Welcome to Math $308!$

Course info
Me: Professor Daugherty, zdaugherty@gmail.com
Website:
https://zdaugherty.ccnysites.cuny.edu/teaching/m308f18/
Textbooks:
How to Think Like a Mathematician, Kevin Houston Intro to Mathematical Structures and Proofs, Larry J. Gerstein Elementary Analysis: The Theory of Calculus, Kenneth A. Ross

Welcome to Math 308!

Course info
Me: Professor Daugherty, zdaugherty@gmail.com

Website:

https://zdaugherty.ccnysites.cuny.edu/teaching/m308f18/
Textbooks:
How to Think Like a Mathematician, Kevin Houston Intro to Mathematical Structures and Proofs, Larry J. Gerstein Elementary Analysis: The Theory of Calculus, Kenneth A. Ross

Homework: due on Tuesdays in class, Posted on course website. FINAL DRAFTS.
Exams: Midterms 10/16\&18 and 12/6\&11.
Portfolio: Final version due $12 / 18$.

Welcome to Math 308!

Course info
Me: Professor Daugherty, zdaugherty@gmail.com

Website:

https://zdaugherty.ccnysites.cuny.edu/teaching/m308f18/

Textbooks:

How to Think Like a Mathematician, Kevin Houston Intro to Mathematical Structures and Proofs, Larry J. Gerstein Elementary Analysis: The Theory of Calculus, Kenneth A. Ross

Homework: due on Tuesdays in class, Posted on course website. FINAL DRAFTS.
Exams: Midterms 10/16\&18 and 12/6\&11.
Portfolio: Final version due 12/18.
Homework 0: Before class on Tuesday 9/4, send me an email at zdaugherty@gmail.com with subject line "Math 308: Homework 0 ", answering the questions outlined on the website.

Course expectations

- Read posted sections before class, and bring your own copy of daily notes if needed (posted night before class).
- Come to class, participate, ask questions, work (possibly together) on in-class exercises.
- Come to office hours at least once in the semester. If you can't make my office hour, make an appointment.
- Out of class studying and work should be about 2-3 times the amount of time spent in class (5.5-7 hours/week). Find classmates to study and work with!
- Hand in "final draft" homework, typed up in LaTeX, on time. Get good practice with writing; using words and complete sentences. Ok to work with other people, but write-ups must be your own.
- If there are accessibility accommodations or exam conflicts to be organized, contact me as soon as possible.
- If you send me email, use complete sentences and be specific (ok to send pics of work!).

Definition

A set is a well-defined collection of objects. The objects in the set are called the elements or members of the set.
(Contrast: a list is an ordered collection of objects)

Definition

A set is a well-defined collection of objects. The objects in the set are called the elements or members of the set.
(Contrast: a list is an ordered collection of objects)
If x is an element of X, we write $x \in X$.

Definition

A set is a well-defined collection of objects. The objects in the set are called the elements or members of the set.
(Contrast: a list is an ordered collection of objects)
If x is an element of X, we write $x \in X$.

Examples:

(i) Set containing the numbers 1,2 , and 3 is
$\{1,2,3\}=\{1,3,2\}=\{3,2,1\}$. The number 3 is an element of the set, i.e. $3 \in\{1,2,3\}$, but $6 \notin\{1,2,3\}$.

Definition

A set is a well-defined collection of objects. The objects in the set are called the elements or members of the set.
(Contrast: a list is an ordered collection of objects)
If x is an element of X, we write $x \in X$.

Examples:

(i) Set containing the numbers 1,2 , and 3 is
$\{1,2,3\}=\{1,3,2\}=\{3,2,1\}$. The number 3 is an element of the set, i.e. $3 \in\{1,2,3\}$, but $6 \notin\{1,2,3\}$.
(ii) The set $\{1,5,12,\{a, b\},\{5,72\}\}$ is the set containing the numbers $1,5,12$, and the sets $\{a, b\}$ and $\{5,72\}$.

Definition

A set is a well-defined collection of objects. The objects in the set are called the elements or members of the set.
(Contrast: a list is an ordered collection of objects)
If x is an element of X, we write $x \in X$.

Examples:

(i) Set containing the numbers 1,2 , and 3 is
$\{1,2,3\}=\{1,3,2\}=\{3,2,1\}$. The number 3 is an element of the set, i.e. $3 \in\{1,2,3\}$, but $6 \notin\{1,2,3\}$.
(ii) The set $\{1,5,12,\{a, b\},\{5,72\}\}$ is the set containing the numbers $1,5,12$, and the sets $\{a, b\}$ and $\{5,72\}$.
Essentially: sets can contain sets as elements.

