Recall proof by induction:

1. Show a base case: show that $P\left(n_{0}\right)$ is true.
2. Induction step: show $P(n) \Rightarrow P(n+1)$ for all $n \geqslant n_{0}$.

Then since \Rightarrow is "transitive", we have proven $P(k)$ for all $k \geqslant n_{0}$.

Recall proof by induction:

1. Show a base case: show that $P\left(n_{0}\right)$ is true.
2. Induction step: show $P(n) \Rightarrow P(n+1)$ for all $n \geqslant n_{0}$.

Then since \Rightarrow is "transitive", we have proven $P(k)$ for all $k \geqslant n_{0}$.
For example, we proved

$$
P(n): \quad \sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

by checking

$$
P(1): \quad \sum_{i=1}^{1} i=1=\frac{1(2)}{2} \checkmark
$$

and $P(n) \Rightarrow P(n+1)$:

$$
\sum_{i=1}^{n+1} i=\left(\sum_{i=1}^{n} i\right)+(n+1)=\frac{n(n+1)}{2}+(n+1)=\frac{(n+1)(n+2)}{2} \checkmark
$$

Recall proof by induction:

1. Show a base case: show that $P\left(n_{0}\right)$ is true.
2. Induction step: show $P(n) \Rightarrow P(n+1)$ for all $n \geqslant n_{0}$.

Then since \Rightarrow is "transitive", we have proven $P(k)$ for all $k \geqslant n_{0}$.
For example, we proved

$$
P(n): \quad \sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

by checking

$$
P(1): \quad \sum_{i=1}^{1} i=1=\frac{1(2)}{2} \checkmark
$$

and $P(n) \Rightarrow P(n+1)$:

$$
\sum_{i=1}^{n+1} i=\left(\sum_{i=1}^{n} i\right)+(n+1)=\frac{n(n+1)}{2}+(n+1)=\frac{(n+1)(n+2)}{2} \checkmark
$$

So for any $k \geqslant 1$, we have $P(1)$ is true and

$$
P(1) \Rightarrow P(2) \Rightarrow P(3) \Rightarrow \cdots \Rightarrow P(k-1) \Rightarrow P(k),
$$

so $P(k)$ is true too!

Proof by induction:

1. Show a base case: show that $P\left(n_{0}\right)$ is true.
2. Induction step: show $P(n) \Rightarrow P(n+1)$ for all $n \geqslant n_{0}$.
"Fix $n \geqslant n_{0}$ and assume $P(n)$.
Then So $P(n+1)$ is true."
\leftarrow Induction hypothesis
\leftarrow Induction step

Proof by induction:

1. Show a base case: show that $P\left(n_{0}\right)$ is true.
2. Induction step: show $P(n) \Rightarrow P(n+1)$ for all $n \geqslant n_{0}$.
"Fix $n \geqslant n_{0}$ and assume $P(n)$.
Then So $P(n+1)$ is true."
\leftarrow Induction hypothesis
\leftarrow Induction step

A variant on induction: Strong Induction

1. Show a base case: show that $P\left(n_{0}\right)$ is true.
2. Induction step: show

$$
\left(\bigwedge_{i=n_{0}}^{n} P(i)\right) \Rightarrow P(n+1)
$$

for all $n \geqslant n_{0}$.
"Fix $n \geqslant n_{0}$ and assume $P(k)$ for all $n_{0} \leqslant k \leqslant n$.
(Strong) induction hypothesis
Then So $P(n+1)$ is true."

Theorem. (The Fundamental Theorem of Arithmetic) Every integer $n \geqslant 2$ can be factored as

$$
n=p_{1} p_{2} \cdots p_{r}
$$

with $p_{1}, p_{2}, \ldots, p_{r}$ prime (not necessarily distinct).

Theorem. (The Fundamental Theorem of Arithmetic) Every integer $n \geqslant 2$ can be factored as

$$
n=p_{1} p_{2} \cdots p_{r}
$$

with $p_{1}, p_{2}, \ldots, p_{r}$ prime (not necessarily distinct).
Proof by strong induction ($1^{\text {st } d r a f t) . ~ L e t ~} P(n)$ be the thm statement. Base case: 2 is prime, so the statement holds for $n=2$. \checkmark Goal: Assume $P(k)$ for all $2 \leqslant k \leqslant n$, and show $n+1$ has a factorization into primes.

