A quantifier is a phrase that tells you how many objects you're talking about. Good for pinning down conditional statements.

• For every real number $x \in \mathbb{R}$, we have x^2 is non-negative.

- For every real number $x \in \mathbb{R}$, we have x^2 is non-negative.
- For x = -1 and 1, the function $f(x) = x^4 2x^2$ is minimal.

- For every real number $x \in \mathbb{R}$, we have x^2 is non-negative.
- For x = -1 and 1, the function $f(x) = x^4 2x^2$ is minimal.
- The equation $x^2 + 1 = 0$ has <u>no</u> real solutions.

- For every real number $x \in \mathbb{R}$, we have x^2 is non-negative.
- For x = -1 and 1, the function $f(x) = x^4 2x^2$ is minimal.
- The equation $x^2 + 1 = 0$ has <u>no</u> real solutions.
- There is at least one real solution to $x^5 + 2x 1 = 0$.

A quantifier is a phrase that tells you how many objects you're talking about. Good for pinning down conditional statements.

- For every real number $x \in \mathbb{R}$, we have x^2 is non-negative.
- For x = -1 and 1, the function $f(x) = x^4 2x^2$ is minimal.
- The equation $x^2 + 1 = 0$ has <u>no</u> real solutions.
- There is at least one real solution to $x^5 + 2x 1 = 0$.

The phrase "for all", denoted $\forall,$ is a universal quantifier. $\mbox{\sc brack} \label{eq:phi} \end{tabular} \begin{tabular}{ll} \label{eq:phi} \end{tabular} Text{\sc brack} \end{tabular} \end{tabular}$

A quantifier is a phrase that tells you how many objects you're talking about. Good for pinning down conditional statements.

- For every real number $x \in \mathbb{R}$, we have x^2 is non-negative.
- For x = -1 and 1, the function $f(x) = x^4 2x^2$ is minimal.
- The equation $x^2 + 1 = 0$ has <u>no</u> real solutions.
- There is at least one real solution to $x^5 + 2x 1 = 0$.

The phrase "for all", denoted $\forall,$ is a universal quantifier. $\mbox{\sc brack} \label{eq:phi} \end{tabular} \begin{tabular}{ll} \label{eq:phi} \end{tabular} \end{tabular} \end{tabular}$

The phrase "there exists", denoted \exists is an existential quantifier. $PT_EXcode: \exists$

A quantifier is a phrase that tells you how many objects you're talking about. Good for pinning down conditional statements.

- For every real number $x \in \mathbb{R}$, we have x^2 is non-negative.
- For x = -1 and 1, the function $f(x) = x^4 2x^2$ is minimal.
- The equation $x^2 + 1 = 0$ has <u>no</u> real solutions.
- There is at least one real solution to $x^5 + 2x 1 = 0$.

The phrase "for all", denoted $\forall,$ is a universal quantifier. $\mbox{\sc brack} \label{eq:phi} \end{tabular} \begin{tabular}{ll} \label{eq:phi} \end{tabular} \end{tabular} \end{tabular}$

The phrase "there exists", denoted \exists is an existential quantifier. $PT_EXcode: \exists$ Note that "for all" is *really* strong, and implies "there exists". Examples:

- 1. For all $x \in \mathbb{R}$, we have $x^2 \ge 0$.
- 2. For all polynomials p(x) of odd degree, p(x) = 0 has at least one real solution.
- 3. For all finite subsets $S \subset \mathbb{R}$, S has a maximal element.

Note that "for all" is *really* strong, and implies "there exists". Examples:

- 1. For all $x \in \mathbb{R}$, we have $x^2 \ge 0$.
- 2. For all polynomials p(x) of odd degree, p(x) = 0 has at least one real solution.
- 3. For all finite subsets $S \subset \mathbb{R}$, S has a maximal element.

On the other end "there exists" is really weak, and doesn't even always provide an example.

- 1. There exists $x \in \mathbb{R}$ such that $x^2 = 1$.
- 2. For all polynomials p(x) of odd degree, there exists $x \in \mathbb{R}$ such that p(x) = 0.
- For all finite subsets S ⊂ R, there exists s ∈ S such that s ≥ t for all t ∈ S.

