathbb{Z} \text{ such that } 25 = 15 \cdot k. \end{split}$$

In general, for any non-zero $a \in \mathbb{Z}$,

 $\pm a|a, \quad \pm 1|a, \quad a|0 \quad \text{ and } 0 \nmid a.$

For two numbers $a, b \in \mathbb{Z}_{>0}$, a common divisor d is a divisor common to both numbers, i.e. d|a and d|b. For example,

> 3 is a divisor of 30, but not 40; 4 is a divisor of 40, but not 30; 1,2,5, and 10 are all common divisors of 30 and 40.

1. gcd(a,b) = gcd(b,a). 2. If b|a, then gcd(a,b) = b.

If gcd(a, b) = 1, we say that a and b are relatively prime.

1. gcd(a, b) = gcd(b, a). 2. If b|a, then gcd(a, b) = b. If gcd(a, b) = 1, we say that a and b are relatively prime. Example: The divisors of 25 are $\pm 1, \pm 5$, and ± 25 ; the divisors of 12 are $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6$, and ± 12 ; so 25 and 12 are relatively prime (even though neither is prime).

1. gcd(a, b) = gcd(b, a). 2. If b|a, then gcd(a, b) = b. If gcd(a, b) = 1, we say that a and b are relatively prime. Example: The divisors of 25 are $\pm 1, \pm 5$, and ± 25 ; the divisors of 12 are $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6$, and ± 12 ; so 25 and 12 are relatively prime (even though neither is prime).

To compute the GCD of a and b...

Method 1: Compute all the divisors of *a* and *b*, and compare.

(VERY inefficient)

1. gcd(a, b) = gcd(b, a). 2. If b|a, then gcd(a, b) = b. If gcd(a, b) = 1, we say that a and b are relatively prime. Example: The divisors of 25 are $\pm 1, \pm 5$, and ± 25 ; the divisors of 12 are $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6$, and ± 12 ; so 25 and 12 are relatively prime (even though neither is prime). To compute the GCD of a and b...

Method 1: Compute all the divisors of *a* and *b*, and compare.

(VERY inefficient)

Method 2:

Compute the prime factorizations, and take their "intersection".

1. gcd(a, b) = gcd(b, a). 2. If b|a, then gcd(a, b) = b. If gcd(a, b) = 1, we say that a and b are relatively prime. Example: The divisors of 25 are $\pm 1, \pm 5$, and ± 25 ; the divisors of 12 are $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6$, and ± 12 ; so 25 and 12 are relatively prime (even though neither is prime).

To compute the GCD of a and b...

Method 1: Compute all the divisors of a and b, and compare.

(VERY inefficient)

Method 2:

Compute the prime factorizations, and take their "intersection". Example:

$$\begin{array}{ll} 19500 = 2^2 * 3 * 5^3 * 13 & \text{and} & 440 = 2^3 * 5 * 11, \\ \text{so} & \gcd(19500, 400) = 2^2 * 5 = \fbox{20} \end{array}$$

(i.e. gcd(a, b) is the product of primes p to the highest power n s.t. $p^n|a$ and $p^n|b$).

1. gcd(a,b) = gcd(b,a). 2. If b|a, then gcd(a,b) = b. If gcd(a,b) = 1, we say that a and b are relatively prime. Example: The divisors of 25 are $\pm 1, \pm 5$, and ± 25 ; the divisors of 12 are $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6$, and ± 12 ; so 25 and 12 are relatively prime (even though neither is prime).

To compute the GCD of a and b...

Method 1: Compute all the divisors of *a* and *b*, and compare.

(VERY inefficient)

Method 2:

Compute the prime factorizations, and take their "intersection". Example:

$$\begin{array}{ll} 19500 = 2^2 * 3 * 5^3 * 13 & \text{and} & 440 = 2^3 * 5 * 11, \\ \text{so} & \gcd(19500, 400) = 2^2 * 5 = \fbox{20} \end{array}$$

(i.e. gcd(a, b) is the product of primes p to the highest power n s.t. $p^n|a$ and $p^n|b$). Not *computationally* efficient either, since prime factorization is computationally difficult/not possible without a list of primes.

First, we'll need the division algorithm (book: division lemma), which says for any $a, b \in \mathbb{Z}$ with $b \neq 0$, there are unique integers q and r satisfying

$$a = bq + r$$
 and $0 \leq r < |b|$.

Think: "a divided by b is q with remainder r."

First, we'll need the division algorithm (book: division lemma), which says for any $a, b \in \mathbb{Z}$ with $b \neq 0$, there are unique integers q and r satisfying

$$a = bq + r$$
 and $0 \leq r < |b|$.

Think: "a divided by b is q with remainder r." Ex: if a = 17, b = 5

First, we'll need the division algorithm (book: division lemma), which says for any $a, b \in \mathbb{Z}$ with $b \neq 0$, there are unique integers q and r satisfying

$$a = bq + r$$
 and $0 \leq r < |b|$.

Think: "a divided by b is q with remainder r." Ex: if a = 17, b = 5, then q = 3 and r = 2 since 17 = 5 * 3 + 2.

First, we'll need the division algorithm (book: division lemma), which says for any $a, b \in \mathbb{Z}$ with $b \neq 0$, there are unique integers q and r satisfying

$$a = bq + r$$
 and $0 \leq r < |b|$.

Think: "a divided by b is q with remainder r." Ex: if a = 17, b = 5, then q = 3 and r = 2 since 17 = 5 * 3 + 2. Ex: if a = -17, b = 5

First, we'll need the division algorithm (book: division lemma), which says for any $a, b \in \mathbb{Z}$ with $b \neq 0$, there are unique integers q and r satisfying

$$a = bq + r$$
 and $0 \leq r < |b|$.

Think: "a divided by b is q with remainder r."

Ex: if a = 17, b = 5, then q = 3 and r = 2 since 17 = 5 * 3 + 2. Ex: if a = -17, b = 5, then q = -4 and r = 3 since -17 = 5 * (-4) + 2.

First, we'll need the division algorithm (book: division lemma), which says for any $a, b \in \mathbb{Z}$ with $b \neq 0$, there are unique integers q and r satisfying

$$a = bq + r$$
 and $0 \leq r < |b|$.

Think: "a divided by b is q with remainder r."

