
Recall proof by induction:

1. Show a base case: show that P pn0q is true.

2. Induction step: show P pnq ñ P pn` 1q for all n ě n0.

Then since ñ is “transitive”, we have proven P pkq for all k ě n0.

For example, we proved

P pnq :
n
ÿ

i“1

i “
npn` 1q

2

by checking

P p1q :
1
ÿ

i“1

i “ 1 “
1p2q

2
X,

and P pnq ñ P pn` 1q :
n`1
ÿ

i“1

i “

˜

n
ÿ

i“1

i

¸

` pn` 1q “
npn` 1q

2
` pn` 1q “

pn` 1qpn` 2q

2
X.

So for any k ě 1, we have P p1q is true and

P p1q ñ P p2q ñ P p3q ñ ¨ ¨ ¨ ñ P pk ´ 1q ñ P pkq,

so P pkq is true too!
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“Fix n ě n0 and assume P pnq. Ð Induction hypothesis
Then . . . . So P pn` 1q is true.” Ð Induction step

A variant on induction: Strong Induction

1. Show a base case: show that P pn0q is true.

2. Induction step: show
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Theorem. (The Fundamental Theorem of Arithmetic) Every
integer n ě 2 can be factored as

n “ p1p2 ¨ ¨ ¨ pr

with p1, p2, . . . , pr prime (not necessarily distinct).

Proof by strong induction (1st draft). Let P pnq be the thm statement.

Base case: 2 is prime, so the statement holds for n “ 2. X
Goal: Assume P pkq for all 2 ď k ď n, and show n` 1 has a
factorization into primes.
Induction step: Fix n ě 2 and assume that k has a prime
factorization for all 2 ď k ď n. Now consider n` 1. Either n` 1
is prime, or n` 1 “ xy for some integers 2 ď x, y ď n. By the
induction hypothesis, there are primes p1, p2, . . . , pr, q1, q2, . . . , qs
so that

x “ p1p2 ¨ ¨ ¨ pr and y “ q1q2 ¨ ¨ ¨ qs.

So

n` 1 “ xy “ p1p2 ¨ ¨ ¨ prq1q2 ¨ ¨ ¨ qs.X

Conclusion. Since P p2q holds, and
`
Źn

k“n0
P piq

˘

ñ P pn` 1q for
all n ě 2, we have P p`q for all ` ě 2.
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Theorem. (The Fundamental Theorem of Arithmetic) Every
integer n ě 2 can be factored as

n “ p1p2 ¨ ¨ ¨ pr

with p1, p2, . . . , pr prime (not necessarily distinct).

Proof by strong induction (1st draft).
Basically, we just showed

P p2q

P p2q ñ P p3q
`

P p2q ^ P p3q
˘

ñ P p4q
`
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...
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Theorem. (The Fundamental Theorem of Arithmetic) Every
integer n ě 2 can be factored as

n “ p1p2 ¨ ¨ ¨ pr

with p1, p2, . . . , pr prime (not necessarily distinct).

Proof by strong induction (Final draft). First, 2 is prime, so the
statement holds for n “ 2. Next, fix n ě 2 and assume k has a
prime factorization for all 2 ď k ď n. Now, considering n` 1,
either n` 1 is prime, or n` 1 “ xy for some integers
2 ď x, y ď n. By the induction hypothesis, there are primes
p1, p2, . . . , pr, q1, q2, . . . , qs so that

x “ p1p2 ¨ ¨ ¨ pr and y “ q1q2 ¨ ¨ ¨ qs.

So

n` 1 “ xy “ p1p2 ¨ ¨ ¨ prq1q2 ¨ ¨ ¨ qs.X

Thus, by strong induction, the claim holds for all n ě 2.



Claim: A chocolate bar consists of unit squares arranged in an
nˆm rectangular grid. There’s a way to split the bar into
individual unit squares by breaking along the lines, in exactly
mn´ 1 breaks.
Proof. Let P pm,nq be the statement that an nˆm bar can be
broken into 1ˆ 1 pieces in mn´ 1 breaks.
Base case: If m “ n “ 1, then no breaks are required, and
1 ¨ 1´ 1 “ 0.
Inductive step: Fix m,n ě 1, and assume that P pk, `q holds for all
1 ď k ď m and 1 ď ` ď n. We will show P pm` 1, nq and
P pm,n` 1q individually.
To show P pm` 1, nq, first make a break along a column into two
pieces—am m1 ˆ n and an m2 ˆ n piece, with 1 ď m1,m2 ě m
and m1 `m2 “ m` 1. So, by the (strong) induction hypothesis,
P pm1, nq and P pm2, nq both hold. So we can break the two pieces
in m1n´ 1 and m2n´ 1 breaks, respectively, totaling

m1n´ 1`m2n´ 1` 1 “ pm1 `m2qn´ 1 “ pm` 1qn´ 1

moves in total. Showing P pm,n` 1q follows similarly.
So by strong induction, P pm,nq holds for all m,n ě 1.



You try: Use strong induction to show the following claims.

1. Every amount of postage that is at least 12 cents can be
made from 4-cent and 5-cent stamps.

2. In the game Nim, there are two players and two piles of
matches. At each turn, a player removes some (non-zero)
number of matches from one of the piles. The player who
removes the last match wins.
Claim: If the two piles contain the same number of matches at
the start of the game, then the second player can always win.



Introduction to number theory

An integer a divides the integer b, written as a|b, if there exists an
integer k such that b “ ka:

pa|bq ô Dk P Zpb “ kaq.

If a|b, we call a a divisor of b.
If a is not a divisor of b, we write a - b (LATEX: \nmid).

Examples:

1. Since 6 “ 2 ¨ 3, we have 2|6 and 3|6.

2. The divisors of 4 are 1, 2, 4,´1,´2, and ´4:

4 “ 1 ¨ 4 “ p´1qp´4q “ 2 ¨ 2 “ p´2qp´2q.

3. The divisors of ´4 are also 1, 2, 4,´1,´2, and ´4:

4 “ 1p´4q “ p´1q4 “ 2p´2q.

4. The divisors of 1 are 1 and ´1.

5. Every integer k P Z is a divisor of 0 since k ¨ 0 “ 0.

6. Zero is only a divisor of itself, i.e. 0 - k for all k P Z‰0.
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Theorem. Let a, b, c P Z. If a|b and a|c, then a|pmb` ncq, for all
integers m and n.

Proof. If a|b and a|c, then there exist k, ` P Z such that

b “ ka and c “ `a.

So

mb` nc “ mpkaq ` np`aq “ pmk ` n`qa.

So since mk ` n` P Z, we have a|pmb` ncq, as desired. ˝

You try: Let a, b, c P Z. Prove the following two claims.

Claim 1: If a divides b, then a divides b2.

Claim 2: If a|b and b|c, then a|c.

Hint: for each, if x|y, the first thing you want to try is writing
“there exists z P Z such that xz “ y.”
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The greatest common divisor of two non-zero integers a and b,
denoted gcdpa, bq, is the largest positive integer that divides both
numbers:

´

gcdpa, bq “ D
¯

ô

´

pd|a^ d|bq ñ d ď D
¯

.

Examples:

gcdp12, 18q “ 6, gcdp12,´18q “ 6,

gcdp´12,´19q “ 6, gcdp12, 35q “ 1.

Note, for all non-zero integers a and b, we have gcdpa, bq ą 0.

If gcdpa, bq “ 1, we say a and b are relatively prime.
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