Mathematical induction

Say we have a statement, $P(n)$, that has the natural numbers $n \in \mathbb{Z} \geqslant 0$ as an input.
For example, say you have an infinite row of dominoes, labeled $0,1,2, \ldots$:

Let $P(n)$ be the statement
"I can knock the nth domino over".

Mathematical induction

Let $P(n)$ be the statement
"I can knock the nth domino over".

Then, if you can show that the 0th domino knocking into the 1st domino with then knock \#1 over, you'll show that $P(1)$ is true:

In math: You can show that $P(1)$ is true by proving (a) $P(0)$ is true, and (b) that $P(0)$ implies $P(1)$.

Idea: $P(1)$ will imply $P(2)$, which will imply $P(3)$, and so on...

Mathematical induction

To show that $P(k)$ holds in general, you show that
(a) $P(0)$ is true, and then
(b) for any n, if $P(n)$ is true, then that implies $P(n+1)$ is also true. (If the nth domino falls, then so will the $(n+1)$ th)

Then by letting the dominos fall one after the other, eventually each domino will fall (no particular domino will be left standing, given enough time):

Mathematical induction

Theorem: for any $k \in \mathbb{Z}_{\geqslant 0}$, I can knock down the k th domino.
Poof by induction:
First, I can knock down the 0th domino. ("Base case")
Now, for some $n \in \mathbb{Z}_{\geqslant 0}$, suppose I can knock down the nth domino.
("Induction hypothesis")
The nth domino will bump into the $(n+1)$ th domino, which will knock it over. So that implies I can knock down the $(n+1)$ th domino.
("Induction step")
Thus, by induction, I can knock down the k th domino for any $k \in \mathbb{Z}_{\geqslant 0}$.
("Conclusion")

Math example: Show $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$ by induction.
Proof by induction (first draft).
Define $P(n): P(n)$ is " $\sum_{i=1}^{n} i=\frac{n(n+1) "}{2}$.
Base case: The lowest case is $P(1)$, so we check that:

$$
\sum_{i=1}^{1} i=\frac{1 * 2}{2}
$$

Goal: Assume $P(n)$ and show $P(n+1)$, which is

$$
P(n+1): \quad \sum_{i=1}^{n+1} i=\frac{(n+1)((n+1)+1)}{2}=\frac{(n+1)(n+2)}{2} .
$$

Inductive step: (Assume $P(n)$ and show $P(n+1)$)
Fix $n \geqslant 1$ and assume $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$ (this is the Inductive Hypothesis, IH).

Math example: Show $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$ by induction.
Proof by induction (first draft). (Continued from previous slide, where $P(n)$ is " $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$ "...)
Inductive step: (Assume $P(n)$ and show $P(n+1)$)
Fix $n \geqslant 1$ and assume $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$ (this is the Inductive Hypothesis, IH). Then

$$
\begin{aligned}
\sum_{i=1}^{n+1} i & =\underbrace{1+2+\cdots+n}_{\sum_{i=1}^{n} i}+(n+1) \\
& \stackrel{\text { H }}{=} \frac{n(n+1)}{2}+(n+1) \quad \text { (by the Inductive Hypothesis) } \\
& =\frac{n^{2}+n+2 n+2}{2}=\frac{n^{2}+3 n+2}{2}=\frac{(n+1)(n+2)}{2} .
\end{aligned}
$$

Conclusion: So since $P(1)$ is true, and $P(n)$ implies $P(n+1)$, we have $P(k)$ is true for all $k=1,2,3, \ldots$.

Math example: Show $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$ by induction.
Proof by induction (final draft). For $n=1$, we have

$$
\sum_{i=1}^{1} i=1=\frac{1 * 2}{2}
$$

as desired. Now fix $n \geqslant 1$ and assume $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$ (for that value of n). Then

$$
\begin{aligned}
\sum_{i=1}^{n+1} i & =\underbrace{1+2+\cdots+n}_{\sum_{i=1}^{n} i}+(n+1) \\
& =\frac{n(n+1)}{2}+(n+1) \quad \text { (by the inductive hypothesis) } \\
& =\frac{n^{2}+n+2 n+2}{2}=\frac{n^{2}+3 n+2}{2}=\frac{(n+1)(n+2)}{2} .
\end{aligned}
$$

Thus, the claim holds for all $n \geqslant 1$ by induction.