First, we'll need the division algorithm (book: division lemma), which says for any $a, b \in \mathbb{Z}$ with $b \neq 0$, there are unique integers q and r satisfying

$$a = bq + r$$
 and $0 \leq r < |b|$.

Think: "a divided by b is q with remainder r."

Ex: if a = 17, b = 5, then q = 3 and r = 2 since 17 = 5 * 3 + 2. Ex: if a = -17, b = 5, then q = -4 and r = 3 since -17 = 5 * (-4) + 2. -20 -15 -10 -5 0 5 10 15 20 -17-17

Proof: (sketch)

Case 1: If a and b are the same sign, subtract b from a until the result is between 0 and |b| - 1. The result is r and the number of subtractions is q.

Case 2: If they're different signs, add b to a until the result is between 0 and |b| - 1. The result is r and the number of additions is -q.

if
$$a = 17, b = 5$$
, then $q = 3$ and $r = 2$ since $17 = 5 * 3 + 2$.

if
$$a = 17, b = 5$$
, then $q = 3$ and $r = 2$ since $17 = 5 * 3 + 2$.

if
$$a = 17, b = 5$$
, then $q = 3$ and $r = 2$ since $17 = 5 * 3 + 2$.
If $a_2 = 5, b_2 = 2$, then $q_2 = 2$ and $r_2 = 1$ since $5 = 2 * 2 + 1$.

if
$$a = 17, b = 5$$
, then $q = 3$ and $r = 2$ since $17 = 5 * 3 + 2$.
If $a_2 = 5, b_2 = 2$, then $q_2 = 2$ and $r_2 = 1$ since $5 = 2 * 2 + 1$.

if a = 17, b = 5, then q = 3 and r = 2 since 17 = 5 * 3 + 2. If $a_2 = 5, b_2 = 2$, then $q_2 = 2$ and $r_2 = 1$ since 5 = 2 * 2 + 1. And if $a_3 = 2, b_3 = 1$, then $q_3 = 2$ and $r_3 = 0$ since 2 = 2 * 1 + 0.

if a = 17, b = 5, then q = 3 and r = 2 since 17 = 5 * 3 + 2. If $a_2 = 5, b_2 = 2$, then $q_2 = 2$ and $r_2 = 1$ since 5 = 2 * 2 + 1. And if $a_3 = 2, b_3 = 1$, then $q_3 = 2$ and $r_3 = 0$ since 2 = 2 * 1 + 0. Notice: gcd(17, 5) = 1.

if a = 17, b = 5, then q = 3 and r = 2 since 17 = 5 * 3 + 2. If $a_2 = 5, b_2 = 2$, then $q_2 = 2$ and $r_2 = 1$ since 5 = 2 * 2 + 1. And if $a_3 = 2, b_3 = 1$, then $q_3 = 2$ and $r_3 = 0$ since 2 = 2 * 1 + 0. Notice: gcd(17, 5) = 1.

Play this game again with new a and b:

- 1. Start with $a_1 = a$ and $b_1 = b$.
- 2. Compute the quotient q_i and remainder r_i in dividing a_i by b_i .
- 3. Repeat the division algorithm using $a_i = b_{i-1}$ and $b_i = r_{i-1}$.
- 4. Iterate until you get $r_n = 0$. Then compare gcd(a, b) with r_{n-1} .

For practice: Do this process with a = 30, b = 12, and then with a = 84, b = 30.

if a = 17, b = 5, then q = 3 and r = 2 since 17 = 5 * 3 + 2. If $a_2 = 5, b_2 = 2$, then $q_2 = 2$ and $r_2 = 1$ since 5 = 2 * 2 + 1. And if $a_3 = 2, b_3 = 1$, then $q_3 = 2$ and $r_3 = 0$ since 2 = 2 * 1 + 0. Notice: gcd(17, 5) = 1.

Play this game again with new a and b:

- 1. Start with $a_1 = a$ and $b_1 = b$.
- 2. Compute the quotient q_i and remainder r_i in dividing a_i by b_i .
- 3. Repeat the division algorithm using $a_i = b_{i-1}$ and $b_i = r_{i-1}$.
- 4. Iterate until you get $r_n = 0$. Then compare gcd(a, b) with r_{n-1} .

For practice: Do this process with a = 30, b = 12, and then with a = 84, b = 30.

Claim: If n is the first time that $r_n = 0$, then $r_{n-1} = \text{gcd}(a, b)$.

if a = 17, b = 5, then q = 3 and r = 2 since 17 = 5 * 3 + 2. If $a_2 = 5, b_2 = 2$, then $q_2 = 2$ and $r_2 = 1$ since 5 = 2 * 2 + 1. And if $a_3 = 2, b_3 = 1$, then $q_3 = 2$ and $r_3 = 0$ since 2 = 2 * 1 + 0. Notice: gcd(17, 5) = 1.

Play this game again with new a and b:

- 1. Start with $a_1 = a$ and $b_1 = b$.
- 2. Compute the quotient q_i and remainder r_i in dividing a_i by b_i .
- 3. Repeat the division algorithm using $a_i = b_{i-1}$ and $b_i = r_{i-1}$.
- 4. Iterate until you get $r_n = 0$. Then compare gcd(a, b) with r_{n-1} .

For practice: Do this process with a = 30, b = 12, and then with a = 84, b = 30.

Claim: If n is the first time that $r_n = 0$, then $r_{n-1} = \text{gcd}(a, b)$. Note that if r = 0 in the first step, then b|n, so gcd(a, b) = b.

In general, our process looks like

$$a = b * q_{1} + r_{1}$$

$$b = r_{1} * q_{2} + r_{2}$$

$$r_{1} = r_{2} * q_{3} + r_{3}$$

$$\vdots$$

$$r_{n-4} = r_{n-3} * q_{n-2} + r_{n-2}$$

$$r_{n-3} = r_{n-2} * q_{n-1} + r_{n-1} \leftarrow \gcd(a, b)?$$

$$r_{n-2} = r_{n-1} * q_{n} + 0 \leftarrow r_{n}$$

In general, our process looks like

$$\begin{array}{rcl} a & = & b * q_1 & + & r_1 \\ b & = & r_1 * q_2 & + & r_2 \\ r_1 & = & r_2 * q_3 & + & r_3 \\ & \vdots \\ r_{n-4} & = & r_{n-3} * q_{n-2} & + & r_{n-2} \\ r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} & \leftarrow \gcd(a, b)? \\ r_{n-2} & = & r_{n-1} * q_n & + & 0 & \leftarrow r_n \end{array}$$

To make everything look the same, let $r_{-1} = a$ and $r_0 = b$.