Example:

For all $x \in \mathbb{Z}$, there exists $y \in \mathbb{Z}$ such that y > x.

Example:

For all $x \in \mathbb{Z}$, there exists $y \in \mathbb{Z}$ such that y > x.

In plain language, this says "Given any integer x, you can always find a bigger integer y." True!

Example:

There exists $y \in \mathbb{Z}$ such that for all $x \in \mathbb{Z}$, y > x.

Example:

For all $x \in \mathbb{Z}$, there exists $y \in \mathbb{Z}$ such that y > x.

In plain language, this says

"Given any integer x, you can always find a bigger integer y."

True!

Example:

There exists $y \in \mathbb{Z}$ such that for all $x \in \mathbb{Z}$, y > x. In plain language, this says "There's some integer y that's bigger than all other integers."

False!

Example:

For all $x \in \mathbb{Z}$, there exists $y \in \mathbb{Z}$ such that y > x.

In plain language, this says

"Given any integer x, you can always find a bigger integer y."

True!

Example:

There exists $y \in \mathbb{Z}$ such that for all $x \in \mathbb{Z}$, y > x. In plain language, this says "There's some integer y that's bigger than all other integers." False!

Exception: The order of consecutive \forall 's are interchangeable, and the order of consecutive \exists 's are interchangeable.

quantifiers(conditional statement)

For all $x \in \mathbb{R}$, we have $x^2 \ge 0$.

$$\forall x \in \mathbb{R} (x^2 \ge 0)$$

For all $x \in \mathbb{R}$, we have $x^2 \ge 0$.	$\forall x \in \mathbb{R} (x^2 \ge 0)$
There exists $x \in \mathbb{R}$ such that $x^2 = 1$.	$\exists x \in \mathbb{R}(x^2 = 1)$

For all $x \in \mathbb{R}$, we have $x^2 \ge 0$.	$\forall x \in \mathbb{R} (x^2 \ge 0)$
There exists $x \in \mathbb{R}$ such that $x^2 = 1$.	$\exists x \in \mathbb{R}(x^2 = 1)$
For all $x \in \mathbb{Z}$, there exists $y \in \mathbb{Z}$ such that $y > x$.	$\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}(y > x)$

For all $x \in \mathbb{R}$, we have $x^2 \ge 0$.	$\forall x \in \mathbb{R} (x^2 \ge 0)$
There exists $x \in \mathbb{R}$ such that $x^2 = 1$.	$\exists x \in \mathbb{R}(x^2 = 1)$
For all $x \in \mathbb{Z}$, there exists $y \in \mathbb{Z}$ such that $y > x$.	$\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}(y > x)$
There exists $y \in \mathbb{Z}$ such that for all $y \in \mathbb{R}$, we have $x^2 > y$.	$\exists y \in \mathbb{R}, \forall x \in \mathbb{R}(x^2 > y)$

quantifiers(conditional statement)

For all $x \in \mathbb{R}$, we have $x^2 \ge 0$.	$\forall x \in \mathbb{R} (x^2 \ge 0)$
There exists $x \in \mathbb{R}$ such that $x^2 = 1$.	$\exists x \in \mathbb{R}(x^2 = 1)$
For all $x \in \mathbb{Z}$, there exists $y \in \mathbb{Z}$ such that $y > x$.	$\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}(y > x)$
There exists $y \in \mathbb{Z}$ such that for all $y \in \mathbb{R}$, we have $x^2 > y$.	$\exists y \in \mathbb{R}, \forall x \in \mathbb{R}(x^2 > y)$

You try:

Put each of the following into words, and decide whether it's true or false.

(i)
$$\exists x \in \mathbb{R}(x^2 = x)$$
, (ii) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}(x^2 = y)$,
(iii) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}(x^2 = y)$

Put each of the following into symbols. (iv) The function $f(x) = x^2 - 2$ has a minimum value. (v) Every animal eats some kind of food. Note: "for all" statements can be rewritten as implications. Examples:

"For all $x \in \mathbb{R}$, we have $x^2 \ge 0$." $\forall x \in \mathbb{R} (x^2 \ge 0)$ is equivalent to $x \in \mathbb{R} \Rightarrow x^2 \ge 0$

"If $x \in \mathbb{R}$ then $x^2 \ge 0$."