Theorem. (The Fundamental Theorem of Arithmetic) Every integer $n \geqslant 2$ can be factored as

$$
n=p_{1} p_{2} \cdots p_{r}
$$

with $p_{1}, p_{2}, \ldots, p_{r}$ prime (not necessarily distinct).
Proof by strong induction ($1^{\text {st } d r a f t) . ~ L e t ~} P(n)$ be the thm statement.
Base case: 2 is prime, so the statement holds for $n=2$. \checkmark
Goal: Assume $P(k)$ for all $2 \leqslant k \leqslant n$, and show $n+1$ has a factorization into primes.
Induction step: Fix $n \geqslant 2$ and assume that k has a prime factorization for all $2 \leqslant k \leqslant n$. Now consider $n+1$. Either $n+1$ is prime, or $n+1=x y$ for some integers $2 \leqslant x, y \leqslant n$. By the induction hypothesis, there are primes $p_{1}, p_{2}, \ldots, p_{r}, q_{1}, q_{2}, \ldots, q_{s}$ so that

$$
x=p_{1} p_{2} \cdots p_{r} \quad \text { and } \quad y=q_{1} q_{2} \cdots q_{s} .
$$

So

$$
n+1=x y=p_{1} p_{2} \cdots p_{r} q_{1} q_{2} \cdots q_{s} \cdot \checkmark
$$

Conclusion. Since $P(2)$ holds, and $\left(\bigwedge_{k=n_{0}}^{n} P(i)\right) \Rightarrow P(n+1)$ for all $n \geqslant 2$, we have $P(\ell)$ for all $\ell \geqslant 2$.

Theorem. (The Fundamental Theorem of Arithmetic) Every integer $n \geqslant 2$ can be factored as

$$
n=p_{1} p_{2} \cdots p_{r}
$$

with $p_{1}, p_{2}, \ldots, p_{r}$ prime (not necessarily distinct).
Proof by strong induction ($1^{\text {st }}$ draft).
Basically, we just showed

$$
\begin{aligned}
& P(2) \\
& P(2) \Rightarrow P(3) \\
&(P(2) \wedge P(3)) \Rightarrow P(4) \\
&(P(2) \wedge P(3) \wedge P(4)) \Rightarrow P(5) \\
&(P(2) \wedge P(3) \wedge P(4) \wedge P(5)) \Rightarrow P(6) \\
& \vdots \\
&(P(2) \wedge P(3) \wedge \cdots \wedge P(n)) \Rightarrow P(n+1)
\end{aligned}
$$

Theorem. (The Fundamental Theorem of Arithmetic) Every integer $n \geqslant 2$ can be factored as

$$
n=p_{1} p_{2} \cdots p_{r}
$$

with $p_{1}, p_{2}, \ldots, p_{r}$ prime (not necessarily distinct).
Proof by strong induction (Final draft). First, 2 is prime, so the statement holds for $n=2$. Next, fix $n \geqslant 2$ and assume k has a prime factorization for all $2 \leqslant k \leqslant n$. Now, considering $n+1$, either $n+1$ is prime, or $n+1=x y$ for some integers $2 \leqslant x, y \leqslant n$. By the induction hypothesis, there are primes $p_{1}, p_{2}, \ldots, p_{r}, q_{1}, q_{2}, \ldots, q_{s}$ so that

$$
x=p_{1} p_{2} \cdots p_{r} \quad \text { and } \quad y=q_{1} q_{2} \cdots q_{s}
$$

So

$$
n+1=x y=p_{1} p_{2} \cdots p_{r} q_{1} q_{2} \cdots q_{s} \cdot \checkmark
$$

Thus, by strong induction, the claim holds for all $n \geqslant 2$.

