Polya's four-step plan for problem solving

- 1. Understand the problem.
- 2. Devise a plan.
- 3. Execute the plan.
- 4. Look back.

Understand the problem.

- What definitions, notation, etc. do you need to know before you start?
- Do some work, and make a guess.
 - Is there a smaller, similar problem that might give you some intuition?
 - Are there special cases that are easier to understand?
 - Can you do concrete examples?
 - Can you draw a picture?
- Which part of the problem statement is the assumption(s)? Which part is the conclusion(s)? What do you already know about these?
 - (Note: Houston calls assumptions "hypotheses", which is not usually how we use that word. *Hypothesis* usually means a guess based on evidence.)
- Work backward and forward.
- Rewrite the problem in an equivalent way.

Devise a plan.

Break into pieces.Step 1, step 2, step 3, ...

Case 1, case 2, case 3, . . .

► Find the right level. Does this problem need a big powerful theorem? Or can you do it just for the definitions?

Give things names, so that you can refer to them or use them more easily.

Let A be...

Systematically choose a method.

What standard methods have you already learned? Might any apply? Try one at a time.

Execute the plan.

Do that stuff you planned, checking and reassessing the plan at each step.

Look back.

- Sanity check!Examples, easy properties, etc.Can you find an example contradicting your solution?
- Revise, revise, revise.
 Did you use all your assumptions? Did you do things in the best order? Is there an easier/clearer path to your answer?
- Reflect.

You try: In your groups, for each of the following exercises:

- (i) In the problem statement, what are the assumptions? What are the conclusions?
- (ii) Do a couple of small examples, or do a similar smaller/easier version of the problem.
- (iii) Solve the problem.
- (a) Show that

$$\frac{a+b}{2} \ge \sqrt{ab}$$
 for all $0 < a \le b$.

(b) Show that

$$a^2 + b^2 + c^2 \ge ab + bc + ca$$

for all positive integers a, b, and c.

(c) Let f(x) = 1/(1-x). Define the function f^r by

$$f^r(x) := \underbrace{f(f(\cdots(f(f(x)))\cdots))}_{r \text{ times}}.$$

Find $f^{653}(56)$.

- (d) Without using a calculator, show that $\sqrt[7]{7!} < \sqrt[8]{8!}$.
- (e) Without using a calculator, show that $\sqrt{100001} \sqrt{100000} < \frac{1}{2\sqrt{100001}}$.
- (f) Bottle A contains a liter of milk and bottle B contains a liter of coffee. A spoonful of coffee from B is poured into A, and the contents are mixed well. Liquid from A is then poured into B until B has one liter of liquid. Is the fraction of coffee in A greater than the fraction of milk in B, or vice versa?

[Hint: Giving things names will be super important here! You may also assume that your spoon isn't giant.]