Note: "for all" statements can be rewritten as implications. Examples: "For all $x \in \mathbb{R}$, we have $x^2 \ge 0$." $\forall x \in \mathbb{R}(x^2 \ge 0)$ is equivalent to "If $x \in \mathbb{R}$ then $x^2 \ge 0$." $x \in \mathbb{R} \Rightarrow x^2 \ge 0$ "For all finite subsets $S \subset \mathbb{R}$, S has a maximal element." is equivalent to "If S is a finite subset of \mathbb{R} , then S has a maximal element."

Note: "for all" statements can be rewritten as implications. Examples: "For all $x \in \mathbb{R}$, we have $x^2 \ge 0$." $\forall x \in \mathbb{R}(x^2 \ge 0)$ is equivalent to "If $x \in \mathbb{R}$ then $x^2 \ge 0$." $x \in \mathbb{R} \Rightarrow x^2 \ge 0$ "For all finite subsets $S \subset \mathbb{R}$, S has a maximal element." is equivalent to "If S is a finite subset of \mathbb{R} , then S has a maximal element." Warning: It can be easier to stack quantifiers than to stack implications and \exists 's.

To negate "quantifiers(conditional statement)",

- 1. change all \forall 's to \exists , and vice versa;
- 2. negate the conditional statement.

To negate "quantifiers(conditional statement)",

- 1. change all \forall 's to \exists , and vice versa;
- 2. negate the conditional statement.

Examples:

$$\neg(\exists x \in \mathbb{R}(x^2 = x))$$
 is equiv. to $\forall x \in \mathbb{R}(x^2 \neq x)$

To negate "quantifiers(conditional statement)",

- 1. change all \forall 's to \exists , and vice versa;
- 2. negate the conditional statement.

Examples:

 $\neg(\exists x \in \mathbb{R}(x^2 = x)) \quad \text{is equiv. to} \quad \forall x \in \mathbb{R}(x^2 \neq x)$ In other words, the negation of

" $x^2 = x$ for some real number x"

is

" $x^2 \neq x$ for all real x".

To negate "quantifiers(conditional statement)",

- 1. change all \forall 's to \exists , and vice versa;
- 2. negate the conditional statement.

Examples:

 $\neg(\exists x \in \mathbb{R}(x^2 = x))$ is equiv. to $\forall x \in \mathbb{R}(x^2 \neq x)$

In other words, the negation of

" $x^2 = x$ for some real number x"

is

" $x^2 \neq x$ for all real x".

Examples:

 $\neg(\exists x \in \mathbb{R}, \forall y \in \mathbb{R}(x^2 = y)) \quad \text{is equiv. to} \quad \forall x \in \mathbb{R}, \exists y \in \mathbb{R}(x^2 \neq y)$

To negate "quantifiers(conditional statement)",

- 1. change all \forall 's to \exists , and vice versa;
- 2. negate the conditional statement.

Examples:

 $\neg (\exists x \in \mathbb{R}(x^2 = x))$ is equiv. to $\forall x \in \mathbb{R}(x^2 \neq x)$

In other words, the negation of

" $x^2 = x$ for some real number x"

is

" $x^2 \neq x$ for all real x".

Examples:

 $\neg(\exists x \in \mathbb{R}, \forall y \in \mathbb{R}(x^2 = y)) \quad \text{is equiv. to} \quad \forall x \in \mathbb{R}, \exists y \in \mathbb{R}(x^2 \neq y) \\ \text{In other words, the negation of}$

"there's some real x for which $y^2=x$ for all real y " is

"for every real x, there's a real y that's not equal to $x^{2"}$.

Implications: Recall $A \Rightarrow B$ can only be false if A is true and B is false. So to show $A \Rightarrow B$, start by assuming A. Contrapositive: $A \Rightarrow B$ is equivalent to $\neg B \Rightarrow \neg A$. To show $\neg B \Rightarrow \neg A$, start by assuming B.

To show for all, start with a "generic" example.

Implications: Recall $A \Rightarrow B$ can only be false if A is true and B is false. So to show $A \Rightarrow B$, start by assuming A. Contrapositive: $A \Rightarrow B$ is equivalent to $\neg B \Rightarrow \neg A$. To show $\neg B \Rightarrow \neg A$, start by assuming B.

