Last time:

An implication is a statement of the form

"If statement A is true, then statement B is true."

An implication " $A \Rightarrow B$ " is false when A is true and B is false, and is true otherwise. This is equivalent to $(\neg A) \lor B$.

A	В	$A \Rightarrow B$	$(\neg A) \lor B$
T	Т	Т	Т
T	F	F	F
F	Т	Т	T
F	F	Т	T

Negating implications

Recall that

 $\neg(A \lor B)$ is equivalent to $(\neg A) \land (\neg B)$,

 and

$$A \Rightarrow B$$
 is equivalent to $(\neg A) \lor B$.

So

$$\neg (A \Rightarrow B) \quad \text{is equivalent to} \quad \neg ((\neg A) \lor B),$$

which is equiv. to
$$\neg (\neg A) \land \neg B,$$

which is equiv. to
$$A \land \neg B.$$

For example, the negation of

"If Jill's enrolled in this class, then Jill's a student at CUNY" is

"Jill is enrolled in this class and Jill is not a student at CUNY."

A	В	$A \Rightarrow B$	$\neg(A \Rightarrow B)$	$\neg B$	$A \wedge \neg B$
T	T				
Т	F				
F	Т				
F	F				

Claim: The $\neg(A \Rightarrow B)$ is equivalent to $A \land \neg B$.

Messing with implications...

Consider the implication $A \Rightarrow B$ "If it's raining, then the street is wet." Negation: $\neg(A \Rightarrow B)$, which is equivalent to $(\neg A) \land B$. Ex: "It's raining, and the street is not wet." Inverse: $(\neg A) \Rightarrow (\neg B)$ Ex: "If it's not raining, then the street is not wet." Converse: $B \Rightarrow A$ Ex: "If the street is wet, then it's raining." Contrapositive: $\neg B \Rightarrow \neg A$ Ex: "If the street is not wet, then it's not raining." Consider the implication $A \Rightarrow B$ "If it's raining, then the street is wet." Negation: $\neg(A \Rightarrow B)$, which is equivalent to $(\neg A) \land B$. Ex: "It's raining, and the street is not wet." Inverse: $(\neg A) \Rightarrow (\neg B)$ Ex: "If it's not raining, then the street is not wet."

Converse: $B \Rightarrow A$ **Ex**: "If the street is wet, then it's raining."

Contrapositive: $\neg B \Rightarrow \neg A$

Ex: "If the street is not wet, then it's not raining."

A	В	$A \Rightarrow B$	Negation	Inverse	Converse	Contrapositive
T	T	Т	F	Т	Т	Т
T	F	F	T	Т	T	F
F	T	Т	F	F	F	Т
F	F	Т	F	Т	T	Т

Negation: $\neg(A \Rightarrow B)$, which is equivalent to $(\neg A) \land B$.

Inverse: $(\neg A) \Rightarrow (\neg B)$

Converse: $B \Rightarrow A$

Contrapositive: $\neg B \Rightarrow \neg A$

A	В	$A \Rightarrow B$	Negation	Inverse	Converse	Contrapositive
T	T	Т	F	Т	T	Т
T	F	F	Т	Т	T	F
F	Т	Т	F	F	F	Т
F	F	Т	F	Т	Т	Т

To show $A \Rightarrow B$ is **true** (respectively **false**), you can show

the negation is false (respectively true); or

• the contrapositive is **true** (respectively **false**).

To show the converse $B \Rightarrow A$ is **true**, you can instead show the inverse is **true**.

In general, the truth of the inverse has nothing to do with the truth of the negation!

Negation: $\neg (A \Rightarrow B)$ Inverse: $(\neg A) \Rightarrow (\neg B)$ Converse: $B \Rightarrow A$ Contrapositive: $\neg B \Rightarrow \neg A$

You try: For each of the following
(a) rewrite the statement as "if ..., then ..."; and
(b) write, in English, (i) the negation, (ii) the inverse, (iii) the converse, (iv) the contrapositive.

- 1. I wear a coat whenever it's cold outside.
- 2. The square of any real number is positive.
- 3. Consider an object in an inertial frame of reference. That object will continue to move at a constant velocity unless acted upon by a force.

Necessary and sufficient conditions

A necessary condition is one which must hold for a conclusion to be true. It does not guarantee that the result is true.

Ex: In order to get an A in this class, you must do the homework.

Ex: Let $a, b \in \mathbb{Z}$.

In order for ab to be odd, it is necessary for a to be odd.

* If N is necessary for A, then $A \Rightarrow N$.

A sufficient condition is one which guarantees the conclusion is true. The conclusion may be true even if the condition is not satisfied.

Ex: In order to get an A in this class,

it is sufficient to get 100% on every assignment and exam.

Ex: Let $a, b \in \mathbb{Z}$. In order for ab to be odd,

it is sufficient for a and b to be equal to 3.

* If S is sufficient for A, then $S \Rightarrow A$.

Necessary and sufficient conditions

A necessary condition is one which must hold for a conclusion to be true. (If N is necessary for A, then $A \Rightarrow N$.) A sufficient condition is one which guarantees the conclusion is true. (If S is sufficient for A, then $S \Rightarrow A$.) Note: Sufficient conditions imply necessary conditions! (If $S \Rightarrow A$ and $A \Rightarrow N$, then $S \Rightarrow N$.) Example: Let $a, b \in \mathbb{Z}$. In order for ab to be odd (A is "ab is odd"), it is necessary for a to be odd (N is "a is odd"), it is sufficient for a and b to be equal to 3 (S is "a = b = 3"). Note that "a = b = 3" implies "a is odd" (S $\Rightarrow N$).

A necessary and sufficient conditions is a condition that is both necessary and sufficient.

Ex: Let $a, b \in \mathbb{Z}$. In order for ab to be odd,

it is necessary and sufficient for a and b to both be odd.

- 1. It's necessary to be at least to years old to vote in the O.
- 2. It's sufficient for water to be 120° Celsius to boil.
- 3. To get into a math Ph.D. program, you have to take the GRE.

For each of the following, give (a) necessary condition that's not sufficient, (b) sufficient condition that's not necessary, (b) a (set of) condition(s) that's both necessary and sufficient.

- **1**. ab > 0.
- **2.** $\cos(\theta) = \sqrt{2}/2.$
- **3**. a + b is an even integer.

Logical equivalence, "if and only if"

We say A and B are logically equivalent statements if $A \Rightarrow B$ and $B \Rightarrow A$. When A and B are equivalent, we say A if and only if B, written $A \Leftrightarrow B$.

Namely,

A	В	$A \Rightarrow B$	$A \Leftarrow B$	$A \Leftrightarrow B$	$(A \Rightarrow B) \land (\neg A \Rightarrow \neg B)$
T	T	T	Т	Т	Т
Т	F	F	Т	F	F
F	Т	Т	F	F	F
F	F	Т	Т	Т	T

$$A \Leftrightarrow B \text{ means } (A \Rightarrow B) \land (B \Rightarrow A).$$

Let a and b be integers.

Example: We have a > b if and only if a - b > 0.

Example: We have a is even if and only if a + 2 is even.

Example: We have a is even if and only if a^2 is even.