Recall proof by induction:
1. Show a base case: show that P(ng) is true.
2. Induction step: show P(n) = P(n + 1) for all n > ny.

Then since = is “transitive”, we have proven P(k) for all k& = ny

For example, we proved

P(n) - ZZ _ n(n;— 1)

by checking

TR ()l

P(1): ; L=V,
and P(n) = P(n+1):
niz':(iz‘)+(n+1)=n(n2+1)+(n+1)=(n+1)(n+2)/.

2
i—1 i=1
So for any k£ > 1, we have P(1) is true and
P(1)= P(2)=P3)=---= P(k—1)= P(k),
so P(k) is true too!

Proof by induction:
1. Show a base case: show that P(ng) is true.

2. Induction step: show P(n) = P(n + 1) for all n > ny.
“Fix n = ng and assume P(n). <~ Induction hypothesis
Then .... So P(n +1) is true.” «— Induction step

A variant on induction: Strong Induction
1. Show a base case: show that P(ng) is true.

2. Induction step: show

(/\ P(i)) — P(n+1)

1=ng
for all n = nyg.
“Fix n = ng and assume P(k) for all ng < k < n.
N(Strong) induction hypothesis
Then .... So P(n + 1) is true.” «—Induction step



Theorem. (The Fundamental Theorem of Arithmetic) Every
integer n > 2 can be factored as

n=pip2---Pr
with p1,po, ..., p, prime (not necessarily distinct).
Proof by strong induction (1°* draft). Let P(n) be the thm statement.
Base case: 2 is prime, so the statement holds for n = 2. v
Goal: Assume P(k) for all 2 < k < n, and show n + 1 has a
factorization into primes.
Induction step: Fix n > 2 and assume that £ has a prime
factorization for all 2 < k < n. Now consider n + 1. Either n + 1
is prime, or n + 1 = zy for some integers 2 < =,y < n. By the
induction hypothesis, there are primes p1,p2,...,0r, 41,92, - - -, Qs
so that

x=pip2---pr and Y= qq2---qs.
So
n+1=xy=pp2---prq1q2---qs.v

Conclusion. Since P(2) holds, and (A}, P(i)) = P(n+ 1) for
all n > 2, we have P(¢) for all £ > 2.

Theorem. (The Fundamental Theorem of Arithmetic) Every
integer n > 2 can be factored as

n=pip2---Pr
with p1,pa, ..., pr prime (not necessarily distinct).

Proof by strong induction (1%t draft).
Basically, we just showed

P(2)
P(2) = P(3)
(P(2) A P(3)) = P(4)
(P(2) A P(3) A P(4)) = P(5)
(P(2) A P(3) A P(4) A P(5)) = P(6)



Theorem. (The Fundamental Theorem of Arithmetic) Every
integer n > 2 can be factored as

n=pip2---Pr
with p1,po, ..., pr prime (not necessarily distinct).

Proof by strong induction (Final draft). First, 2 is prime, so the
statement holds for n = 2. Next, fix n > 2 and assume k has a
prime factorization for all 2 < k < n. Now, considering n + 1,
either n + 1 is prime, or n + 1 = zy for some integers

2 < x,y < n. By the induction hypothesis, there are primes

P1,P2, s Pryq1,qG2, .- -,qs SO that

x=pip2---pr and Y= qq2---qs.
So

n+l=zy=pip2-- prq1g2- - qs-v
Thus, by strong induction, the claim holds for all n > 2.

Claim: A chocolate bar consists of unit squares arranged in an

n x m rectangular grid. There's a way to split the bar into
individual unit squares by breaking along the lines, in exactly

mn — 1 breaks.

Proof. Let P(m,n) be the statement that an n x m bar can be
broken into 1 x 1 pieces in mn — 1 breaks.

Base case: If m = n =1, then no breaks are required, and
1-1-1=0.

Inductive step: Fix m,n > 1, and assume that P(k,¢) holds for all
1<k<mand1l</{<n. Wewill show P(m+ 1,n) and
P(m,n + 1) individually.

To show P(m + 1,n), first make a break along a column into two
pieces—am mj X n and an mg X n piece, with 1 < mi,ms = m
and mj + mg = m + 1. So, by the (strong) induction hypothesis,
P(mq,n) and P(ma,n) both hold. So we can break the two pieces
in min — 1 and maon — 1 breaks, respectively, totaling

mn—14+mon—1+1l=(m+men—1=(m+1)n—1

moves in total. Showing P(m,n + 1) follows similarly.
So by strong induction, P(m,n) holds for all m,n > 1.



You try: Use strong induction to show the following claims.

1. Every amount of postage that is at least 12 cents can be
made from 4-cent and 5-cent stamps.

2. In the game Nim, there are two players and two piles of
matches. At each turn, a player removes some (non-zero)
number of matches from one of the piles. The player who
removes the last match wins.

Claim: If the two piles contain the same number of matches at
the start of the game, then the second player can always win.



Introduction to number theory
An integer a divides the integer b, written as alb, if there exists an
integer k such that b = ka:
(alb) < Ik € Z(b = ka).
If alb, we call a a divisor of b.
If @ is not a divisor of b, we write a{b (IBTEX: \nmid).

Examples:
1. Since 6 = 2 - 3, we have 2|6 and 3|6.
2. The divisors of 4 are 1,2,4,—1,—2, and —4:
4=1-4=(-1)(-4)=2-2=(-2)(-2).
3. The divisors of —4 are also 1,2,4,—1,—2, and —4:
4=1(—-4) = (-1)4 =2(-2).
. The divisors of 1 are 1 and —1.

. Every integer k € Z is a divisor of 0 since k-0 = 0.

(G2

6. Zero is only a divisor of itself, i.e. 01k for all k € Z.

Theorem. Let a,b,c € Z. If a|b and alc, then a|(mb + nc), for all
integers m and n.

Proof. If a|b and alc, then there exist k, ¢ € Z such that
b=Fka and c=/a.
So
mb + nc = m(ka) + n(fa) = (mk + nl)a.

So since mk + nf € 7Z, we have a|(mb + nc), as desired. O

You try: Let a,b,c € Z. Prove the following two claims.
Claim 1: If a divides b, then a divides b2.
Claim 2: If a|b and b|c, then alc.

Hint: for each, if x|y, the first thing you want to try is writing
“there exists z € Z such that xz = y."



The greatest common divisor of two non-zero integers a and b,

denoted ged(a, b), is the largest positive integer that divides both
numbers:

(gcd(a, b) = D) = ((d\a Adlb) = d < D).
Examples:
gcd(12,18) = 6, ged(12, —18) = 6,
ged(—12,-19) =6, ged(12,35) = 1.

Note, for all non-zero integers a and b, we have ged(a,b) > 0.

If gcd(a,b) = 1, we say a and b are relatively prime.



