
Quantifiers – “For all” @ and “There exists” D

A quantifier is a phrase that tells you how many objects you’re
talking about. Good for pinning down conditional statements.

§ For every real number x P R, we have x2 is non-negative.

§ For x “ ´1 and 1, the function fpxq “ x4 ´ 2x2 is minimal.

§ The equation x2 ` 1 “ 0 has no real solutions.

§ There is at least one real solution to x5 ` 2x´ 1 “ 0.

The phrase “for all”, denoted @, is a universal quantifier.
LATEXcode: \forall

The phrase “there exists”, denoted D is an existential quantifier.
LATEXcode: \exists
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Note that “for all” is really strong, and implies “there exists”.
Examples:

1. For all x P R, we have x2 ě 0.

2. For all polynomials ppxq of odd degree, ppxq “ 0 has at least
one real solution.

3. For all finite subsets S Ă R, S has a maximal element.

On the other end “there exists” is really weak, and doesn’t even
always provide an example.

1. There exists x P R such that x2 “ 1.

2. For all polynomials ppxq of odd degree, there exists x P R
such that ppxq “ 0.

3. For all finite subsets S Ă R, there exists s P S such that s ě t
for all t P S.
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Combining quantifiers: order matters!

Example:
For all x P Z, there exists y P Z such that y ą x.

In plain language, this says
“Given any integer x, you can always find a bigger integer y.”

True!
Example:

There exists y P Z such that for all x P Z, y ą x.
In plain language, this says

“There’s some integer y that’s bigger than all other integers.”
False!

Exception: The order of consecutive @’s are interchangeable, and
the order of consecutive D’s are interchangeable.
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Notational format:
quantifiers(conditional statement)

For all x P R, we have x2 ě 0. @x P Rpx2 ě 0q

There exists x P R such that x2 “ 1. Dx P Rpx2 “ 1q

For all x P Z, there exists y P Z
such that y ą x.

@x P Z, Dy P Zpy ą xq

There exists y P Z such that for
all y P R, we have x2 ą y.

Dy P R,@x P Rpx2 ą yq

You try:
Put each of the following into words, and decide whether it’s true or false.

(i) Dx P Rpx2 “ xq, (ii) Dx P R,@y P Rpx2 “ yq,
(iii) @x P R, Dy P Rpx2 “ yq

Put each of the following into symbols.
(iv) The function fpxq “ x2 ´ 2 has a minimum value.
(v) Every animal eats some kind of food.
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Note: “for all” statements can be rewritten as implications.
Examples:
“For all x P R, we have x2 ě 0.” @x P Rpx2 ě 0q

is equivalent to

“If x P R then x2 ě 0.” x P Rñ x2 ě 0

“For all finite subsets S Ă R, S has a maximal element.”

is equivalent to

“If S is a finite subset of R, then S has a maximal element.”

Warning: It can be easier to stack quantifiers than to stack
implications and D’s.
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Negating quantifiers
To negate “quantifiers(conditional statement)”,

1. change all @’s to D, and vice versa;

2. negate the conditional statement.

Examples:

 pDx P Rpx2 “ xqq is equiv. to @x P Rpx2 ‰ xq

In other words, the negation of

“x2 “ x for some real number x”
is

“x2 ‰ x for all real x”.

Examples:

 pDx P R,@y P Rpx2 “ yqq is equiv. to @x P R, Dy P Rpx2 ‰ yq

In other words, the negation of

“there’s some real x for which y2 “ x for all real y”
is

“for every real x, there’s a real y that’s not equal to x2”.
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Proof techniques
Implications: Recall Añ B can only be false if A is true and B is
false. So to show Añ B, start by assuming A.
Contrapositive: Añ B is equivalent to  B ñ  A. To show
 B ñ  A, start by assuming B.

To show for all, start with a “generic” example.

Example: For every negative real x, we have x2 ą x.
In symbols, this is

@x P Ră0px
2 ą xq.

To prove “@x P Ră0px
2 ą xq”. . .

Start with: “Let x be a negative real number.”
Goal: Conclude x2 ą x.

Alternatively, @x P Ră0px
2 ą xq is equivalent to

x P Ră0 ñ x2 ą x.
To prove “x P Ră0 ñ x2 ą x”. . .
Start with: “Assume x is a negative real number.”
Goal: Conclude x2 ą x.

Or, we can use the contrapositive!
To prove “x2 ­ą xñ x R Ră0”. . .
Start with: “Assume x2 ­ą x.”
Goal: Conclude x R Ră0.
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Proof techniques
To show there exists directly, give an example.

Example: There exists x P R such that x2 “ x.
In symbols, this is

Dx P Rpx2 “ xq.

To prove “Dx P Rpx2 “ xq”. . .
Find an example: Fine one solution to x2 “ x.

Alternatively, you can prove the negation is false.

We have “ pDx P Rpx2 “ xqq” is equivalent to @x P Rpx2 ‰ x.
Go back to techniques for proving “for all”. . .

Yikes! It’s usually easier to find one example than to deal with all

possible examples at once. However, to show a “there exists” is false,

move to proving the negation is true.
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Go back to techniques for proving “for all”. . .

Yikes! It’s usually easier to find one example than to deal with all

possible examples at once. However, to show a “there exists” is false,

move to proving the negation is true.
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Proving things false

If A is a statement, then

A is false if and only if  A is true.

Example: Show the following is false. . .

“For all x P R, we have x2 ě x.”

In symbols, this is

@x P Rpx2 ě xq.

The negation of this is

Dx P Rpx2 ğ xq.

To show “Dx P Rpx2 ğ xq” is true, give an example.

Proof. We have the statement is false since for x “ 1, we have
x2 “ 12 “ 1 ğ 1 “ x. ˝
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Start with: “Let x be a real number.”
Goal: Conclude x2 ` 1 ‰ 0.

Proof. Let x be a real number.
Then x2 ě 0. So x2 ` 1 ě 1 ą 0. Thus x2 ‰ 0.
Therefore there does not exist a real solution to x2 ` 1 “ 0. ˝
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Back to combining quantifiers examples. . .

Example:
For all x P Z, there exists y P Z such that y ą x.

In symbols, this is

@x P Z, Dy P Zpy ą xq.

Plan:

˚ To prove “@x P Z, Dy P Zpy ą xq”. . .
Start with: “Let x be an integer.”
Goal: Conclude Dy P Zpy ą xq.

˚ To prove “Dy P Zpy ą xq”. . .
Find example: Find a y P Z that’s bigger than x.

Proof.
Let x be an integer.
Then y “ x` 1 is also an integer and y ą x. ˝
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You try:

For each of the following,

(a) Rewrite the statement in symbols.

(b) Negate the statement.

(c) Rewrite the negation in words.

(d) Decide whether you think the statement is true or false.

(e) Devise a plan to prove or disprove the statement.

1. For all x P Z, we have x2 ` 1 is odd.

2. For all x P Rą0, there exists an n P Zą0 such that 1{n ă x.

3. For all n P Zą0, we have n
?
n! ă n`1

a

pn` 1q!

4. There exists n P Zą0 such that npn` 1q is odd.