To show for all, start with a "generic" example.

Example: For every negative real x, we have $x^2 > x$.

Implications: Recall $A \Rightarrow B$ can only be false if A is true and B is false. So to show $A \Rightarrow B$, start by assuming A. Contrapositive: $A \Rightarrow B$ is equivalent to $\neg B \Rightarrow \neg A$. To show $\neg B \Rightarrow \neg A$, start by assuming B.

To show for all, start with a "generic" example.

Example: For every negative real x, we have $x^2 > x$. In symbols, this is

 $\forall x \in \mathbb{R}_{<0} (x^2 > x).$

Implications: Recall $A \Rightarrow B$ can only be false if A is true and B is false. So to show $A \Rightarrow B$, start by assuming A. Contrapositive: $A \Rightarrow B$ is equivalent to $\neg B \Rightarrow \neg A$. To show $\neg B \Rightarrow \neg A$, start by assuming B.

To show for all, start with a "generic" example.

Example: For every negative real x, we have $x^2 > x$. In symbols, this is

 $\forall x \in \mathbb{R}_{<0} (x^2 > x).$

To prove " $\forall x \in \mathbb{R}_{<0}(x^2 > x)$ "... Start with: "Let x be a negative real number." Goal: Conclude $x^2 > x$.

Implications: Recall $A \Rightarrow B$ can only be false if A is true and B is false. So to show $A \Rightarrow B$, start by assuming A. Contrapositive: $A \Rightarrow B$ is equivalent to $\neg B \Rightarrow \neg A$. To show $\neg B \Rightarrow \neg A$, start by assuming B.

To show for all, start with a "generic" example.

Example: For every negative real x, we have $x^2 > x$. In symbols, this is

 $\forall x \in \mathbb{R}_{<0} (x^2 > x).$

To prove " $\forall x \in \mathbb{R}_{<0}(x^2 > x)$ "... Start with: "Let x be a negative real number." Goal: Conclude $x^2 > x$. Alternatively, $\forall x \in \mathbb{R}_{<0}(x^2 > x)$ is equivalent to $x \in \mathbb{R}_{<0} \Rightarrow x^2 > x$.

Implications: Recall $A \Rightarrow B$ can only be false if A is true and B is false. So to show $A \Rightarrow B$, start by assuming A. Contrapositive: $A \Rightarrow B$ is equivalent to $\neg B \Rightarrow \neg A$. To show $\neg B \Rightarrow \neg A$, start by assuming B.

To show for all, start with a "generic" example.

Example: For every negative real x, we have $x^2 > x$. In symbols, this is

 $\forall x \in \mathbb{R}_{<0} (x^2 > x).$

To prove " $\forall x \in \mathbb{R}_{<0}(x^2 > x)$ "... Start with: "Let x be a negative real number." Goal: Conclude $x^2 > x$. Alternatively, $\forall x \in \mathbb{R}_{<0}(x^2 > x)$ is equivalent to $x \in \mathbb{R}_{<0} \Rightarrow x^2 > x$. To prove " $x \in \mathbb{R}_{<0} \Rightarrow x^2 > x$ "... Start with: "Assume x is a negative real number." Goal: Conclude $x^2 > x$.

To show for all, start with a "generic" example.

Example: For every negative real x, we have $x^2 > x$. In symbols, this is

 $\forall x \in \mathbb{R}_{<0} (x^2 > x).$

To prove " $\forall x \in \mathbb{R}_{<0}(x^2 > x)$ "... Start with: "Let x be a negative real number." Goal: Conclude $x^2 > x$. Alternatively, $\forall x \in \mathbb{R}_{<0}(x^2 > x)$ is equivalent to $x \in \mathbb{R}_{<0} \Rightarrow x^2 > x$. To prove " $x \in \mathbb{R}_{<0} \Rightarrow x^2 > x$ "... Start with: "Assume x is a negative real number." Goal: Conclude $x^2 > x$.

Or, we can use the contrapositive! To prove " $x^2 \Rightarrow x \Rightarrow x \notin \mathbb{R}_{<0}$ "... Start with: "Assume $x^2 \Rightarrow x$." Goal: Conclude $x \notin \mathbb{R}_{<0}$.