In general, our process looks like

$$\begin{array}{rcl} r_{-1} & = & r_{0} \\ \varkappa & = & \varkappa & q_{1} & + & r_{1} \\ \end{array} \\ r_{0} & & = & r_{1} * q_{2} & + & r_{2} \\ r_{1} & = & r_{2} * q_{3} & + & r_{3} \\ & \vdots & & & \\ r_{n-4} & = & r_{n-3} * q_{n-2} & + & r_{n-2} \\ r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} & \leftarrow \gcd(a, b)? \\ r_{n-2} & = & r_{n-1} * q_{n} & + & 0 & \leftarrow r_{n} \end{array}$$

To make everything look the same, let $r_{-1} = a$ and $r_0 = b$. So every line comes in the form

$$r_{i-2} = r_{i-1} * q_i + r_i.$$

Let $r_{-1} = a$ and $r_0 = b$, so that the algorithm looks like

Let $r_{-1} = a$ and $r_0 = b$, so that the algorithm looks like

Last line: $r_{n-2} = r_{n-1}q_n$.

~

Let $r_{-1} = a$ and $r_0 = b$, so that the algorithm looks like

$$\begin{array}{rcrcrcrcrc} r_{-1} &=& r_{0} * q_{1} &+& r_{1} \\ r_{0} &=& r_{1} * q_{2} &+& r_{2} \\ r_{1} &=& r_{2} * q_{3} &+& r_{3} \\ &\vdots \\ r_{n-4} &=& r_{n-3} * q_{n-2} &+& r_{n-2} \\ r_{n-3} &=& r_{n-2} * q_{n-1} &+& r_{n-1} &\leftarrow \gcd(a,b)? \\ r_{n-2} &=& r_{n-1} * q_{n} &+& 0 &\leftarrow r_{n} \end{array}$$

Last line: $r_{n-2} = r_{n-1}q_n$. So

 $r_{n-3} = r_{n-2}q_{n-1} + r_{n-1}$

Let $r_{-1} = a$ and $r_0 = b$, so that the algorithm looks like

Last line:
$$r_{n-2} = r_{n-1}q_n$$
.
So
 $r_{n-3} = r_{n-2}q_{n-1} + r_{n-1} = (r_{n-1}q_n)q_{n-1} + r_{n-1}$

Let $r_{-1} = a$ and $r_0 = b$, so that the algorithm looks like

Last line: $r_{n-2} = r_{n-1}q_n$. So $r_{n-3} = r_{n-2}q_{n-1} + r_{n-1} = (r_{n-1}q_n)q_{n-1} + r_{n-1} = r_{n-1}(q_nq_{n-1} + 1)$.

Let $r_{-1} = a$ and $r_0 = b$, so that the algorithm looks like

$$\begin{array}{rcrcrcrcrc} r_{-1} &=& r_{0} * q_{1} &+& r_{1} \\ r_{0} &=& r_{1} * q_{2} &+& r_{2} \\ r_{1} &=& r_{2} * q_{3} &+& r_{3} \\ &\vdots \\ r_{n-4} &=& r_{n-3} * q_{n-2} &+& r_{n-2} \\ r_{n-3} &=& r_{n-2} * q_{n-1} &+& r_{n-1} &\leftarrow \gcd(a,b)? \\ r_{n-2} &=& r_{n-1} * q_{n} &+& 0 &\leftarrow r_{n} \end{array}$$

Last line: $r_{n-2} = r_{n-1}q_n$. So $r_{n-3} = r_{n-2}q_{n-1} + r_{n-1} = (r_{n-1}q_n)q_{n-1} + r_{n-1} = r_{n-1}(q_nq_{n-1} + 1)$. Then

 $r_{n-4} = r_{n-3}q_{n-2} + r_{n-2}$
Let $r_{-1} = a$ and $r_0 = b$, so that the algorithm looks like

$$\begin{array}{rcrcrcrcrc} r_{-1} &=& r_{0} * q_{1} &+& r_{1} \\ r_{0} &=& r_{1} * q_{2} &+& r_{2} \\ r_{1} &=& r_{2} * q_{3} &+& r_{3} \\ &\vdots \\ r_{n-4} &=& r_{n-3} * q_{n-2} &+& r_{n-2} \\ r_{n-3} &=& r_{n-2} * q_{n-1} &+& r_{n-1} &\leftarrow \gcd(a,b)? \\ r_{n-2} &=& r_{n-1} * q_{n} &+& 0 &\leftarrow r_{n} \end{array}$$

Last line:
$$r_{n-2} = r_{n-1}q_n$$
.
So
 $r_{n-3} = r_{n-2}q_{n-1} + r_{n-1} = (r_{n-1}q_n)q_{n-1} + r_{n-1} = r_{n-1}(q_nq_{n-1} + 1)$.
Then

 $r_{n-4} = r_{n-3}q_{n-2} + r_{n-2} = r_{n-1}(q_nq_{n-1} + 1)q_{n-2} + r_{n-1}q_n$

Let $r_{-1} = a$ and $r_0 = b$, so that the algorithm looks like

Last line: $r_{n-2} = r_{n-1}q_n$. So $r_{n-3} = r_{n-2}q_{n-1} + r_{n-1} = (r_{n-1}q_n)q_{n-1} + r_{n-1} = r_{n-1}(q_nq_{n-1} + 1)$. Then

$$r_{n-4} = r_{n-3}q_{n-2} + r_{n-2} = r_{n-1}(q_nq_{n-1}+1)q_{n-2} + r_{n-1}q_n$$

= $r_{n-1}(q_nq_{n-1}q_{n-2} + q_{n-2} + 1).$

Let $r_{-1} = a$ and $r_0 = b$, so that the algorithm looks like

Last line: $r_{n-2} = r_{n-1}q_n$. So $r_{n-3} = r_{n-2}q_{n-1} + r_{n-1} = (r_{n-1}q_n)q_{n-1} + r_{n-1} = r_{n-1}(q_nq_{n-1} + 1)$. Then

$$\begin{aligned} r_{n-4} &= r_{n-3}q_{n-2} + r_{n-2} = r_{n-1}(q_nq_{n-1}+1)q_{n-2} + r_{n-1}q_n \\ &= r_{n-1}(q_nq_{n-1}q_{n-2}+q_{n-2}+1). \end{aligned} \text{And so on} \ldots$$

