
Some information about integers

Let n, d P Z. We say d is a divisor of n if n{d P Z (i.e. there exists
some k P Z for which n “ kd).

We say p P Z is prime if for all
a, b P Z, we have

if p is a divisor of ab, then p is a divisor of a or b.

“p prime ” @a, b P Z pab{p P Zñ pa{p P Z_ b{p P Zqq”

This is equivalent to the only divisors of p being ˘p, ˘1.
Ex. The integer divisors of 6 are 1, 2, 3, 6,´1,´2,´3, and ´6. So
6 is not prime.
Ex. 5 is prime since its only divisors are 1, 5,´1, and ´5.

We say a is rational if there exists a, b P Z with b ‰ 0 such that
n “ a{p. We say a{b is in lowest terms if a and b don’t have any
prime divisors in common.
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Techniques of proof I: Direct method

Theorem
Suppose that a P Q and a2 P Z. Then a P Z.

Unpacking the problem:
Being rational means there are m,n P Z with n ‰ 0 such that
a “ m{n. We might as well assume m{n is in lowest terms, so
that m and n have no common prime divisors.
Being integral means that in lowest form, m “ ˘1.

Plan:
Start with “Let a be a rational number satisfying a2 P Z.”
Goal: Conclude a P Z.
To try: Let m{n P Z such that a “ m{n and m{n is in lowest
form. Compute a2 and use a2 P Z.

Proof. Let a be a rational number satisfying a2 P Z. Since a P Q,
there exists m,n P Z (with n ‰ 0) such that a “ m{n. Assume,
without loss of generality, that m{n is in lowest form (i.e. m and n
have no common prime factors). Thus

a2 “ pm{nq2 “ m2{n2.

But since any prime factor of m2 would also be a prime factor of
m (and similarly for n2 and n), we have m2{n2 is in lowest terms.
So since m2{n2 P Z, we have n2 “ 1. So n “ ˘1. And thus
a “ m{n P Z, as desired. ˝
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Techniques of proof I: Direct method

Theorem
Let x and y be positive real numbers. If y ą x, then x`1

y`1 ą
x
y .

Plan:
Start with “Let x and y be positive real numbers with y ą x.”
Goal: Conclude x`1

y`1 ą
x
y .

To try: Start with x`1
y`1 ą

x
y and manipulate until I see how I can

get there (scratch work). Best if steps are “if and only if”.

Proof. Since y ą x, we have

px` 1qy “ xy ` y ą xy ` x “ py ` 1qx.

Since y ą 0, we have ypy ` 1q ą 0. Thus, dividing both sides by
ypy ` 1q gives

x` 1

y ` 1
ą

x

y
,

as desired. ˝

Warning! The book’s proofs are occasionally more
like first drafts, since they use a lot of symbols, and
not enough words. Observe the difference between the
“proof” of Thm 20.4 and this proof.
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Proving “if and only if”
Recall that “A if and only if B” is equivalent to
pAñ Bq ^ pB ñ Aq.

We also have

ppAô Bq ^ pB ô Cqq ñ pAô Cq

(you can check the truth table). Namely, a string of equivalencies
proves and equivalency.

So to prove “A if and only if B”, you can either. . .

1. prove Añ B and B ñ A (or any of the logically equivalent
implications); or

2. find a string of equivalent statements C1, C2, . . . , C` such that

Aô C1 ô C2 ô ¨ ¨ ¨ ô C` ô B.

(We’ll see examples of both of these.)

Similarly, if you want to show two numbers a and b are equal, you
can either. . .

1. prove a ď b and b ď a; or

2. find a string of equivalent values c1, c2, . . . , c` such that

a “ c1 “ c2 “ ¨ ¨ ¨ “ c` “ b.
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Proving subsets

Defn. Let X and Y be sets. We say X is a subset of Y means

for all x P X, we have x P Y .

This is

@x P Xpx P Y q, or, equivalently, x P X ñ x P Y .