Claim: A chocolate bar consists of unit squares arranged in an $n \times m$ rectangular grid. There's a way to split the bar into individual unit squares by breaking along the lines, in exactly $m n-1$ breaks.
Proof. Let $P(m, n)$ be the statement that an $n \times m$ bar can be broken into 1×1 pieces in $m n-1$ breaks.
Base case: If $m=n=1$, then no breaks are required, and $1 \cdot 1-1=0$.
Inductive step: Fix $m, n \geqslant 1$, and assume that $P(k, \ell)$ holds for all $1 \leqslant k \leqslant m$ and $1 \leqslant \ell \leqslant n$. We will show $P(m+1, n)$ and $P(m, n+1)$ individually.
To show $P(m+1, n)$, first make a break along a column into two pieces-am $m_{1} \times n$ and an $m_{2} \times n$ piece, with $1 \leqslant m_{1}, m_{2} \geqslant m$ and $m_{1}+m_{2}=m+1$. So, by the (strong) induction hypothesis, $P\left(m_{1}, n\right)$ and $P\left(m_{2}, n\right)$ both hold. So we can break the two pieces in $m_{1} n-1$ and $m_{2} n-1$ breaks, respectively, totaling

$$
m_{1} n-1+m_{2} n-1+1=\left(m_{1}+m_{2}\right) n-1=(m+1) n-1
$$

moves in total. Showing $P(m, n+1)$ follows similarly.
So by strong induction, $P(m, n)$ holds for all $m, n \geqslant 1$.

You try: Use strong induction to show the following claims.

1. Every amount of postage that is at least 12 cents can be made from 4 -cent and 5 -cent stamps.
2. In the game Nim, there are two players and two piles of matches. At each turn, a player removes some (non-zero) number of matches from one of the piles. The player who removes the last match wins.
Claim: If the two piles contain the same number of matches at the start of the game, then the second player can always win.

Introduction to number theory

An integer a divides the integer b, written as $a \mid b$, if there exists an integer k such that $b=k a$:

$$
(a \mid b) \Leftrightarrow \exists k \in \mathbb{Z}(b=k a) .
$$

If $a \mid b$, we call a a divisor of b.
If a is not a divisor of b, we write $a \nmid b$
($\left.\mathrm{AT}_{\mathrm{E}} \mathrm{X}: \backslash \mathrm{nmid}\right)$.

Introduction to number theory

An integer a divides the integer b, written as $a \mid b$, if there exists an integer k such that $b=k a$:

$$
(a \mid b) \Leftrightarrow \exists k \in \mathbb{Z}(b=k a) .
$$

If $a \mid b$, we call a a divisor of b.
If a is not a divisor of b, we write $a \nmid b$
($\left.\mathrm{AT}_{\mathrm{E}} \mathrm{X}: \backslash \mathrm{nmid}\right)$.
Examples:

1. Since $6=2 \cdot 3$, we have $2 \mid 6$ and $3 \mid 6$.

Introduction to number theory

An integer a divides the integer b, written as $a \mid b$, if there exists an integer k such that $b=k a$:

$$
(a \mid b) \Leftrightarrow \exists k \in \mathbb{Z}(b=k a) .
$$

If $a \mid b$, we call a a divisor of b.
If a is not a divisor of b, we write $a \nmid b$
($\left.\mathrm{AT}_{\mathrm{E}} \mathrm{E} \mathrm{X}: \backslash \mathrm{nmid}\right)$.

Examples:

1. Since $6=2 \cdot 3$, we have $2 \mid 6$ and $3 \mid 6$.
2. The divisors of 4 are $1,2,4,-1,-2$, and -4 :

$$
4=1 \cdot 4=(-1)(-4)=2 \cdot 2=(-2)(-2)
$$

Introduction to number theory

An integer a divides the integer b, written as $a \mid b$, if there exists an integer k such that $b=k a$:

$$
(a \mid b) \Leftrightarrow \exists k \in \mathbb{Z}(b=k a)
$$

If $a \mid b$, we call a a divisor of b.
If a is not a divisor of b, we write $a \nmid b$
($\left.\mathrm{AT}_{\mathrm{E}} \mathrm{X}: \backslash \mathrm{nmid}\right)$.