Example: Show $n<2^{n}$ for all $n \in \mathbb{Z}_{\geqslant 0}$ by induction.
Proof by induction (first draft).
Define $P(n)$: $P(n)$ is " $n<2^{n}$ ".
Base case: The least value of n is 0 , so the base case is $P(0)$:

$$
0<1=2^{0} .
$$

Goal: Assume $P(n)$ and show $P(n+1)$, which is

$$
P(n+1): \quad n+1<2^{n+1} .
$$

Inductive step: (Assume $P(n)$ and show $P(n+1)$)
Fix $n \geqslant 0$ and assume $n<2^{n}$ (this is the IH). Then since $n \geqslant 0$,

$$
n+1 \stackrel{\text { IH }}{<} 2^{n}+1 \leqslant 2^{n}+2^{n}=2\left(2^{n}\right)=2^{n+1}
$$

Conclusion: So since $P(0)$ is true, and $P(n)$ implies $P(n+1)$, we have $P(k)$ is true for all $k \in \mathbb{Z}_{\geqslant 0}$.

Example: Show $n<2^{n}$ for all $n \in \mathbb{Z}_{\geqslant 0}$ by induction.
Proof by induction (final draft).
For $n=0$, we have

$$
0<1=2^{0},
$$

as desired. Now, fix $n \geqslant 0$ and assume $n<2^{n}$ (for that n). Then since $n \geqslant 0$, we have

$$
n+1<2^{n}+1 \leqslant 2^{n}+2^{n}=2\left(2^{n}\right)=2^{n+1} .
$$

Thus, the claim holds for all $n \geqslant 0$ by induction.

Example: Show $n^{2}+n$ is even for all $n \in \mathbb{Z}_{\geqslant 0}$ by induction.
Proof by induction (first draft).
Define $P(n)$: $P(n)$ is " $n^{2}+n=2 k$ for some integer k ".
Base case: (Show $P(0)$) We have

$$
0^{2}+0=0=2 * 0 .
$$

Goal: Assume $P(n)$ and show $P(n+1)$, which is

$$
P(n+1): \quad(n+1)^{2}+(n+1)=2 \ell \text { for some } \ell \in \mathbb{Z}
$$

(Careful!! Don't use the same letter for the IH and $P(n+1)$ since it's any integer, not something we get from a formula!!)

Example: Show $n^{2}+n$ is even for all $n \in \mathbb{Z}_{\geqslant 0}$ by induction.
Proof by induction (first draft). (Continued from previous slide, where $P(n)$ is " $n^{2}+n=2 k$ for some integer k ".)
Goal: Assume $P(n)$ and show $P(n+1)$, which is

$$
P(n+1): \quad(n+1)^{2}+(n+1)=2 \ell \text { for some } \ell \in \mathbb{Z}
$$

Inductive step: (Assume $P(n)$ and show $P(n+1)$)
Fix $n \geqslant 0$ and assume $n^{2}+n=2 k$ for some $k \in \mathbb{Z}$ (this is the IH). Then

$$
\begin{aligned}
(n+1)^{2}+(n+1) & =n^{2}+2 n+1+n+1=\underbrace{\left(n^{2}+n\right)}_{\text {even by } \mathrm{HH}}+(2 n+2) \\
& \stackrel{\mathrm{IH}}{=} 2 k+2(n+1)=2 \underbrace{(k+n+1)}_{\in \mathbb{Z}} .
\end{aligned}
$$

Conclusion: So since $P(0)$ is true, and $P(n)$ implies $P(n+1)$, we have $P(k)$ is true for all $k \in \mathbb{Z}_{\geqslant 0}$.

Example: Show $n^{2}+n$ is even for all $n \in \mathbb{Z}_{\geqslant 0}$ by induction.
Proof by induction (final draft). For $n=0$, we have

$$
0^{2}+0=0=2 * 0
$$

as desired. Next, fix $n \geqslant 0$ and assume $n^{2}+n$ is even. Then $n^{2}+n=2 k$ for some $k \in \mathbb{Z}$, so that

$$
\begin{aligned}
(n+1)^{2}+(n+1) & =n^{2}+2 n+1+n+1=\left(n^{2}+n\right)+(2 n+2) \\
& =2 k+2(n+1) \quad \text { by the inductive hypothesis, } \\
& =2(k+n+1) .
\end{aligned}
$$

So since $k+n+1 \in \mathbb{Z}$, we have $(n+1)^{2}+(n+1)$ is even as well. Thus, the claim holds for all $n \geqslant 0$ by induction. Of course, we could have shown this directly!