To show there exists directly, give an example.

To show there exists directly, give an example.

Example: There exists $x \in \mathbb{R}$ such that $x^2 = x$.

To show there exists directly, give an example.

Example: There exists $x \in \mathbb{R}$ such that $x^2 = x$. In symbols, this is

$$\exists x \in \mathbb{R}(x^2 = x).$$

To show there exists directly, give an example.

Example: There exists $x \in \mathbb{R}$ such that $x^2 = x$. In symbols, this is

$$\exists x \in \mathbb{R}(x^2 = x).$$

To prove " $\exists x \in \mathbb{R}(x^2 = x)$ "... Find an example: Fine one solution to $x^2 = x$.

To show there exists directly, give an example.

Example: There exists $x \in \mathbb{R}$ such that $x^2 = x$. In symbols, this is

$$\exists x \in \mathbb{R}(x^2 = x).$$

To prove " $\exists x \in \mathbb{R}(x^2 = x)$ "... Find an example: Fine one solution to $x^2 = x$.

Alternatively, you can prove the negation is false.

To show there exists directly, give an example.

Example: There exists $x \in \mathbb{R}$ such that $x^2 = x$. In symbols, this is

$$\exists x \in \mathbb{R}(x^2 = x).$$

To prove " $\exists x \in \mathbb{R}(x^2 = x)$ "... Find an example: Fine one solution to $x^2 = x$.

Alternatively, you can prove the negation is false. We have " $\neg(\exists x \in \mathbb{R}(x^2 = x))$ " is equivalent to $\forall x \in \mathbb{R}(x^2 \neq x)$. Go back to techniques for proving "for all"...

To show there exists directly, give an example.

Example: There exists $x \in \mathbb{R}$ such that $x^2 = x$. In symbols, this is

$$\exists x \in \mathbb{R}(x^2 = x).$$

To prove " $\exists x \in \mathbb{R}(x^2 = x)$ "... Find an example: Fine one solution to $x^2 = x$.

Alternatively, you can prove the negation is false. We have " $\neg(\exists x \in \mathbb{R}(x^2 = x))$ " is equivalent to $\forall x \in \mathbb{R}(x^2 \neq x)$. Go back to techniques for proving "for all"...

Yikes! It's usually easier to find one example than to deal with *all* possible examples at once. However, to show a "there exists" is <u>false</u>, move to proving the negation is true.

If A is a statement, then A is false if and only if $\neg A$ is true. Example: Show the following is false... "For all $x \in \mathbb{R}$, we have $x^2 \ge x$."

If A is a statement, then A is false if and only if $\neg A$ is true. Example: Show the following is false... "For all $x \in \mathbb{R}$, we have $x^2 \ge x$." In symbols, this is

 $\forall x \in \mathbb{R} (x^2 \ge x).$

If A is a statement, then A is false if and only if $\neg A$ is true. Example: Show the following is false... "For all $x \in \mathbb{R}$, we have $x^2 \ge x$." In symbols, this is

 $\forall x \in \mathbb{R} (x^2 \ge x).$

The negation of this is

 $\exists x \in \mathbb{R}(x^2 \ge x).$

If A is a statement, then A is false if and only if $\neg A$ is true. **Example:** Show the following is false... "For all $x \in \mathbb{R}$, we have $x^2 \ge x$." In symbols, this is $\forall x \in \mathbb{R}(x^2 \ge x).$

The negation of this is

 $\exists x \in \mathbb{R}(x^2 \ge x).$

To show " $\exists x \in \mathbb{R}(x^2 \ge x)$ " is <u>true</u>, give an example.

If A is a statement, then A is false if and only if $\neg A$ is true. Example: Show the following is false... "For all $x \in \mathbb{R}$, we have $x^2 \ge x$."

In symbols, this is

$$\forall x \in \mathbb{R} (x^2 \ge x).$$

The negation of this is

 $\exists x \in \mathbb{R}(x^2 \ge x).$

To show " $\exists x \in \mathbb{R}(x^2 \ge x)$ " is <u>true</u>, give an example.

Proof. We have the statement is false since for x = 1, we have $x^2 = 1^2 = 1 \ge 1 = x$.