To prove X Ď Y . . .
Start with “let x P X.” Goal: conclude x P Y .

Theorem
Let X and Y be sets. Then X X Y Ď X Y Y .

Proof.
Let x P X X Y . Then, by the definition of X X Y , we have x P X
and x P Y . In particular, x P X, so that px P Xq _ px P Y q holds.
Thus x P X Y Y . Therefore X X Y Ď X Y Y , as desired.
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and x P Y . In particular, x P X, so that px P Xq _ px P Y q holds.
Thus x P X Y Y . Therefore X X Y Ď X Y Y , as desired.
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Proving two sets are equal
Defn. Let X and Y be sets. We say X is equal to Y means

x P X if and only if x P Y .

This is

x P X ô x P Y .

Theorem
Let X,Y , and Z be sets. Then

X X pY Y Zq “ pX X Y q Y pX X Zq.

Proof.
Let a P X X pY Y Zq. This means

a P X and pa P Y q _ pa P Zq.

We have shown that this is (logically) equivalent to

a P X ^ a P Y or a P X ^ a P Z.

By definition, this is equivalent to a P pX XY qY pX XZq. In other
words, a P X X pY Y Zq if and only if a P pX X Y q Y pX X Zq. So
X X pY Y Zq “ pX X Y q Y pX X Zq, as desired.
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Proving two sets are equal

Theorem
Let X and Y be sets. Then X “ Y if and only if X Ď Y and
X Ě Y .

Proof 1 (Using definitions and logical equivalencies).

Suppose X “ Y . This means
x P X if and only if x P Y .

But, by “if and only if”, we mean

x P X ñ x P Y and x P X ð x P Y .

By the definition of Ď, this ie equivalent to

X Ď Y and X Ě Y ,

as desired.
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Proving two sets are equal

Theorem
Let X and Y be sets. Then X “ Y if and only if X Ď Y and
X Ě Y .

Proof 2 (Prove one direction at a time).

Suppose X “ Y . This means
x P X if and only if x P Y .

Thus, if x P X, then x P Y , implying X Ď Y . Similarly, if x P Y ,

then x P X, implying X Ě Y .

Conversely, suppose that X Ď Y and X Ě Y . Then if x P X, we
have x P Y ; and if x P Y , then x P X. So x P X if and only if
x P Y . Namely, X “ Y .

From now on, you can use this theorem to prove two sets are equal!
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Theorem
Let X and Y be sets. Then X “ Y if and only if X Ď Y and
X Ě Y .

For each n P Zą0, pick a subset An Ď Z. Define
8
č

n“1

An “ A1 XA2 X ¨ ¨ ¨ “ tx P Z | x P An for all n P Zą0u.

Ex. Prove that if An “ t1, 2, . . . , nu, then
8
č

n“1

An “ t1u.

(We’ll show that
Ş8

n“1An Ď t1u and
Ş8

n“1An Ě t1u.)
Proof. First, let x P

Ş8
n“1An. Then since x is in every An, then in

particular, x P A1 “ t1u. So
Ş8

n“1An Ď t1u.

Conversely, let x P t1u, so that x “ 1. Thus x P t1, . . . , nu “ An

for all n P Zą0. Therefore x P
Ş8

n“1An. So
Ş8

n“1An Ě t1u.

Therefore
Ş8

n“1An “ t1u, as desired.
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Summary of strategies

To prove “A if and only if B”, you can either. . .

1. prove Añ B and B ñ A (or any of the logically equivalent
implications); or

2. find a string of equivalent statements C1, C2, . . . , C` such that

Aô C1 ô C2 ô ¨ ¨ ¨ ô C` ô B.

To prove two numbers a and b are equal, you can either. . .

1. prove a ď b and b ď a; or

2. find a string of equivalent values c1, c2, . . . , c` such that

a “ c1 “ c2 “ ¨ ¨ ¨ “ c` “ b.

