Proof by cases

Claim: For all integers $n, n^{2}+3 n+7$ is odd.
Proof (by cases). If $n \in \mathbb{Z}$, then either n is even or n is odd.
If n is even, then

$$
n=2 k \quad \text { for some } k \in \mathbb{Z}
$$

Thus

$$
n^{2}+3 n+7=(2 k)^{2}+3(2 k)+7=2\left(2 k^{2}+3 k+3\right)+1 .
$$

So since $2 k^{2}+3 k+3 \in \mathbb{Z}$, we have $n^{2}+3 n+7$ is odd.
Similarly, if n is odd, then

$$
n=2 k+1 \quad \text { for some } k \in \mathbb{Z} .
$$

Thus

$$
n^{2}+3 n+7=(2 k+1)^{2}+3(2 k+1)+7=2\left(2 k^{2}+5 k+5\right)+1 .
$$

So since $\left.2 k^{2}+5 k+5\right) \in \mathbb{Z}$, we have $n^{2}+3 n+7$ is odd.

Proof by cases

Claim: For all integers $n, n^{2}+3 n+7$ is odd.
Proof (direct). First, we note that

$$
n^{2}+3 n+7=n(n+3)+7
$$

We have seen if a is even and b is odd, then $a+b$ is odd. So one of n or $n+3$ is even and the other is odd. Thus $n(n+3)$ is even; and hence $n(n+3)+7$ is odd.

Note: we kind of cheated by using previously formed machinery! We used the lemma,
"If a is even and b is odd, then $a+b$ is odd."
Our first proof was called a proof by cases or proof by exhaustion. It was a little more obvious, but not as illuminating.

Tip: Anything with multiples or remainders lend themselves to proof by cases.
Claim: For all $n \in \mathbb{Z}, n^{3}-n$ is a multiple of 3 .
Proof (by cases). Every $n \in \mathbb{Z}$ can be written as $3 n+r$ for
$r=0,1$, or $2(r$ is the remainder of n divided by 3).
Case 1: $r=0$. Then...
Case 2: $r=1$. Then...
Case 3: $r=2$. Then...
(See Example 22.3 for details.)
Proof (by cases, but more direct). Note that

$$
n^{3}-n=n(n+1)(n-1) .
$$

Then we will have our desired result by showing that one of n, $n+1$, or $n-1$ must be a multiple of three. Namely, every $n \in \mathbb{Z}$ can be written as $3 n+r$ for $r=0$, 1 , or 2 . But if n and $n+1$ are not multiples of 3 , then r must be 1 , so that $n-1$ is a multiple of 3.

Note: Again, we cheated, this time by assuming our reader was knowledgeable enough to understand second and fourth sentences.

Tip: Piecewise functions lend themselves to proof by cases.
Theorem (Triangle inequality). For real numbers x and y, we have

$$
|x+y| \leqslant|x|+|y| .
$$

Note: absolute value is secretly a piecewise function!

$$
|x|= \begin{cases}x & x \geqslant 0 \\ -x & x<0\end{cases}
$$

Proof (by cases). Suppose, without loss of generality, that $x \geqslant y$.
Case 1: $x, y \geqslant 0$. If $x, y \geqslant 0$, then $x+y \geqslant 0$. So

$$
|x|=x \quad|y|=y \quad \text { and } \quad|x+y|=x+y=|x|+|y| .
$$

Case 2: $y<0$ and $x \geqslant 0$. (See Theorem 22.7)
Case 3: $x, y<0$. (See Theorem 22.7)
Note: The triangle inequality is an important part of the definition of a metric, i.e. a distance function. Absolute value is just one metric on \mathbb{R}.

Theorem. Let X, Y and Z be points in the plane. Then, all lie on a line or all lie on a circle.
Proof. Denote by L the perpendicular bisector between X and Y, and by M the perpendicular bisector between Y and Z. If the points all lie on a line, then they satisfy the conclusion of the theorem and we are done. If the points are not on a line, then L and M are not parallel and so must meet at a point W, say. As W is on the perpendicular bisector L it is equidistant from X and Y. Similarly it is equidistant from Y and Z. As the distance from W to X and the distance from Y and Z are the same we deduce that the three points lie on a circle centered at W of radius equal to the distance from W to X.

Theorem. Let X, Y and Z be points in the plane. Then, all lie on a line or all lie on a circle.

Tip: "Or" statements lend themselves to proof by cases.
Tip: Extreme examples lend themselves to proof by cases.

You try:
Outline a proof by cases for each of the following statements.

1. The square of any integer is of the form $3 k$ or $3 k+1$ for some $k \in \mathbb{Z}$.
2. The cube of any integer is of the form $9 k, 9 k+1$, or $9 k+8$ for some $k \in \mathbb{Z}$.
3. For all $x, y \in \mathbb{R}$, we have

$$
|x y|=|x||y| \quad \text { and } \quad \| x|-|y|| \leqslant|x-y| .
$$

4. For sets A and B, we have $A \cup B=(A \cap B) \cup(A-B) \cup(B-A)$.

Tip: Unions lend themselves to proof by cases (since they're secretly "or" statements).