If \boldsymbol{A} is a statement, then

A is false if and only if $\neg A$ is true.

Example: Show the following is false...

"There exists $x \in \mathbb{R}$ such that $x^2 + 1 = 0$."

If \boldsymbol{A} is a statement, then

A is false if and only if $\neg A$ is true.

Example: Show the following is false...

"There exists $x \in \mathbb{R}$ such that $x^2 + 1 = 0$."

In symbols, this is

 $\exists x \in \mathbb{R}(x^2 + 1 = 0).$

If \boldsymbol{A} is a statement, then

A is false if and only if $\neg A$ is true.

Example: Show the following is false...

"There exists $x \in \mathbb{R}$ such that $x^2 + 1 = 0$."

In symbols, this is

 $\exists x \in \mathbb{R}(x^2 + 1 = 0).$

The negation of this is

 $\forall x \in \mathbb{R}(x^2 + 1 \neq 0).$

If \boldsymbol{A} is a statement, then

A is false if and only if $\neg A$ is true.

Example: Show the following is false...

"There exists $x \in \mathbb{R}$ such that $x^2 + 1 = 0$."

In symbols, this is

$$\exists x \in \mathbb{R}(x^2 + 1 = 0).$$

The negation of this is

$$\forall x \in \mathbb{R}(x^2 + 1 \neq 0).$$

To show "
$$\forall x \in \mathbb{R}(x^2 + 1 \neq 0)$$
" is true...
Start with: "Let x be a real number."
Goal: Conclude $x^2 + 1 \neq 0$.

If A is a statement, then

A is false if and only if $\neg A$ is true.

Example: Show the following is false...

"There exists $x \in \mathbb{R}$ such that $x^2 + 1 = 0$."

In symbols, this is

$$\exists x \in \mathbb{R}(x^2 + 1 = 0).$$

The negation of this is

$$\forall x \in \mathbb{R}(x^2 + 1 \neq 0).$$

To show " $\forall x \in \mathbb{R}(x^2 + 1 \neq 0)$ " is <u>true</u>... Start with: "Let x be a real number." Goal: Conclude $x^2 + 1 \neq 0$.

Proof. Let x be a real number.

If A is a statement, then

A is false if and only if $\neg A$ is true.

Example: Show the following is false...

"There exists $x \in \mathbb{R}$ such that $x^2 + 1 = 0$."

In symbols, this is

$$\exists x \in \mathbb{R}(x^2 + 1 = 0).$$

The negation of this is

$$\forall x \in \mathbb{R}(x^2 + 1 \neq 0).$$

To show " $\forall x \in \mathbb{R}(x^2 + 1 \neq 0)$ " is <u>true</u>... Start with: "Let x be a real number." Goal: Conclude $x^2 + 1 \neq 0$. *Proof.* Let x be a real number. Then $x^2 \ge 0$.

If A is a statement, then

A is false if and only if $\neg A$ is true.

Example: Show the following is false...

"There exists $x \in \mathbb{R}$ such that $x^2 + 1 = 0$."

In symbols, this is

$$\exists x \in \mathbb{R}(x^2 + 1 = 0).$$

The negation of this is

$$\forall x \in \mathbb{R}(x^2 + 1 \neq 0).$$

To show " $\forall x \in \mathbb{R}(x^2 + 1 \neq 0)$ " is <u>true</u>... Start with: "Let x be a real number." Goal: Conclude $x^2 + 1 \neq 0$.

Proof. Let x be a real number. Then $x^2 \ge 0$. So $x^2 + 1 \ge 1 > 0$.

If \boldsymbol{A} is a statement, then

A is false if and only if $\neg A$ is true.

Example: Show the following is false...

"There exists $x \in \mathbb{R}$ such that $x^2 + 1 = 0$."

In symbols, this is

$$\exists x \in \mathbb{R}(x^2 + 1 = 0).$$

The negation of this is

$$\forall x \in \mathbb{R}(x^2 + 1 \neq 0).$$

To show " $\forall x \in \mathbb{R}(x^2 + 1 \neq 0)$ " is <u>true</u>... Start with: "Let x be a real number." Goal: Conclude $x^2 + 1 \neq 0$.