Example: Show that if $|A|=n$ then $|\mathcal{P}(A)|=2^{n}$.
Proof by induction (first draft).
Define $P(n): P(n)$ is "if $|A|=n$ then $|\mathcal{P}(A)|=2^{n}$ ".
Base case: The smallest set is the empty set, so the base case is $P(0)$. In fact, the only set of size 0 is \varnothing. So we check $P(0)$ by computing $|\mathcal{P}(\varnothing)|$:

$$
|\mathcal{P}(\varnothing)|=|\{\varnothing\}|=1=2^{0} .
$$

Goal: Assume $P(n)$ and show $P(n+1)$, which is

$$
P(n+1): \quad \text { if }|B|=n+1 \text {, then }|\mathcal{P}(B)|=2^{n+1} .
$$

(Careful!! Don't use the same set name for the IH and $P(n+1)$ since they must be different sets!!)

Example: Show that if $|A|=n$ then $|\mathcal{P}(A)|=2^{n}$.
Proof by induction (first draft). (Continued from previous slide, where $P(n)$ is "if $|A|=n$ then $|\mathcal{P}(A)|=2^{n "}$)
Inductive step: (Assume $P(n)$ and show $P(n+1)$)
For any set A of size n, assume $|\mathcal{P}(A)|=2^{n}$. Now let B be a set of size $n+1$, and let $b \in B$. Let $A=B-\{b\}$, so that

$$
|A|=n \quad \text { and } \quad B=A \cup\{b\} .
$$

Then for each subset $X \subseteq A$, there are exactly two subsets of B :

$$
X \quad \text { and } \quad X \cup\{b\} .
$$

So

$$
|\mathcal{P}(B)|=2|\mathcal{P}(A)| \stackrel{\mid \mathrm{H}}{=} 2 * 2^{n}=2^{n+1}
$$

Conclusion: So since $P(0)$ is true, and $P(n)$ implies $P(n+1)$, we have $P(k)$ is true for all $k \in \mathbb{Z}_{\geqslant 0}$.

Example: Show that if $|A|=n$ then $|\mathcal{P}(A)|=2^{n}$.
Proof by induction (final draft). For $n=0$, we have $A=\varnothing$, and so $\mathcal{P}(A)=\{\varnothing\}$. Thus

$$
|\mathcal{P}(\varnothing)|=|\{\varnothing\}|=1=2^{0},
$$

as desired. Now fix $n \geqslant 0$ and assume for any size- n set A, we have $|\mathcal{P}(A)|=2^{n}$. Let B be a set of size $n+1$, and let $b \in B$. Let $A=B-\{b\}$, so that

$$
|A|=n \quad \text { and } \quad B=A \cup\{b\} .
$$

Then for each subset $X \subseteq A$, there are exactly two subsets of B :

$$
X \quad \text { and } \quad X \cup\{b\} .
$$

So

$$
|\mathcal{P}(B)|=2|\mathcal{P}(A)|=2 * 2^{n}=2^{n+1}
$$

by the induction hypothesis. Thus the claim holds for all $n \geqslant 0$ by induction.

Proof by induction

Outlining your proof:

1. Define $P(n)$.
2. Compute base case.
3. Explicitly state your goal.
4. Do inductive step.
5. State your conclusion.

Rewrite your proof:

1. Write the base case.
2. Fix n and make your inductive hypothesis.
3. Show that the claim holds for $n+1$.
4. State your conclusion.

You try:

Outline a proof by induction for the following claims.
(a) For $n \in \mathbb{Z}_{\geqslant 0}$ and $r \neq 1$, we have

$$
\sum_{i=0}^{n} r^{i}=\frac{r^{n+1}-1}{r-1}
$$

(b) We have $n^{3}+2 n$ is a multiple of 3 for all $n \in \mathbb{Z}_{\geqslant 0}$.
(c) We have $\sum_{i=1}^{n} 2 i-1=n^{2}$ for all $n \in \mathbb{Z}_{\geqslant 0}$.
(d) Suppose $A_{1}, A_{2}, \ldots A_{N}$ and $B_{1}, B_{2}, \ldots, B_{N}$ are sets such that

$$
A_{i} \subseteq B_{i} \quad \text { for all } 1 \leqslant i \leqslant N
$$

Then

$$
\bigcup_{i=1}^{N} A_{i} \subseteq \bigcup_{i=1}^{N} B_{i} .
$$

(e) Suppose $A_{1}, A_{2}, \ldots A_{N}$ and B are sets. Then

$$
\begin{aligned}
\left(A_{1}-B\right) \cap\left(A_{2}-B\right) & \cap \cdots \cap\left(A_{N}-B\right) \\
& =\left(A_{1} \cap A_{2} \cap \cdots \cap A_{N}\right)-B .
\end{aligned}
$$

