
Proof by cases

Claim: For all integers n, n2 ` 3n ` 7 is odd.

Proof (by cases). If n P Z, then either n is even or n is odd.

If n is even, then

n “ 2k for some k P Z.
Thus

n2 ` 3n ` 7 “ p2kq2 ` 3p2kq ` 7 “ 2p2k2 ` 3k ` 3q ` 1.

So since 2k2 ` 3k ` 3 P Z, we have n2 ` 3n ` 7 is odd.

Similarly, if n is odd, then

n “ 2k ` 1 for some k P Z.
Thus

n2 ` 3n ` 7 “ p2k ` 1q2 ` 3p2k ` 1q ` 7 “ 2p2k2 ` 5k ` 5q ` 1.

So since 2k2 ` 5k ` 5q P Z, we have n2 ` 3n ` 7 is odd. ˝

Proof by cases

Claim: For all integers n, n2 ` 3n ` 7 is odd.

Proof (direct). First, we note that

n2 ` 3n ` 7 “ npn ` 3q ` 7.

We have seen if a is even and b is odd, then a ` b is odd. So one

of n or n ` 3 is even and the other is odd. Thus npn ` 3q is even;

and hence npn ` 3q ` 7 is odd. ˝

Note: we kind of cheated by using previously formed machinery!

We used the lemma,

“If a is even and b is odd, then a ` b is odd.”

Our first proof was called a proof by cases or proof by exhaustion.

It was a little more obvious, but not as illuminating.



Tip: Anything with multiples or remainders lend themselves to

proof by cases.

Claim: For all n P Z, n3 ´ n is a multiple of 3.

Proof (by cases). Every n P Z can be written as 3n ` r for

r “ 0, 1, or 2 (r is the remainder of n divided by 3).

Case 1: r “ 0. Then. . .
Case 2: r “ 1. Then. . .
Case 3: r “ 2. Then. . .

(See Example 22.3 for details.)

Proof (by cases, but more direct). Note that

n3 ´ n “ npn ` 1qpn ´ 1q.
Then we will have our desired result by showing that one of n,
n ` 1, or n ´ 1 must be a multiple of three. Namely, every n P Z
can be written as 3n ` r for r “ 0, 1, or 2. But if n and n ` 1 are

not multiples of 3, then r must be 1, so that n ´ 1 is a multiple of

3. ˝
Note: Again, we cheated, this time by assuming our reader was

knowledgeable enough to understand second and fourth sentences.

Tip: Piecewise functions lend themselves to proof by cases.

Theorem (Triangle inequality). For real numbers x and y, we have

|x ` y| § |x| ` |y|.

Note: absolute value is secretly a piecewise function!

|x| “
#
x x • 0

´x x † 0.

Proof (by cases). Suppose, without loss of generality, that x • y.
Case 1: x, y • 0. If x, y • 0, then x ` y • 0. So

|x| “ x |y| “ y and |x ` y| “ x ` y “ |x| ` |y|.
Case 2: y † 0 and x • 0. (See Theorem 22.7)

Case 3: x, y † 0. (See Theorem 22.7)

Note: The triangle inequality is an important part of the definition

of a metric, i.e. a distance function. Absolute value is just one

metric on R.



Theorem. Let X, Y and Z be points in the plane. Then, all lie on

a line or all lie on a circle.

Proof. Denote by L the perpendicular bisector between X and Y ,

and by M the perpendicular bisector between Y and Z. If the

points all lie on a line, then they satisfy the conclusion of the

theorem and we are done. If the points are not on a line, then L
and M are not parallel and so must meet at a point W , say.

As W is on the perpendicular bisector L it is equidistant from X
and Y . Similarly it is equidistant from Y and Z. As the distance

from W to X and the distance from Y and Z are the same we

deduce that the three points lie on a circle centered at W of radius

equal to the distance from W to X. ˝158 CHAPTER 22 Techniques of proof II: Proof by cases
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Figure 22.1 Figure for proof about three points lying on a line or a circle

The importance of cases in extreme examples

The method of cases is important when we consider extreme examples. These will cause
us to deal with extreme cases. For example, in geometry if we take three random points
in the plane, then they do not necessarily form the vertices of a triangle. They could all
lie on a line. We have to watch for these extreme examples.

The following theorem (which is quite a nice theorem in its own right) and its proof
will exemplify this.

Theorem 22.8

Let X, Y and Z be points in the plane. Then, all lie on a line or all lie on a circle.

Proof. Denote by L the perpendicular bisector (see page 134) between X and Y , and by
M the perpendicular bisector between Y and Z. If the points all lie on a line, then they
satisfy the conclusion of the theorem and we are done. If the points are not on a line, then
L and M are not parallel and so must meet at a point W , say. See Figure 22.1.

As W is on the perpendicular bisector L it is equidistant from X and Y (i.e. the distance
from W to X is the same as W to Y ). Similarly it is equidistant from Y and Z. As the
distance from W to X and the distance from Y and Z are the same we deduce that the
three points lie on a circle centred at W of radius equal to the distance from W to X. �

Exercise 22.9

Apply the methods of Chapters 16 and 18 to this theorem and proof.

As you can see in the proof, an extreme case to be dealt with was that the points could
all be on a line. However, the proof fails when one considers another extreme case. What
happens if the three chosen points are all the same point – note that the theorem did not
say the points had to be distinct – or if two of the points are the same?

If X and Y are the same point, then it is impossible to define the perpendicular bisector.
Thus we could not have defined L. Is this is a problem? Is the theorem wrong?

Fortunately, the error in the proof is non-fatal and the statement of the theorem does
not need to change. After the first line of the proof about labelling the points X, Y and Z

we should add the following.

Theorem. Let X, Y and Z be points in the plane. Then, all lie on

a line or all lie on a circle.

Tip: “Or” statements lend themselves to proof by cases.

Tip: Extreme examples lend themselves to proof by cases.



You try:

Outline a proof by cases for each of the following statements.

1. The square of any integer is of the form 3k or 3k ` 1 for some

k P Z.

2. The cube of any integer is of the form 9k, 9k ` 1, or 9k ` 8
for some k P Z.

3. For all x, y P R, we have

|xy| “ |x||y| and
ˇ̌
|x| ´ |y|

ˇ̌
§ |x ´ y|.

4. For sets A and B, we have

A Y B “ pA X Bq Y pA ´ Bq Y pB ´ Aq.

Tip: Unions lend themselves to proof by cases

(since they’re secretly “or” statements).