Definition

A set is a well-defined collection of objects. The objects in the set are called the elements or members of the set.
(Contrast: a list is an ordered collection of objects)
If x is an element of X, we write $x \in X$.

Examples:

(i) Set containing the numbers 1,2 , and 3 is
$\{1,2,3\}=\{1,3,2\}=\{3,2,1\}$. The number 3 is an element of the set, i.e. $3 \in\{1,2,3\}$, but $6 \notin\{1,2,3\}$.
(ii) The set $\{1,5,12,\{a, b\},\{5,72\}\}$ is the set containing the numbers $1,5,12$, and the sets $\{a, b\}$ and $\{5,72\}$.
Essentially: sets can contain sets as elements.
If the set X has a finite number of elements, then we say X is a finite set, in which case the number of elements is called the cardinality or size of X, denoted $|X|$.

Definition

A set is a well-defined collection of objects. The objects in the set are called the elements or members of the set.
(Contrast: a list is an ordered collection of objects)
If x is an element of X, we write $x \in X$.

Examples:

(i) Set containing the numbers 1,2 , and 3 is
$\{1,2,3\}=\{1,3,2\}=\{3,2,1\}$. The number 3 is an element of the set, i.e. $3 \in\{1,2,3\}$, but $6 \notin\{1,2,3\}$.
(ii) The set $\{1,5,12,\{a, b\},\{5,72\}\}$ is the set containing the numbers $1,5,12$, and the sets $\{a, b\}$ and $\{5,72\}$.
Essentially: sets can contain sets as elements.
If the set X has a finite number of elements, then we say X is a finite set, in which case the number of elements is called the
cardinality or size of X, denoted $|X|$.
Ex: The set $\{1,2, a, b\}$ has cardinality 4 ; the set $\{1,\{2, a, b\}\}$ has cardinality 2 .

Some special sets:
$\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}$, the integers.

Some special sets:
$\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}$, the integers.
$\mathbb{N}=\mathbb{Z}_{>0}=\{1,2,3, \ldots\}$, the natural numbers.

Some special sets:
$\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}$, the integers.
$\mathbb{N}=\mathbb{Z}_{>0}=\{1,2,3, \ldots\}$, the natural numbers.
Notation:

Read | as "such that" or "that satisfy".

Some special sets:
$\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}$, the integers.
$\mathbb{N}=\mathbb{Z}_{>0}=\{1,2,3, \ldots\}$, the natural numbers.
Notation:

Read | as "such that" or "that satisfy".
For example,

$$
\mathbb{Z}_{>0}=\{x \in \mathbb{Z} \mid x>0\}
$$

Some special sets:
$\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}$, the integers.
$\mathbb{N}=\mathbb{Z}_{>0}=\{1,2,3, \ldots\}$, the natural numbers.
Notation:

Read | as "such that" or "that satisfy".
For example,

$$
\mathbb{Z}_{>0}=\{x \in \mathbb{Z} \mid x>0\} .
$$

More special sets:
Non-negative integers: $\mathbb{Z}_{\geqslant 0}=\{0,1,2,3, \ldots\}=\{x \in \mathbb{Z} \mid x \geqslant 0\}$.

Some special sets:
$\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}$, the integers.
$\mathbb{N}=\mathbb{Z}_{>0}=\{1,2,3, \ldots\}$, the natural numbers.
Notation:

Read | as "such that" or "that satisfy".
For example,

$$
\mathbb{Z}_{>0}=\{x \in \mathbb{Z} \mid x>0\} .
$$

More special sets:
Non-negative integers: $\mathbb{Z}_{\geqslant 0}=\{0,1,2,3, \ldots\}=\{x \in \mathbb{Z} \mid x \geqslant 0\}$.
Rational numbers: $\mathbb{Q}=\{p / q \mid p, q \in \mathbb{Z}, q \neq 0\}$.