Examples:

1. Since $6=2 \cdot 3$, we have $2 \mid 6$ and $3 \mid 6$.
2. The divisors of 4 are $1,2,4,-1,-2$, and -4 :

$$
4=1 \cdot 4=(-1)(-4)=2 \cdot 2=(-2)(-2)
$$

3. The divisors of -4 are also $1,2,4,-1,-2$, and -4 :

$$
4=1(-4)=(-1) 4=2(-2)
$$

Introduction to number theory

An integer a divides the integer b, written as $a \mid b$, if there exists an integer k such that $b=k a$:

$$
(a \mid b) \Leftrightarrow \exists k \in \mathbb{Z}(b=k a)
$$

If $a \mid b$, we call a a divisor of b.
If a is not a divisor of b, we write $a \nmid b$
(ATEX: \nmid).

Examples:

1. Since $6=2 \cdot 3$, we have $2 \mid 6$ and $3 \mid 6$.
2. The divisors of 4 are $1,2,4,-1,-2$, and -4 :

$$
4=1 \cdot 4=(-1)(-4)=2 \cdot 2=(-2)(-2)
$$

3. The divisors of -4 are also $1,2,4,-1,-2$, and -4 :

$$
4=1(-4)=(-1) 4=2(-2)
$$

4. The divisors of 1 are 1 and -1 .

Introduction to number theory

An integer a divides the integer b, written as $a \mid b$, if there exists an integer k such that $b=k a$:

$$
(a \mid b) \Leftrightarrow \exists k \in \mathbb{Z}(b=k a)
$$

If $a \mid b$, we call a a divisor of b.
If a is not a divisor of b, we write $a \nmid b$
($A_{T} T_{E X}$: \backslash nmid).

Examples:

1. Since $6=2 \cdot 3$, we have $2 \mid 6$ and $3 \mid 6$.
2. The divisors of 4 are $1,2,4,-1,-2$, and -4 :

$$
4=1 \cdot 4=(-1)(-4)=2 \cdot 2=(-2)(-2)
$$

3. The divisors of -4 are also $1,2,4,-1,-2$, and -4 :

$$
4=1(-4)=(-1) 4=2(-2)
$$

4. The divisors of 1 are 1 and -1 .
5. Every integer $k \in \mathbb{Z}$ is a divisor of 0 since $k \cdot 0=0$.

Introduction to number theory

An integer a divides the integer b, written as $a \mid b$, if there exists an integer k such that $b=k a$:

$$
(a \mid b) \Leftrightarrow \exists k \in \mathbb{Z}(b=k a)
$$

If $a \mid b$, we call a a divisor of b.
If a is not a divisor of b, we write $a \nmid b$
($A_{T} T_{E X}$: \backslash nmid).

Examples:

1. Since $6=2 \cdot 3$, we have $2 \mid 6$ and $3 \mid 6$.
2. The divisors of 4 are $1,2,4,-1,-2$, and -4 :

$$
4=1 \cdot 4=(-1)(-4)=2 \cdot 2=(-2)(-2)
$$

3. The divisors of -4 are also $1,2,4,-1,-2$, and -4 :

$$
4=1(-4)=(-1) 4=2(-2)
$$

4. The divisors of 1 are 1 and -1 .
5. Every integer $k \in \mathbb{Z}$ is a divisor of 0 since $k \cdot 0=0$.
6. Zero is only a divisor of itself, i.e. $0 \nmid k$ for all $k \in \mathbb{Z}_{\neq 0}$.

Theorem. Let $a, b, c \in \mathbb{Z}$. If $a \mid b$ and $a \mid c$, then $a \mid(m b+n c)$, for all integers m and n.