Example: We have

$$84 = 30 * 2 + 24$$

$$30 = 24 * 1 + 6$$

$$24 = 6 * 4 + 0.$$

Example: We have

$$84 = 30 * 2 + 24$$

$$30 = 24 * 1 + 6$$

$$24 = 6 * 4 + 0.$$

$$r_{n-1} = 6$$

Example: We have

$$84 = 30 * 2 + 24$$

$$30 = 24 * 1 + 6$$

$$24 = 6 * 4 + 0.$$

$$r_{n-1} = 6$$

30 = 24 * 1 + 6

Example: We have

$$84 = 30 * 2 + 24$$

$$30 = 24 * 1 + 6$$

$$24 = 6 * 4 + 0.$$

$$r_{n-1} = 6$$

$$30 = 24 * 1 + 6 = (6 * 4) * 1 + 6$$

Example: We have

$$30 = 24 * 1 + 6 = (6 * 4) * 1 + 6 = 6(4 * 1 + 1) = 6 * 5$$

Example: We have

$$30 = 24 * 1 + 6 = (6 * 4) * 1 + 6 = 6(4 * 1 + 1) = 6 * 5$$

$$84 = 30 * 2 + 24$$

Example: We have

$$30 = 24 * 1 + 6 = (6 * 4) * 1 + 6 = 6(4 * 1 + 1) = 6 * 5$$

$$84 = 30 * 2 + 24 = (6 * 5) * 2 + (6 * 4)$$

Example: We have

$$30 = 24 * 1 + 6 = (6 * 4) * 1 + 6 = 6(4 * 1 + 1) = 6 * 5$$

$$84 = 30 * 2 + 24 = (6 * 5) * 2 + (6 * 4) = 6(5 * 2 + 4) = 6 * 24.$$

Example: We have

84 = 30 * 2 + 24 30 = 24 * 1 + 6 24 = 6 * 4 + 0. $r_{n-1} = 6$

$$30 = 24 * 1 + 6 = (6 * 4) * 1 + 6 = 6(4 * 1 + 1) = 6 * 5$$

$$84 = 30 * 2 + 24 = (6 * 5) * 2 + (6 * 4) = 6(5 * 2 + 4) = 6 * 24.$$

So 6 is a common divisor of 84 and 30.

