Worksheet



Proof (of Pythagoras’ Theorem). The proof can be shown using the two squares in
Figure 19.3. To draw the first square begin by drawing a general triangle with sides a and
b and then extend these edges by lengths b and a respectively. Then we can complete the
drawing to get the square on the left-hand side of Figure 19.3.

We can draw another square like the one on the right-hand side of the figure. From the
figure we can see that both squares have equal area and so we can conclude that

Area of left square = Area of right square
2+ (4 x Area of (a, b)-triangle) = a’>+ b+ (4 x Area of (a, b)-triangle)
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Figure 19.3 Proof of Pythagoras’ Theorem
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Proof by cases

Claim: For all integers n, n? + 3n + 7 is odd.

Proof (direct). First, we note that
n®+3n+7=n(n+3)+T7.
We have seen if a is even and b is odd, then a + b is odd. So one

of n or n + 3 is even and the other is odd. Thus n(n + 3) is even;
and hence n(n + 3) + 7 is odd. o

Note: we kind of cheated by using previously formed machinery!
We used the lemma,

“If a is even and b is odd, then a + b is odd.”

Our first proof was called a proof by cases or proof by exhaustion.
It was a little more obvious, but not as illuminating.



Tip: Anything with multiples or remainders lend themselves to
proof by cases.

Claim: ForallneZ, n3 —nis a multiple of 3.



Tip: Anything with multiples or remainders lend themselves to
proof by cases.

Claim: ForallneZ, n3 —nis a multiple of 3.

Proof (by cases). Every n € Z can be written as 3n + r for
r =0,1, or 2 (r is the remainder of n divided by 3).



Tip: Anything with multiples or remainders lend themselves to
proof by cases.

Claim: ForallneZ, n3 —nis a multiple of 3.

Proof (by cases). Every n € Z can be written as 3n + r for
r =0,1, or 2 (r is the remainder of n divided by 3).

Case 1: r =0. Then...
Case 2: r =1. Then...
Case 3: r = 2. Then...
(See Example 22.3 for details.)



Tip: Anything with multiples or remainders lend themselves to
proof by cases.

Claim: ForallneZ, n3 —nis a multiple of 3.

Proof (by cases). Every n € Z can be written as 3n + r for
r =0,1, or 2 (r is the remainder of n divided by 3).

Case 1: r = 0. Then...

Case 2: r = 1. Then...

Case 3: = 2. Then...

(See Example 22.3 for details.)
Proof (by cases, but more direct). Note that
nd—n=nn+1)(n-1).

Then we will have our desired result by showing that one of n,
n + 1, or n — 1 must be a multiple of three.



Tip: Anything with multiples or remainders lend themselves to
proof by cases.

Claim: ForallneZ, n3 —nis a multiple of 3.

Proof (by cases). Every n € Z can be written as 3n + r for
r =0,1, or 2 (r is the remainder of n divided by 3).

Case 1: r =0. Then...
Case 2: r =1. Then...
Case 3: r = 2. Then...
(See Example 22.3 for details.)

Proof (by cases, but more direct). Note that
nd—n=nn+1)(n-1).
Then we will have our desired result by showing that one of n,

n+ 1, or n — 1 must be a multiple of three. Namely, every n e Z
can be written as 3n+r for r =0, 1, or 2.
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Claim: ForallneZ, n3 —nis a multiple of 3.

Proof (by cases). Every n € Z can be written as 3n + r for
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Tip: Anything with multiples or remainders lend themselves to
proof by cases.

Claim: ForallneZ, n3 —nis a multiple of 3.

Proof (by cases). Every n € Z can be written as 3n + r for
r =0,1, or 2 (r is the remainder of n divided by 3).

Case 1: 7 =0. Then...
Case 2: r = 1. Then...
Case 3: = 2. Then...

(See Example 22.3 for details.)
Proof (by cases, but more direct). Note that

nd—n=nn+1)(n-1).

Then we will have our desired result by showing that one of n,
n + 1, or n — 1 must be a multiple of three. Namely, every n e Z
can be written as 3n 4+ r forr =0, 1, or 2. But if n and n + 1 are
not multiples of 3, then » must be 1, so that n — 1 is a multiple of
3. m]
Note: Again, we cheated, this time by assuming our reader was
knowledgeable enough to understand second and fourth sentences.
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Tip: Piecewise functions lend themselves to proof by cases.

Theorem (Triangle inequality). For real numbers x and y, we have
=+ y| <[] + [yl

Note: absolute value is secretly a piecewise function!

T x>0
|z| =

—x x<0.

Proof (by cases). Suppose, without loss of generality, that = > y.
Casel: z,y =2 0. Ifz,y=0,thenx+y>0. So

[z =2 Jyl=y and [z+yl=2+y=|z[+]yl
Case 2: y < 0 and z = 0. (See Theorem 22.7)

Case 3: z,y < 0. (See Theorem 22.7)
Note: The triangle inequality is an important part of the definition

of a metric, i.e. a distance function. Absolute value is just one
metric on R.
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Theorem. Let X, Y and Z be points in the plane. Then, all lie on
a line or all lie on a circle.

Proof. Denote by L the perpendicular bisector between X and Y,
and by M the perpendicular bisector between Y and Z. If the
points all lie on a line, then they satisfy the conclusion of the
theorem and we are done. If the points are not on a line, then L
and M are not parallel and so must meet at a point W, say.

As W is on the perpendicular bisector L it is equidistant from X
and Y. Similarly it is equidistant from Y and Z. As the distance
from W to X and the distance from Y and Z are the same we
deduce that the three points lie on a circle centered at W of radius
equal to the distance from W to X. o




Theorem. Let X, Y and Z be points in the plane. Then, all lie on
a line or all lie on a circle.

Tip: “Or" statements lend themselves to proof by cases.

Tip: Extreme examples lend themselves to proof by cases.



You try:

Outline a proof by cases for each of the following statements.

1. The square of any integer is of the form 3k or 3k + 1 for some
keZ.

2. The cube of any integer is of the form 9k, 9k + 1, or 9k + 8
for some k € Z.

3. For all z,y € R, we have
lzyl = |zllyl  and |z —|yl| < |z -yl

4. For sets A and B, we have
AuB=(AnB)u(A—B)u(B-A).



You try:

Outline a proof by cases for each of the following statements.

1. The square of any integer is of the form 3k or 3k + 1 for some
keZ.

2. The cube of any integer is of the form 9k, 9k + 1, or 9k + 8
for some k € Z.

3. For all z,y € R, we have

lzy| = |2|ly| and |z = |yl| < |& —yl.

4. For sets A and B, we have
AuB=(AnB)u(A—B)u(B-A).

Tip: Unions lend themselves to proof by cases
(since they're secretly “or” statements).