Some special sets:
$\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}$, the integers.
$\mathbb{N}=\mathbb{Z}_{>0}=\{1,2,3, \ldots\}$, the natural numbers.
Notation:

Read | as "such that" or "that satisfy".
For example,

$$
\mathbb{Z}_{>0}=\{x \in \mathbb{Z} \mid x>0\} .
$$

More special sets:
Non-negative integers: $\mathbb{Z}_{\geqslant 0}=\{0,1,2,3, \ldots\}=\{x \in \mathbb{Z} \mid x \geqslant 0\}$.
Rational numbers: $\mathbb{Q}=\{p / q \mid p, q \in \mathbb{Z}, q \neq 0\}$.
Real numbers: \mathbb{R}. Tricky to define, but think: all decimal expansions. Ex: $0,1,1 / 3, \pi,-\sqrt{2}, \ldots$

Some special sets:
$\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}$, the integers.
$\mathbb{N}=\mathbb{Z}_{>0}=\{1,2,3, \ldots\}$, the natural numbers.
Notation:

Read | as "such that" or "that satisfy".
For example,

$$
\mathbb{Z}_{>0}=\{x \in \mathbb{Z} \mid x>0\} .
$$

More special sets:
Non-negative integers: $\mathbb{Z}_{\geqslant 0}=\{0,1,2,3, \ldots\}=\{x \in \mathbb{Z} \mid x \geqslant 0\}$.
Rational numbers: $\mathbb{Q}=\{p / q \mid p, q \in \mathbb{Z}, q \neq 0\}$.
Real numbers: \mathbb{R}. Tricky to define, but think: all decimal expansions. Ex: $0,1,1 / 3, \pi,-\sqrt{2}, \ldots$
Irrational numbers: $\mathbb{R}-\mathbb{Q}$. For example: $\sqrt{2}$.

Some special sets:
$\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}$, the integers.
$\mathbb{N}=\mathbb{Z}_{>0}=\{1,2,3, \ldots\}$, the natural numbers.
Notation:

Read | as "such that" or "that satisfy".
For example,

$$
\mathbb{Z}_{>0}=\{x \in \mathbb{Z} \mid x>0\} .
$$

More special sets:
Non-negative integers: $\mathbb{Z}_{\geqslant 0}=\{0,1,2,3, \ldots\}=\{x \in \mathbb{Z} \mid x \geqslant 0\}$.
Rational numbers: $\mathbb{Q}=\{p / q \mid p, q \in \mathbb{Z}, q \neq 0\}$.
Real numbers: \mathbb{R}. Tricky to define, but think: all decimal expansions. Ex: $0,1,1 / 3, \pi,-\sqrt{2}, \ldots$
Irrational numbers: $\mathbb{R}-\mathbb{Q}$. For example: $\sqrt{2}$.
Complex numbers: $\mathbb{C}=\{a+b i \mid a, b \in \mathbb{R}\}$, where $i=\sqrt{-1}$.

Some special sets:
$\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}$, the integers.
$\mathbb{N}=\mathbb{Z}_{>0}=\{1,2,3, \ldots\}$, the natural numbers.
Notation:

Read | as "such that" or "that satisfy".
For example,

$$
\mathbb{Z}_{>0}=\{x \in \mathbb{Z} \mid x>0\} .
$$

More special sets:
Non-negative integers: $\mathbb{Z}_{\geqslant 0}=\{0,1,2,3, \ldots\}=\{x \in \mathbb{Z} \mid x \geqslant 0\}$.
Rational numbers: $\mathbb{Q}=\{p / q \mid p, q \in \mathbb{Z}, q \neq 0\}$.
Real numbers: \mathbb{R}. Tricky to define, but think: all decimal expansions. Ex: $0,1,1 / 3, \pi,-\sqrt{2}, \ldots$
Irrational numbers: $\mathbb{R}-\mathbb{Q}$. For example: $\sqrt{2}$.
Complex numbers: $\mathbb{C}=\{a+b i \mid a, b \in \mathbb{R}\}$, where $i=\sqrt{-1}$.
The empty set: $\varnothing=\{ \}$ (nothing is in here)

Suppose X is a set. A set Y is a subset of X if every element of Y is an element of X, written $Y \subseteq X$. This is the same as saying if $x \in Y$, then $x \in X$.

Suppose X is a set. A set Y is a subset of X if every element of Y is an element of X, written $Y \subseteq X$. This is the same as saying if $x \in Y$, then $x \in X$.
If $Y \subseteq X$ but X has at least one element that's not in Y, we say Y is a proper subset of X, written $Y \subsetneq X$ for emphasis.

Suppose X is a set. A set Y is a subset of X if every element of Y is an element of X, written $Y \subseteq X$. This is the same as saying if $x \in Y$, then $x \in X$.
If $Y \subseteq X$ but X has at least one element that's not in Y, we say Y is a proper subset of X, written $Y \subsetneq X$ for emphasis.