$$100 = 36 * 2 + 28$$

$$36 = 28 * 1 + 8$$

$$28 = 8 * 3 + 4$$

$$8 = 4 * 2 + 0.$$

$$100 = 36 * 2 + 28$$

$$36 = 28 * 1 + 8$$

$$28 = 8 * 3 + 4$$

$$8 = 4 * 2 + 0.$$

$$r_{n-1} = 4$$

$$100 = 36 * 2 + 28$$

$$36 = 28 * 1 + 8$$

$$28 = 8 * 3 + 4$$

$$8 = 4 * 2 + 0.$$

$$r_{n-1} = 4$$

So

28 = 8 * 3 + 4

$$100 = 36 * 2 + 28$$

$$36 = 28 * 1 + 8$$

$$28 = 8 * 3 + 4$$

$$8 = 4 * 2 + 0.$$

$$r_{n-1} = 4$$

$$28 = 8 * 3 + 4 = (4 * 2) * 3 + 4$$

$$100 = 36 * 2 + 28$$

$$36 = 28 * 1 + 8$$

$$28 = 8 * 3 + 4$$

$$8 = 4 * 2 + 0.$$

$$r_{n-1} = 4$$

$$28 = 8 * 3 + 4 = (4 * 2) * 3 + 4 = 4(2 * 3 + 1) = 4 * 7$$

$$100 = 36 * 2 + 28$$

$$36 = 28 * 1 + 8$$

$$28 = 8 * 3 + 4$$

$$8 = 4 * 2 + 0.$$

$$r_{n-1} = 4$$

$$28 = 8 * 3 + 4 = (4 * 2) * 3 + 4 = 4(2 * 3 + 1) = 4 * 7$$

$$36 = 28 * 1 + 8$$

$$100 = 36 * 2 + 28$$

$$36 = 28 * 1 + 8$$

$$28 = 8 * 3 + 4$$

$$8 = 4 * 2 + 0.$$

$$r_{n-1} = 4$$

$$28 = 8 * 3 + 4 = (4 * 2) * 3 + 4 = 4(2 * 3 + 1) = 4 * 7$$

$$36 = 28 * 1 + 8 = (4 * 7) * 1 + (4 * 2)$$

$$100 = 36 * 2 + 28$$

$$36 = 28 * 1 + 8$$

$$28 = 8 * 3 + 4$$

$$8 = 4 * 2 + 0.$$

$$r_{n-1} = 4$$

$$28 = 8 * 3 + 4 = (4 * 2) * 3 + 4 = 4(2 * 3 + 1) = 4 * 7$$

$$36 = 28 * 1 + 8 = (4 * 7) * 1 + (4 * 2) = 4(7 * 1 + 2) = 4 * 9$$

$$100 = 36 * 2 + 28$$

$$36 = 28 * 1 + 8$$

$$28 = 8 * 3 + 4$$

$$8 = 4 * 2 + 0.$$

$$r_{n-1} = 4$$

$$28 = 8 * 3 + 4 = (4 * 2) * 3 + 4 = 4(2 * 3 + 1) = 4 * 7$$

$$36 = 28 * 1 + 8 = (4 * 7) * 1 + (4 * 2) = 4(7 * 1 + 2) = 4 * 9$$

$$100 = 36 * 2 + 28$$

$$100 = 36 * 2 + 28$$

$$36 = 28 * 1 + 8$$

$$28 = 8 * 3 + 4$$

$$8 = 4 * 2 + 0.$$

$$r_{n-1} = 4$$

$$28 = 8 * 3 + 4 = (4 * 2) * 3 + 4 = 4(2 * 3 + 1) = 4 * 7$$

$$36 = 28 * 1 + 8 = (4 * 7) * 1 + (4 * 2) = 4(7 * 1 + 2) = 4 * 9$$

$$100 = 36 * 2 + 28 = (4 * 9) * 2 + (4 * 7)$$

$$100 = 36 * 2 + 28$$

$$36 = 28 * 1 + 8$$

$$28 = 8 * 3 + 4$$

$$8 = 4 * 2 + 0.$$

$$r_{n-1} = 4$$

$$28 = 8 * 3 + 4 = (4 * 2) * 3 + 4 = 4(2 * 3 + 1) = 4 * 7$$

$$36 = 28 * 1 + 8 = (4 * 7) * 1 + (4 * 2) = 4(7 * 1 + 2) = 4 * 9$$

$$100 = 36 * 2 + 28 = (4 * 9) * 2 + (4 * 7) = 4(9 * 2 + 7) = 4 * 25.$$

$$100 = 36 * 2 + 28$$

$$36 = 28 * 1 + 8$$

$$28 = 8 * 3 + 4$$

$$8 = 4 * 2 + 0.$$

$$r_{n-1} = 4$$

$$28 = 8 * 3 + 4 = (4 * 2) * 3 + 4 = 4(2 * 3 + 1) = 4 * 7$$

$$36 = 28 * 1 + 8 = (4 * 7) * 1 + (4 * 2) = 4(7 * 1 + 2) = 4 * 9$$

$$100 = 36 * 2 + 28 = (4 * 9) * 2 + (4 * 7) = 4(9 * 2 + 7) = 4 * 25.$$

So 4 is a common divisor of 100 and 36.

$$100 = 36 * 2 + 28$$

$$36 = 28 * 1 + 8$$

$$28 = 8 * 3 + 4$$

$$8 = 4 * 2 + 0.$$

$$r_{n-1} = 4$$

$$28 = 8 * 3 + 4 = (4 * 2) * 3 + 4 = 4(2 * 3 + 1) = 4 * 7$$

$$36 = 28 * 1 + 8 = (4 * 7) * 1 + (4 * 2) = 4(7 * 1 + 2) = 4 * 9$$

$$100 = 36 * 2 + 28 = (4 * 9) * 2 + (4 * 7) = 4(9 * 2 + 7) = 4 * 25.$$

So 4 is a common divisor of 100 and 36.

You try: use the following computations, working backwards, to show that 2 is a common divisor of 100 and 26:

$$100 = 26 * 3 + 22 22 = 4 * 5 + 2 26 = 22 * 1 + 4 4 = 2 * 2 + 0$$

Letting $r_{-1} = a$ and $r_0 = b$, and computing

we can reverse this process to show that r_{n-1} is, at the very least, a *common divisor* to $a = r_{-1}$ and $b = r_0$.

Letting $r_{-1} = a$ and $r_0 = b$, and computing

we can reverse this process to show that r_{n-1} is, at the very least, a common divisor to $a = r_{-1}$ and $b = r_0$. Wait! How do we know we ever get 0??

Letting $r_{-1} = a$ and $r_0 = b$, and computing

we can reverse this process to show that r_{n-1} is, at the very least, a common divisor to $a = r_{-1}$ and $b = r_0$. Wait! How do we know we ever get 0?? The division algorithm ensures that each remainder is strictly smaller than the last, and always non-negative:

$$b = r_0 > r_1 > r_2 > \dots \ge 0.$$

Letting $r_{-1} = a$ and $r_0 = b$, and computing

we can reverse this process to show that r_{n-1} is, at the very least, a common divisor to $a = r_{-1}$ and $b = r_0$. Wait! How do we know we ever get 0?? The division algorithm ensures that each remainder is strictly

smaller than the last, and always non-negative:

$$b = r_0 > r_1 > r_2 > \dots \ge 0.$$

So since the r_i 's are all *integers*, this process ends at some point.

We have that r_{n-1} is a common divisor to a an b. Now why is it the *greatest* common divisor?

We have that r_{n-1} is a common divisor to a an b. Now why is it the *greatest* common divisor?

Suppose d is a common divisor of a and b, i.e. d|a and d|b.

We have that r_{n-1} is a common divisor to a an b. Now why is it the *greatest* common divisor?

Suppose d is a common divisor of a and b, i.e. d|a and d|b. This means

 $a = d\alpha$ and $b = d\beta$ for some $\alpha, \beta \in \mathbb{Z}$.

We have that r_{n-1} is a common divisor to a an b. Now why is it the *greatest* common divisor?

Suppose d is a common divisor of a and b, i.e. d|a and d|b. This means

 $a = d\alpha$ and $b = d\beta$ for some $\alpha, \beta \in \mathbb{Z}$.

$$a = b * q_1 + r_1$$

$$b = r_1 * q_2 + r_2$$

$$r_1 = r_2 * q_3 + r_3$$

$$\vdots$$

$$r_{n-3} = r_{n-2} * q_{n-1} + r_{n-1}$$

$$r_{n-2} = r_{n-1} * q_n + 0$$

We have that r_{n-1} is a common divisor to a an b. Now why is it the *greatest* common divisor?

Suppose d is a common divisor of a and b, i.e. d|a and d|b. This means

 $a = d\alpha$ and $b = d\beta$ for some $\alpha, \beta \in \mathbb{Z}$.

dlpha	=	$deta * q_1$	+	r_1
b	=	$r_1 * q_2$	+	r_2
r_1	=	$r_2 * q_3$	+	r_3
	÷			
r_{n-3}	=	$r_{n-2} * q_{n-1}$	+	r_{n-1}
r_{n-2}	=	$r_{n-1} * q_n$	+	0

We have that r_{n-1} is a common divisor to a an b. Now why is it the *greatest* common divisor?

Suppose d is a common divisor of a and b, i.e. d|a and d|b. This means

 $a = d\alpha$ and $b = d\beta$ for some $\alpha, \beta \in \mathbb{Z}$.

$$\begin{aligned} d\alpha &= d\beta * q_1 + r_1 & \text{so } r_1 = d(\alpha - \beta q_1) \\ b &= r_1 * q_2 + r_2 \\ r_1 &= r_2 * q_3 + r_3 \\ \vdots \\ r_{n-3} &= r_{n-2} * q_{n-1} + r_{n-1} \\ r_{n-2} &= r_{n-1} * q_n + 0 \end{aligned}$$

We have that r_{n-1} is a common divisor to a an b. Now why is it the *greatest* common divisor?