To prove two sets X and Y are equal, you can either. . .

1. prove X Ď Y and Y Ď X; or

2. find a string sets Z1, Z2, . . . , Z` such that

X “ Z1 “ Z2 “ ¨ ¨ ¨ “ Z` “ Y.



Common mistakes

1. Assuming your desired conclusion.

2. Taking square roots badly.

3. Dividing by zero.

4. Forgetting things might be negative.

5. Using examples to deduce “for all” statements.



Error 1: Assuming your desired conclusion.

Claim: ´1 “ 1

Non-proof.

If ´1 “ 1, then

p´1q2 “ p1q2, so that 1 “ 1,

which is true.

What went wrong:
We proved that

“´1 “ 1ñ 1 “ 1”,
which is true (F ñ T is true)!

We did not show that ´1 “ 1.
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Claim: If a and b are real numbers, then a2 ` b2 ě 2ab.

Non-proof.

We have

a2 ` b2 ě 2abñ a2 ´ 2ab` b2 ě 0ñ pa´ bq2 ě 0.

The last inequality is true, since the square of a number is always
non-negative. So a2 ` b2 ě 2ab.

What went wrong:
We wanted to show

a, b P R ñ a2 ` b2 ě 2ab.

What we actually showed was

pa, b P Rq ^ pa2 ` b2 ě 2abq ñ pa´ bq2 ě 0.

Fortunately, we can fix this!
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Error 1: Assuming your desired conclusion.

As a problem-solving strategy, it’s effective to assume the
thing you want to show, and work backwards.

This is your scratch work.

But when you actually go to write the proof, you have to make
sure you can work forwards!



Error 2: Taking square roots badly.

Our convention is to fix
?
x to mean the positive root.

Namely, if y2 “ x, then y “ ˘
?
x.

Claim. The solutions to
?
x` 3 “ x` 1 are given by x “ 1 and

x “ ´2.

Non-proof.

If
?
x` 3 “ x` 1, then squaring both sides gives

x` 3 “ px` 1q2 “ x2 ` 2x` 1.

So

0 “ x2 ` x´ 2 “ px´ 1qpx` 2q.

So x “ 1 or x “ ´2.

What went wrong:
When we squared both sides, we threw in extra solutions!
We actually found solutions to

?
x` 3 “ x` 1 and ´

?
x` 3 “ x` 1.
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Error 3: Dividing by zero.

Claim. 1 “ 2.

Non-proof.

Let a “ b be real numbers. Then, multiplying both sides by a, we
get

a2 “ ab.

Subtracting b2 from both sides gives

ab´ b2 “ a2 ´ b2, so that bpa´ bq “ pa` bqpa´ bq.

Cancelling pa´ bq, we get

b “ a` b.

Therefore, since a “ b, we can substitute back in to get

b “ a` b “ b` b “ 2b. So, dividing by b gives 1 “ 2,

as desired.
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Error 4: Forgetting things might be negative

Claim. ´1 ą 1.

Non-proof.

Let x “ ´1. Then x ă 1. So, since a ą b implies 1{a ă 1{b, we
get

1{x ą 1{1 “ 1.

But since 1{x “ 1{ ´ 1 “ ´1, we have ´1 ą 1.

Lesson: When doing algebraic manipulation, be careful not to
assume things are positive (unless that’s part of the assumptions).
In particular, it’s possible for ´x to be positive (if x was negative).
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Error 5: Using examples badly

See link to “Patterns that eventually fail” on course website.



Claim: Draw n unique points on the circle, such that when you connect
them with line segments, no more than two lines cross at any point.
Then this will divide the circle into 2n´1 regions.

Non-proof. Let’s do some examples:

n “ 1:

1 region

n “ 2:

2 regions

n “ 3:

4 regions

n “ 4:

8 regions

n “ 5:

16 regions

n “ 6:

31 regions!

Since this works for n “ 1, 2, 3, 4, and 5, it must be true! ˝
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