Proof. Let x be a real number. Then $x^2 \ge 0$. So $x^2 + 1 \ge 1 > 0$. Thus $x^2 \ne 0$.

If A is a statement, then

A is false if and only if $\neg A$ is true.

Example: Show the following is false...

"There exists $x \in \mathbb{R}$ such that $x^2 + 1 = 0$."

In symbols, this is

 $\exists x \in \mathbb{R}(x^2 + 1 = 0).$

The negation of this is

 $\forall x \in \mathbb{R}(x^2 + 1 \neq 0).$

To show " $\forall x \in \mathbb{R}(x^2 + 1 \neq 0)$ " is <u>true</u>... Start with: "Let x be a real number." Goal: Conclude $x^2 + 1 \neq 0$.

Proof. Let x be a real number. Then $x^2 \ge 0$. So $x^2 + 1 \ge 1 > 0$. Thus $x^2 \ne 0$. Therefore there does not exist a real solution to $x^2 + 1 = 0$.

Example:

For all $x \in \mathbb{Z}$, there exists $y \in \mathbb{Z}$ such that y > x.

Example:

For all $x \in \mathbb{Z}$, there exists $y \in \mathbb{Z}$ such that y > x. In symbols, this is

 $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}(y > x).$

Example:

For all $x\in\mathbb{Z},$ there exists $y\in\mathbb{Z}$ such that y>x. In symbols, this is

 $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}(y > x).$

Plan:

* To prove " $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}(y > x)$ "... Start with: "Let x be an integer." Goal: Conclude $\exists y \in \mathbb{Z}(y > x)$.

Example:

For all $x \in \mathbb{Z}$, there exists $y \in \mathbb{Z}$ such that y > x. In symbols, this is

$$\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}(y > x).$$

Plan:

- * To prove " $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}(y > x)$ "... Start with: "Let x be an integer." Goal: Conclude $\exists y \in \mathbb{Z}(y > x)$.
- * To prove " $\exists y \in \mathbb{Z}(y > x)$ "... Find example: Find a $y \in \mathbb{Z}$ that's bigger than x.

Example:

For all $x \in \mathbb{Z}$, there exists $y \in \mathbb{Z}$ such that y > x. In symbols, this is

$$\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}(y > x).$$

Plan:

- * To prove " $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}(y > x)$ "... Start with: "Let x be an integer." Goal: Conclude $\exists y \in \mathbb{Z}(y > x)$.
- * To prove " $\exists y \in \mathbb{Z}(y > x)$ "... Find example: Find a $y \in \mathbb{Z}$ that's bigger than x.

Proof.

Let x be an integer.

Example:

For all $x\in\mathbb{Z},$ there exists $y\in\mathbb{Z}$ such that y>x. In symbols, this is

$$\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}(y > x).$$

Plan:

- * To prove " $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}(y > x)$ "... Start with: "Let x be an integer." Goal: Conclude $\exists y \in \mathbb{Z}(y > x)$.
- * To prove " $\exists y \in \mathbb{Z}(y > x)$ "... Find example: Find a $y \in \mathbb{Z}$ that's bigger than x.

Proof.

Let x be an integer.

Then y = x + 1 is also an integer and y > x.

Example: There exists $y \in \mathbb{Z}$ such that for all $x \in \mathbb{Z}$, y > x.

Example: There exists $y \in \mathbb{Z}$ such that for all $x \in \mathbb{Z}$, y > x. In symbols, this is

 $\exists y \in \mathbb{Z}, \forall x \in \mathbb{Z} (y > x).$

Example: There exists $y \in \mathbb{Z}$ such that for all $x \in \mathbb{Z}$, y > x. In symbols, this is

$$\exists y \in \mathbb{Z}, \forall x \in \mathbb{Z} (y > x).$$

(Remember, we would like to show this is false, which is the same as showing that the negation is true!)

Example: There exists $y \in \mathbb{Z}$ such that for all $x \in \mathbb{Z}$, y > x. In symbols, this is

$$\exists y \in \mathbb{Z}, \forall x \in \mathbb{Z} (y > x).$$

(Remember, we would like to show this is false, which is the same as showing that the negation is true!)