Suppose d is a common divisor of a and b, i.e. d|a and d|b. This means

 $a = d\alpha$ and $b = d\beta$ for some $\alpha, \beta \in \mathbb{Z}$.

$$\begin{array}{rcl} d\alpha & = & d\beta * q_1 & + & r_1 & \text{ so } r_1 = d(\alpha - \beta q_1) = dm_1 \\ b & = & r_1 * q_2 & + & r_2 \\ r_1 & = & r_2 * q_3 & + & r_3 \\ & \vdots & & & \\ r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} \\ r_{n-2} & = & r_{n-1} * q_n & + & 0 \end{array}$$
We have that r_{n-1} is a common divisor to a an b. Now why is it the *greatest* common divisor?

Suppose d is a common divisor of a and b, i.e. d|a and d|b. This means

 $a = d\alpha$ and $b = d\beta$ for some $\alpha, \beta \in \mathbb{Z}$.

$$\begin{array}{rcl} d\alpha & = & d\beta * q_1 & + & r_1 & \text{ so } r_1 = d(\alpha - \beta q_1) = dm_1 \\ d\beta & = & dm_1 * q_2 & + & r_2 \\ r_1 & = & r_2 * q_3 & + & r_3 \\ & \vdots & & \\ r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} \\ r_{n-2} & = & r_{n-1} * q_n & + & 0 \end{array}$$

We have that r_{n-1} is a common divisor to a an b. Now why is it the *greatest* common divisor?

Suppose d is a common divisor of a and b, i.e. d|a and d|b. This means

 $a = d\alpha$ and $b = d\beta$ for some $\alpha, \beta \in \mathbb{Z}$.

$$\begin{array}{rcl} d\alpha & = & d\beta * q_1 & + & r_1 & \text{ so } r_1 = d(\alpha - \beta q_1) = dm_1 \\ d\beta & = & dm_1 * q_2 & + & r_2 & \text{ so } r_2 = d(\beta - m_1 q_2) \\ r_1 & = & r_2 * q_3 & + & r_3 \\ & \vdots & & \\ r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} \\ r_{n-2} & = & r_{n-1} * q_n & + & 0 \end{array}$$

We have that r_{n-1} is a common divisor to a an b. Now why is it the *greatest* common divisor?

Suppose d is a common divisor of a and b, i.e. d|a and d|b. This means

 $a = d\alpha$ and $b = d\beta$ for some $\alpha, \beta \in \mathbb{Z}$.

$$\begin{array}{rcl} d\alpha & = & d\beta * q_1 & + & r_1 & \text{ so } r_1 = d(\alpha - \beta q_1) = dm_1 \\ d\beta & = & dm_1 * q_2 & + & r_2 & \text{ so } r_2 = d(\beta - m_1 q_2) = dm_2 \\ r_1 & = & r_2 * q_3 & + & r_3 \\ & \vdots & & \\ r_{n-3} & = & r_{n-2} * q_{n-1} & + & r_{n-1} \\ r_{n-2} & = & r_{n-1} * q_n & + & 0 \end{array}$$

We have that r_{n-1} is a common divisor to a an b. Now why is it the *greatest* common divisor?

Suppose d is a common divisor of a and b, i.e. d|a and d|b. This means

 $a = d\alpha$ and $b = d\beta$ for some $\alpha, \beta \in \mathbb{Z}$.

$$\begin{array}{rcl} d\alpha &=& d\beta * q_1 &+& r_1 & \text{ so } r_1 = d(\alpha - \beta q_1) = dm_1 \\ d\beta &=& dm_1 * q_2 &+& r_2 & \text{ so } r_2 = d(\beta - m_1 q_2) = dm_2 \\ dm_1 &=& dm_2 * q_3 &+& r_3 \\ &\vdots & & \\ r_{n-3} &=& r_{n-2} * q_{n-1} &+& r_{n-1} \\ r_{n-2} &=& r_{n-1} * q_n &+& 0 \end{array}$$

We have that r_{n-1} is a common divisor to a an b. Now why is it the *greatest* common divisor?

Suppose d is a common divisor of a and b, i.e. d|a and d|b. This means

 $a = d\alpha$ and $b = d\beta$ for some $\alpha, \beta \in \mathbb{Z}$.

$$\begin{array}{rcl} d\alpha &=& d\beta * q_1 &+& r_1 & \text{ so } r_1 = d(\alpha - \beta q_1) = dm_1 \\ d\beta &=& dm_1 * q_2 &+& r_2 & \text{ so } r_2 = d(\beta - m_1 q_2) = dm_2 \\ dm_1 &=& dm_2 * q_3 &+& r_3 & \text{ so } r_3 = \cdots = dm_3 \\ &\vdots & & \\ r_{n-3} &=& r_{n-2} * q_{n-1} &+& r_{n-1} \\ r_{n-2} &=& r_{n-1} * q_n &+& 0 \end{array}$$

We have that r_{n-1} is a common divisor to a an b. Now why is it the *greatest* common divisor?

Suppose d is a common divisor of a and b, i.e. d|a and d|b. This means

 $a = d\alpha$ and $b = d\beta$ for some $\alpha, \beta \in \mathbb{Z}$.

$$\begin{aligned} d\alpha &= d\beta * q_1 + r_1 & \text{so } r_1 = d(\alpha - \beta q_1) = dm_1 \\ d\beta &= dm_1 * q_2 + r_2 & \text{so } r_2 = d(\beta - m_1 q_2) = dm_2 \\ dm_1 &= dm_2 * q_3 + r_3 & \text{so } r_3 = \dots = dm_3 \\ \vdots \\ dm_{n-3} &= dm_{n-2} * q_{n-1} + r_{n-1} & \text{so } r_{n-1} = \dots = dm_{n-1} \\ r_{n-2} &= r_{n-1} * q_n + 0 \end{aligned}$$

We have that r_{n-1} is a common divisor to a an b. Now why is it the *greatest* common divisor?