Theorem. Let $a, b, c \in \mathbb{Z}$. If $a \mid b$ and $a \mid c$, then $a \mid(m b+n c)$, for all integers m and n.
Proof. If $a \mid b$ and $a \mid c$, then there exist $k, \ell \in \mathbb{Z}$ such that

$$
b=k a \quad \text { and } \quad c=\ell a .
$$

Theorem. Let $a, b, c \in \mathbb{Z}$. If $a \mid b$ and $a \mid c$, then $a \mid(m b+n c)$, for all integers m and n.
Proof. If $a \mid b$ and $a \mid c$, then there exist $k, \ell \in \mathbb{Z}$ such that

$$
b=k a \quad \text { and } \quad c=\ell a .
$$

So

$$
m b+n c=m(k a)+n(\ell a)=(m k+n \ell) a .
$$

Theorem. Let $a, b, c \in \mathbb{Z}$. If $a \mid b$ and $a \mid c$, then $a \mid(m b+n c)$, for all integers m and n.
Proof. If $a \mid b$ and $a \mid c$, then there exist $k, \ell \in \mathbb{Z}$ such that

$$
b=k a \quad \text { and } \quad c=\ell a .
$$

So

$$
m b+n c=m(k a)+n(\ell a)=(m k+n \ell) a .
$$

So since $m k+n \ell \in \mathbb{Z}$, we have $a \mid(m b+n c)$, as desired.

Theorem. Let $a, b, c \in \mathbb{Z}$. If $a \mid b$ and $a \mid c$, then $a \mid(m b+n c)$, for all integers m and n.
Proof. If $a \mid b$ and $a \mid c$, then there exist $k, \ell \in \mathbb{Z}$ such that

$$
b=k a \quad \text { and } \quad c=\ell a .
$$

So

$$
m b+n c=m(k a)+n(\ell a)=(m k+n \ell) a .
$$

So since $m k+n \ell \in \mathbb{Z}$, we have $a \mid(m b+n c)$, as desired.

Theorem. Let $a, b, c \in \mathbb{Z}$. If $a \mid b$ and $a \mid c$, then $a \mid(m b+n c)$, for all integers m and n.
Proof. If $a \mid b$ and $a \mid c$, then there exist $k, \ell \in \mathbb{Z}$ such that

$$
b=k a \quad \text { and } \quad c=\ell a .
$$

So

$$
m b+n c=m(k a)+n(\ell a)=(m k+n \ell) a .
$$

So since $m k+n \ell \in \mathbb{Z}$, we have $a \mid(m b+n c)$, as desired.
You try: Let $a, b, c \in \mathbb{Z}$. Prove the following two claims.
Claim 1: If a divides b, then a divides b^{2}.
Claim 2: If $a \mid b$ and $b \mid c$, then $a \mid c$.

Hint: for each, if $x \mid y$, the first thing you want to try is writing "there exists $z \in \mathbb{Z}$ such that $x z=y$."

The greatest common divisor of two non-zero integers a and b, denoted $\operatorname{gcd}(a, b)$, is the largest positive integer that divides both numbers:

$$
(\operatorname{gcd}(a, b)=D) \Leftrightarrow((d|a \wedge d| b) \Rightarrow d \leqslant D)
$$

The greatest common divisor of two non-zero integers a and b, denoted $\operatorname{gcd}(a, b)$, is the largest positive integer that divides both numbers:

$$
(\operatorname{gcd}(a, b)=D) \Leftrightarrow((d|a \wedge d| b) \Rightarrow d \leqslant D)
$$

Examples:

$$
\operatorname{gcd}(12,18)=
$$

The greatest common divisor of two non-zero integers a and b, denoted $\operatorname{gcd}(a, b)$, is the largest positive integer that divides both numbers:

$$
(\operatorname{gcd}(a, b)=D) \Leftrightarrow((d|a \wedge d| b) \Rightarrow d \leqslant D)
$$

Examples:

$$
\operatorname{gcd}(12,18)=6
$$

The greatest common divisor of two non-zero integers a and b, denoted $\operatorname{gcd}(a, b)$, is the largest positive integer that divides both numbers:

$$
(\operatorname{gcd}(a, b)=D) \Leftrightarrow((d|a \wedge d| b) \Rightarrow d \leqslant D)
$$