The negation of $\exists y \in \mathbb{Z}, \forall x \in \mathbb{Z}(y > x)$ is

$$\forall y \in \mathbb{Z}, \exists x \in \mathbb{Z} (y \ge x).''$$

Plan:

* To prove "
$$\forall y \in \mathbb{Z}, \exists x \in \mathbb{Z} (y \ge x)$$
"...
Start with: "Let y be an integer."
Goal: Conclude $\exists x \in \mathbb{Z} (y \ge x)$.

Example: There exists $y \in \mathbb{Z}$ such that for all $x \in \mathbb{Z}$, y > x. In symbols, this is

$$\exists y \in \mathbb{Z}, \forall x \in \mathbb{Z} (y > x).$$

(Remember, we would like to show this is false, which is the same as showing that the negation is true!)

The negation of $\exists y \in \mathbb{Z}, \forall x \in \mathbb{Z}(y > x)$ is

$$\forall y \in \mathbb{Z}, \exists x \in \mathbb{Z} (y \ge x).''$$

Plan:

* To prove "∀y ∈ Z, ∃x ∈ Z(y ≥ x)"... Start with: "Let y be an integer." Goal: Conclude ∃x ∈ Z(y ≥ x).
* To prove "∃x ∈ Z(y ≥ x)"...

Find example: Find a $x \in \mathbb{Z}$ that's not bigger than y.

Proof.

Let y be an integer.

Example: There exists $y \in \mathbb{Z}$ such that for all $x \in \mathbb{Z}$, y > x. In symbols, this is

$$\exists y \in \mathbb{Z}, \forall x \in \mathbb{Z} (y > x).$$

(Remember, we would like to show this is false, which is the same as showing that the negation is true!)

The negation of $\exists y \in \mathbb{Z}, \forall x \in \mathbb{Z}(y > x)$ is

$$\forall y \in \mathbb{Z}, \exists x \in \mathbb{Z} (y \ge x).''$$

Plan:

* To prove " $\forall y \in \mathbb{Z}, \exists x \in \mathbb{Z}(y \ge x)$ "... Start with: "Let y be an integer." Goal: Conclude $\exists x \in \mathbb{Z}(y \ge x)$.

* To prove " $\exists x \in \mathbb{Z}(y \ge x)$ "... Find example: Find a $x \in \mathbb{Z}$ that's not bigger than y.

Proof.

Let y be an integer.

Then x = y is also an integer satisfying $y \Rightarrow x$.

Example: There exists $y \in \mathbb{Z}$ such that for all $x \in \mathbb{Z}$, y > x. In symbols, this is

$$\exists y \in \mathbb{Z}, \forall x \in \mathbb{Z} (y > x).$$

(Remember, we would like to show this is false, which is the same as showing that the negation is true!)

The negation of $\exists y \in \mathbb{Z}, \forall x \in \mathbb{Z}(y > x)$ is

$$\forall y \in \mathbb{Z}, \exists x \in \mathbb{Z} (y \ge x).''$$

Plan:

* To prove " $\forall y \in \mathbb{Z}, \exists x \in \mathbb{Z}(y \ge x)$ "... Start with: "Let y be an integer." Goal: Conclude $\exists x \in \mathbb{Z}(y \ge x)$.

* To prove " $\exists x \in \mathbb{Z}(y \ge x)$ "... Find example: Find a $x \in \mathbb{Z}$ that's not bigger than y.

Proof.

Let y be an integer.

Then x = y is also an integer satisfying $y \ge x$.

Thus there is no integer y for which y > x for all $x \in \mathbb{Z}$.

You try:

For each of the following,

- (a) Rewrite the statement in symbols.
- (b) Negate the statement.
- (c) Rewrite the negation in words.
- (d) Decide whether you think the statement is true or false.
- (e) Devise a plan to prove or disprove the statement.
- 1. For all $x \in \mathbb{Z}$, we have $x^2 + 1$ is odd.
- 2. For all $x \in \mathbb{R}_{>0}$, there exists an $n \in \mathbb{Z}_{>0}$ such that 1/n < x.
- 3. For all $n \in \mathbb{Z}_{>0}$, we have $\sqrt[n]{n!} < \sqrt[n+1]{(n+1)!}$
- 4. There exists $n \in \mathbb{Z}_{>0}$ such that n(n+1) is odd.