Suppose d is a common divisor of a and b, i.e. d|a and d|b. This means

 $a = d\alpha$ and $b = d\beta$ for some $\alpha, \beta \in \mathbb{Z}$.

$$\begin{aligned} d\alpha &= d\beta * q_1 + r_1 & \text{so } r_1 = d(\alpha - \beta q_1) = dm_1 \\ d\beta &= dm_1 * q_2 + r_2 & \text{so } r_2 = d(\beta - m_1 q_2) = dm_2 \\ dm_1 &= dm_2 * q_3 + r_3 & \text{so } r_3 = \dots = dm_3 \\ &\vdots \\ dm_{n-3} &= dm_{n-2} * q_{n-1} + r_{n-1} & \text{so } \boxed{r_{n-1} = \dots = dm_{n-1}} \\ r_{n-2} &= r_{n-1} * q_n + 0 \end{aligned}$$

We have that r_{n-1} is a common divisor to a an b. Now why is it the *greatest* common divisor?

Suppose d is a common divisor of a and b, i.e. d|a and d|b. This means

 $a = d\alpha$ and $b = d\beta$ for some $\alpha, \beta \in \mathbb{Z}$.

Back to our division calculation, and substitute these equations in:

$$d\alpha = d\beta * q_1 + r_1 \text{ so } r_1 = d(\alpha - \beta q_1) = dm_1$$

$$d\beta = dm_1 * q_2 + r_2 \text{ so } r_2 = d(\beta - m_1 q_2) = dm_2$$

$$dm_1 = dm_2 * q_3 + r_3 \text{ so } r_3 = \dots = dm_3$$

$$\vdots$$

$$dm_{n-3} = dm_{n-2} * q_{n-1} + r_{n-1} \text{ so } r_{n-1} = \dots = dm_{n-1}$$

$$r_{n-2} = r_{n-1} * q_n + 0$$

So d is a divisor of r_{n-1} .

We have that r_{n-1} is a common divisor to a an b. Now why is it the *greatest* common divisor?

Suppose d is a common divisor of a and b, i.e. d|a and d|b. This means

 $a = d\alpha$ and $b = d\beta$ for some $\alpha, \beta \in \mathbb{Z}$.

Back to our division calculation, and substitute these equations in:

$$d\alpha = d\beta * q_1 + r_1 \text{ so } r_1 = d(\alpha - \beta q_1) = dm_1$$

$$d\beta = dm_1 * q_2 + r_2 \text{ so } r_2 = d(\beta - m_1 q_2) = dm_2$$

$$dm_1 = dm_2 * q_3 + r_3 \text{ so } r_3 = \dots = dm_3$$

$$\vdots$$

$$dm_{n-3} = dm_{n-2} * q_{n-1} + r_{n-1} \text{ so } r_{n-1} = \dots = dm_{n-1}$$

$$r_{n-2} = r_{n-1} * q_n + 0$$

So d is a divisor of r_{n-1} . In particular, since $r_{n-1} > 0$, we have $d|r_{n-1}$ and $d \leq r_{n-1}$.

We have that r_{n-1} is a common divisor to a an b. Now why is it the *greatest* common divisor?

Suppose d is a common divisor of a and b, i.e. d|a and d|b. This means

 $a = d\alpha$ and $b = d\beta$ for some $\alpha, \beta \in \mathbb{Z}$.

Back to our division calculation, and substitute these equations in:

$$\begin{aligned} d\alpha &= d\beta * q_1 + r_1 & \text{so } r_1 = d(\alpha - \beta q_1) = dm_1 \\ d\beta &= dm_1 * q_2 + r_2 & \text{so } r_2 = d(\beta - m_1 q_2) = dm_2 \\ dm_1 &= dm_2 * q_3 + r_3 & \text{so } r_3 = \dots = dm_3 \\ \vdots \\ dm_{n-3} &= dm_{n-2} * q_{n-1} + r_{n-1} & \text{so } \boxed{r_{n-1} = \dots = dm_{n-1}} \\ r_{n-2} &= r_{n-1} * q_n + 0 \end{aligned}$$

So d is a divisor of r_{n-1} . In particular, since $r_{n-1} > 0$, we have $d|r_{n-1}$ and $d \leq r_{n-1}$. In other words, r_{n-1} is a common divisor to a and b, and any other common divisor is less than or equal to r_{n-1} .

We have that r_{n-1} is a common divisor to a an b. Now why is it the *greatest* common divisor?

Suppose d is a common divisor of a and b, i.e. d|a and d|b. This means

 $a = d\alpha$ and $b = d\beta$ for some $\alpha, \beta \in \mathbb{Z}$.

Back to our division calculation, and substitute these equations in:

$$\begin{aligned} d\alpha &= d\beta * q_1 + r_1 & \text{so } r_1 = d(\alpha - \beta q_1) = dm_1 \\ d\beta &= dm_1 * q_2 + r_2 & \text{so } r_2 = d(\beta - m_1 q_2) = dm_2 \\ dm_1 &= dm_2 * q_3 + r_3 & \text{so } r_3 = \dots = dm_3 \\ &\vdots \\ dm_{n-3} &= dm_{n-2} * q_{n-1} + r_{n-1} & \text{so } \boxed{r_{n-1} = \dots = dm_{n-1}} \\ r_{n-2} &= r_{n-1} * q_n + 0 \end{aligned}$$

So d is a divisor of r_{n-1} . In particular, since $r_{n-1} > 0$, we have $d|r_{n-1}$ and $d \leq r_{n-1}$. In other words, r_{n-1} is a common divisor to a and b, and any other common divisor is less than or equal to r_{n-1} . So $r_{n-1} = \gcd(a, b)$. Theorem (Euclidean algorithm). To compute gcd(a, b), let $r_{-1} = a$ and $r_0 = b$, and compute successive quotients and remainders

$$r_{i-2} = r_{i-1}q_i + r_i$$

for $i = 1, 2, 3, \ldots$, until some remainder r_n is 0. The last nonzero remainder r_{n-1} is then the greatest common divisor of a and b. (This takes at most b steps (actually less), and is *much* more computationally efficient than the other methods.) Theorem (Euclidean algorithm). To compute gcd(a, b), let $r_{-1} = a$ and $r_0 = b$, and compute successive quotients and remainders

$$r_{i-2} = r_{i-1}q_i + r_i$$

for $i = 1, 2, 3, \ldots$, until some remainder r_n is 0. The last nonzero remainder r_{n-1} is then the greatest common divisor of a and b.

(This takes at most b steps (actually less), and is *much* more computationally efficient than the other methods.)

