Proof by cases

Claim: For all integers n, $n^2 + 3n + 7$ is odd.

Proof (by cases). If $n \in \mathbb{Z}$, then either n is even or n is odd.

If n is even, then

n = 2k for some $k \in \mathbb{Z}$.

Thus

 $n^2 + 3n + 7 = (2k)^2 + 3(2k) + 7 = 2(2k^2 + 3k + 3) + 1.$ So since $2k^2 + 3k + 3 \in \mathbb{Z}$, we have $n^2 + 3n + 7$ is odd.

Similarly, if n is odd, then

n = 2k + 1 for some $k \in \mathbb{Z}$.

Thus

$$n^2 + 3n + 7 = (2k + 1)^2 + 3(2k + 1) + 7 = 2(2k^2 + 5k + 5) + 1.$$

So since $2k^2 + 5k + 5) \in \mathbb{Z}$, we have $n^2 + 3n + 7$ is odd. \Box

Proof by cases

Claim: For all integers n, $n^2 + 3n + 7$ is odd.

Proof (direct). First, we note that

$$n^{2} + 3n + 7 = n(n+3) + 7.$$

We have seen if a is even and b is odd, then a + b is odd. So one of n or n + 3 is even and the other is odd. Thus n(n + 3) is even; and hence n(n + 3) + 7 is odd.

Note: we kind of cheated by using previously formed machinery! We used the lemma,

"If a is even and b is odd, then a + b is odd."

Our first proof was called a proof by cases or proof by exhaustion. It was a little more obvious, but not as illuminating. **Tip:** Anything with multiples or remainders lend themselves to proof by cases.

Claim: For all $n \in \mathbb{Z}$, $n^3 - n$ is a multiple of 3.

Proof (by cases). Every $n \in \mathbb{Z}$ can be written as 3n + r for r = 0, 1, or 2 (r is the remainder of n divided by 3).

Proof (by cases, but more direct). Note that

$$n^{3} - n = n(n+1)(n-1).$$

Then we will have our desired result by showing that one of n, n+1, or n-1 must be a multiple of three. Namely, every $n \in \mathbb{Z}$ can be written as 3n + r for r = 0, 1, or 2. But if n and n+1 are not multiples of 3, then r must be 1, so that n-1 is a multiple of 3.

Note: Again, we cheated, this time by assuming our reader was knowledgeable enough to understand second and fourth sentences.

Tip: Piecewise functions lend themselves to proof by cases.

Theorem (Triangle inequality). For real numbers x and y, we have $|x + y| \leq |x| + |y|$.

Note: absolute value is secretly a piecewise function!

$$|x| = \begin{cases} x & x \ge 0\\ -x & x < 0. \end{cases}$$

Proof (by cases). Suppose, without loss of generality, that $x \ge y$. <u>Case 1:</u> $x, y \ge 0$. If $x, y \ge 0$, then $x + y \ge 0$. So

|x| = x |y| = y and |x + y| = x + y = |x| + |y|. Case 2: y < 0 and $x \ge 0$. (See Theorem 22.7)

<u>Case 3:</u> x, y < 0. (See Theorem 22.7)

Note: The triangle inequality is an important part of the definition of a metric, i.e. a distance function. Absolute value is just one metric on \mathbb{R} .

Theorem. Let X, Y and Z be points in the plane. Then, all lie on a line or all lie on a circle.

Proof. Denote by L the perpendicular bisector between X and Y, and by M the perpendicular bisector between Y and Z. If the points all lie on a line, then they satisfy the conclusion of the theorem and we are done. If the points are not on a line, then L and M are not parallel and so must meet at a point W, say. As W is on the perpendicular bisector L it is equidistant from X and Y. Similarly it is equidistant from Y and Z. As the distance from W to X and the distance from Y and Z are the same we deduce that the three points lie on a circle centered at W of radius equal to the distance from W to X.

Theorem. Let X, Y and Z be points in the plane. Then, all lie on a line or all lie on a circle.

Tip: "Or" statements lend themselves to proof by cases.

Tip: Extreme examples lend themselves to proof by cases.

You try:

Outline a proof by cases for each of the following statements.

- 1. The square of any integer is of the form 3k or 3k + 1 for some $k \in \mathbb{Z}$.
- 2. The cube of any integer is of the form 9k, 9k + 1, or 9k + 8 for some $k \in \mathbb{Z}$.
- 3. For all $x, y \in \mathbb{R}$, we have |xy| = |x||y| and $||x| - |y|| \le |x - y|$.
- 4. For sets A and B, we have $A \cup B = (A \cap B) \cup (A B) \cup (B A).$
- **Tip:** Unions lend themselves to proof by cases (since they're secretly "or" statements).