Examples:

$$
\operatorname{gcd}(12,18)=6, \quad \operatorname{gcd}(12,-18)=
$$

The greatest common divisor of two non-zero integers a and b, denoted $\operatorname{gcd}(a, b)$, is the largest positive integer that divides both numbers:

$$
(\operatorname{gcd}(a, b)=D) \Leftrightarrow((d|a \wedge d| b) \Rightarrow d \leqslant D)
$$

Examples:

$$
\operatorname{gcd}(12,18)=6, \quad \operatorname{gcd}(12,-18)=6
$$

The greatest common divisor of two non-zero integers a and b, denoted $\operatorname{gcd}(a, b)$, is the largest positive integer that divides both numbers:

$$
(\operatorname{gcd}(a, b)=D) \Leftrightarrow((d|a \wedge d| b) \Rightarrow d \leqslant D)
$$

Examples:

$$
\begin{aligned}
& \operatorname{gcd}(12,18)=6, \quad \operatorname{gcd}(12,-18)=6, \\
& \operatorname{gcd}(-12,-19)=
\end{aligned}
$$

The greatest common divisor of two non-zero integers a and b, denoted $\operatorname{gcd}(a, b)$, is the largest positive integer that divides both numbers:

$$
(\operatorname{gcd}(a, b)=D) \Leftrightarrow((d|a \wedge d| b) \Rightarrow d \leqslant D)
$$

Examples:

$$
\begin{aligned}
& \operatorname{gcd}(12,18)=6, \quad \operatorname{gcd}(12,-18)=6, \\
& \operatorname{gcd}(-12,-19)=6,
\end{aligned}
$$

The greatest common divisor of two non-zero integers a and b, denoted $\operatorname{gcd}(a, b)$, is the largest positive integer that divides both numbers:

$$
(\operatorname{gcd}(a, b)=D) \Leftrightarrow((d|a \wedge d| b) \Rightarrow d \leqslant D)
$$

Examples:

$$
\begin{aligned}
& \operatorname{gcd}(12,18)=6, \quad \operatorname{gcd}(12,-18)=6 \\
& \operatorname{gcd}(-12,-19)=6, \quad \operatorname{gcd}(12,35)=
\end{aligned}
$$

The greatest common divisor of two non-zero integers a and b, denoted $\operatorname{gcd}(a, b)$, is the largest positive integer that divides both numbers:

$$
(\operatorname{gcd}(a, b)=D) \Leftrightarrow((d|a \wedge d| b) \Rightarrow d \leqslant D)
$$

Examples:

$$
\begin{gathered}
\operatorname{gcd}(12,18)=6, \quad \operatorname{gcd}(12,-18)=6 \\
\operatorname{gcd}(-12,-19)=6, \quad \operatorname{gcd}(12,35)=1
\end{gathered}
$$

The greatest common divisor of two non-zero integers a and b, denoted $\operatorname{gcd}(a, b)$, is the largest positive integer that divides both numbers:

$$
(\operatorname{gcd}(a, b)=D) \Leftrightarrow((d|a \wedge d| b) \Rightarrow d \leqslant D)
$$

Examples:

$$
\begin{gathered}
\operatorname{gcd}(12,18)=6, \quad \operatorname{gcd}(12,-18)=6 \\
\operatorname{gcd}(-12,-19)=6, \quad \operatorname{gcd}(12,35)=1
\end{gathered}
$$

Note, for all non-zero integers a and b, we have $\operatorname{gcd}(a, b)>0$.

The greatest common divisor of two non-zero integers a and b, denoted $\operatorname{gcd}(a, b)$, is the largest positive integer that divides both numbers:

$$
(\operatorname{gcd}(a, b)=D) \Leftrightarrow((d|a \wedge d| b) \Rightarrow d \leqslant D)
$$

Examples:

$$
\begin{gathered}
\operatorname{gcd}(12,18)=6, \quad \operatorname{gcd}(12,-18)=6 \\
\operatorname{gcd}(-12,-19)=6, \quad \operatorname{gcd}(12,35)=1
\end{gathered}
$$

Note, for all non-zero integers a and b, we have $\operatorname{gcd}(a, b)>0$.
If $\operatorname{gcd}(a, b)=1$, we say a and b are relatively prime.