Proof technique: The definition of greatest common divisor is an "and" statement:

$$gcd(a,b) = d \Leftrightarrow ((d|a \wedge d|b) \land (\delta|a \wedge \delta|b \Rightarrow \delta \leqslant d)).$$

So to show that gcd(a, b) = d, you show that (1) d is a common divisor of a and b; and (2) if δ is a common divisor of a and b, then $\delta \leq d$.

Theorem (Euclidean algorithm). To compute gcd(a, b), let $r_{-1} = a$ and $r_0 = b$, and compute successive quotients and remainders

$$r_{i-2} = r_{i-1}q_i + r_i$$

for $i = 1, 2, 3, \ldots$, until some remainder r_n is 0. The last nonzero remainder r_{n-1} is then the greatest common divisor of a and b.

(This takes at most b steps (actually less), and is *much* more computationally efficient than the other methods.)

Proof technique: The definition of greatest common divisor is an "and" statement:

$$gcd(a,b) = d \Leftrightarrow \left((d|a \wedge d|b) \land (\delta|a \wedge \delta|b \Rightarrow \delta \leqslant d) \right).$$

So to show that gcd(a, b) = d, you show that (1) d is a common divisor of a and b; and (2) if δ is a common divisor of a and b, then $\delta \leq d$.

Claim (on homework): For any non-zero $a, b \in \mathbb{Z}$, there exist $x, y \in \mathbb{Z}$ such that gcd(a, b) = ax + by, i.e. gcd(a, b) is an integral combination of a and b.

Corollary (Euclid's Lemma). Suppose that n, a, and b are non-zero integers. If n|ab and gcd(n, a) = 1, then n|b.

Corollary (Euclid's Lemma). Suppose that n, a, and b are non-zero integers. If n|ab and gcd(n, a) = 1, then n|b.

You think: Analyze this theorem.

(Examples, non-examples, similar theorems, etc.)

Corollary (Euclid's Lemma). Suppose that n, a, and b are non-zero integers. If n|ab and gcd(n, a) = 1, then n|b.

You think: Analyze this theorem.

(Examples, non-examples, similar theorems, etc.)

... Conclusion: we have

Corollary (Euclid's Lemma). Suppose that n, a, and b are non-zero integers. If n|ab and gcd(n, a) = 1, then n|b.

You think: Analyze this theorem.

(Examples, non-examples, similar theorems, etc.)

Proof. Since n|ab, we have ab = kn for some $k \in \mathbb{Z}$. Since gcd(n, a) = 1, we have nx + ay = 1 for some $x, y \in \mathbb{Z}$.

... Conclusion: we have $b = \ell n$ for some $\ell \in \mathbb{Z}$. \Box

Corollary (Euclid's Lemma). Suppose that n, a, and b are non-zero integers. If n|ab and gcd(n, a) = 1, then n|b.

You think: Analyze this theorem.

(Examples, non-examples, similar theorems, etc.)

Proof. Since n|ab, we have ab = kn for some $k \in \mathbb{Z}$. Since gcd(n, a) = 1, we have nx + ay = 1 for some $x, y \in \mathbb{Z}$. So

 $b = b \cdot 1 = b(nx + ay)$... Conclusion: we have $b = \ell n$ for some $\ell \in \mathbb{Z}$. \Box

Corollary (Euclid's Lemma). Suppose that n, a, and b are non-zero integers. If n|ab and gcd(n, a) = 1, then n|b.

You think: Analyze this theorem.

(Examples, non-examples, similar theorems, etc.)

Proof. Since n|ab, we have ab = kn for some $k \in \mathbb{Z}$. Since gcd(n, a) = 1, we have nx + ay = 1 for some $x, y \in \mathbb{Z}$. So

 $b = b \cdot 1 = b(nx + ay) = nbx + (ab)y$... Conclusion: we have $b = \ell n$ for some $\ell \in \mathbb{Z}$. \Box

Corollary (Euclid's Lemma). Suppose that n, a, and b are non-zero integers. If n|ab and gcd(n, a) = 1, then n|b.

You think: Analyze this theorem.

(Examples, non-examples, similar theorems, etc.)

Proof. Since n|ab, we have ab = kn for some $k \in \mathbb{Z}$. Since gcd(n, a) = 1, we have nx + ay = 1 for some $x, y \in \mathbb{Z}$. So

$$b = b \cdot 1 = b(nx + ay) = nbx + (ab)y = nbx + nky = n(bx + ky).$$

... Conclusion: we have $b = \ell n$ for some $\ell \in \mathbb{Z}$. \Box

Corollary (Euclid's Lemma). Suppose that n, a, and b are non-zero integers. If n|ab and gcd(n, a) = 1, then n|b.

You think: Analyze this theorem.

(Examples, non-examples, similar theorems, etc.)

Proof. Since n|ab, we have ab = kn for some $k \in \mathbb{Z}$. Since gcd(n, a) = 1, we have nx + ay = 1 for some $x, y \in \mathbb{Z}$. So

 $b = b \cdot 1 = b(nx + ay) = nbx + (ab)y = nbx + nky = n(bx + ky).$ So since $bx + ky \in \mathbb{Z}$, we have $b = \ell n$ for some $\ell \in \mathbb{Z}$. \Box

Corollary (Euclid's Lemma). Suppose that n, a, and b are non-zero integers. If n|ab and gcd(n, a) = 1, then n|b.

You think: Analyze this theorem.

(Examples, non-examples, similar theorems, etc.)

Proof. Since n|ab, we have ab = kn for some $k \in \mathbb{Z}$. Since gcd(n, a) = 1, we have nx + ay = 1 for some $x, y \in \mathbb{Z}$. So

 $b = b \cdot 1 = b(nx + ay) = nbx + (ab)y = nbx + nky = n(bx + ky).$

So since $bx + ky \in \mathbb{Z}$, we have $b = \ell n$ for some $\ell \in \mathbb{Z}$. You try: Let a and b be non-zero integers. Outline proofs of the following claims.

- 1. If δ is a common divisor of a and b, then $\delta | \operatorname{gcd}(a, b)$.
- We call l∈ Z a common multiple of a and b if a|l and b|l. The smallest (positive) such l is called the *least common multiple* of a and b, denoted lcm(a, b). For example, lcm(12, 66) = 132.
 - (i) If a|m and b|m, then lcm(a,b)|m.
 - (ii) For any $r \in \mathbb{Z}$, $\operatorname{lcm}(ra, rb) = r \operatorname{lcm}(a, b)$.