Examples:

(i) The set $Y=\{1,\{3,4\}, a\}$ is proper a subset of

$$
X=\{1,2, a,\{3,4\}, b\} .
$$

Suppose X is a set. A set Y is a subset of X if every element of Y is an element of X, written $Y \subseteq X$. This is the same as saying if $x \in Y$, then $x \in X$.
If $Y \subseteq X$ but X has at least one element that's not in Y, we say Y is a proper subset of X, written $Y \subsetneq X$ for emphasis.

Examples:

(i) The set $Y=\{1,\{3,4\}, a\}$ is proper a subset of $X=\{1,2, a,\{3,4\}, b\}$.
(ii) The set of natural numbers is a proper subset of \mathbb{Z}. (Ignore Ex. 1.12(ii) - even numbers can be negative.)

Suppose X is a set. A set Y is a subset of X if every element of Y is an element of X, written $Y \subseteq X$. This is the same as saying if $x \in Y$, then $x \in X$.
If $Y \subseteq X$ but X has at least one element that's not in Y, we say Y is a proper subset of X, written $Y \subsetneq X$ for emphasis.

Examples:

(i) The set $Y=\{1,\{3,4\}, a\}$ is proper a subset of $X=\{1,2, a,\{3,4\}, b\}$.
(ii) The set of natural numbers is a proper subset of \mathbb{Z}. (Ignore Ex. 1.12(ii) - even numbers can be negative.)
(iii) The set $\{1,2,3\}$ is not a subset of $\{2,3,4\}$ or $\{2,3\}$.

Suppose X is a set. A set Y is a subset of X if every element of Y is an element of X, written $Y \subseteq X$. This is the same as saying if $x \in Y$, then $x \in X$.
If $Y \subseteq X$ but X has at least one element that's not in Y, we say Y is a proper subset of X, written $Y \subsetneq X$ for emphasis.

Examples:

(i) The set $Y=\{1,\{3,4\}, a\}$ is proper a subset of $X=\{1,2, a,\{3,4\}, b\}$.
(ii) The set of natural numbers is a proper subset of \mathbb{Z}. (Ignore Ex. 1.12(ii) - even numbers can be negative.)
(iii) The set $\{1,2,3\}$ is not a subset of $\{2,3,4\}$ or $\{2,3\}$.
(iv) For any set X, we have $X \subseteq X$ and $\varnothing \subseteq X$.

Suppose X is a set. A set Y is a subset of X if every element of Y is an element of X, written $Y \subseteq X$. This is the same as saying if $x \in Y$, then $x \in X$.
If $Y \subseteq X$ but X has at least one element that's not in Y, we say Y is a proper subset of X, written $Y \subsetneq X$ for emphasis.

Examples:

(i) The set $Y=\{1,\{3,4\}, a\}$ is proper a subset of

$$
X=\{1,2, a,\{3,4\}, b\} .
$$

(ii) The set of natural numbers is a proper subset of \mathbb{Z}. (Ignore Ex. 1.12(ii) - even numbers can be negative.)
(iii) The set $\{1,2,3\}$ is not a subset of $\{2,3,4\}$ or $\{2,3\}$.
(iv) For any set X, we have $X \subseteq X$ and $\varnothing \subseteq X$.

Elements versus subsets: If $x \in X$, then $\{x\} \subseteq X$, and vice versa.

Suppose X is a set. A set Y is a subset of X if every element of Y is an element of X, written $Y \subseteq X$. This is the same as saying if $x \in Y$, then $x \in X$.
If $Y \subseteq X$ but X has at least one element that's not in Y, we say Y is a proper subset of X, written $Y \subsetneq X$ for emphasis.

Examples:

(i) The set $Y=\{1,\{3,4\}, a\}$ is proper a subset of

$$
X=\{1,2, a,\{3,4\}, b\} .
$$

(ii) The set of natural numbers is a proper subset of \mathbb{Z}. (Ignore Ex. 1.12(ii) - even numbers can be negative.)
(iii) The set $\{1,2,3\}$ is not a subset of $\{2,3,4\}$ or $\{2,3\}$.
(iv) For any set X, we have $X \subseteq X$ and $\varnothing \subseteq X$.

Elements versus subsets: If $x \in X$, then $\{x\} \subseteq X$, and vice versa.
Example: Consider the set $X=\{x,\{x\}\}$. Then $x \in X$ and $\{x\} \subsetneq X$, but also we have $\{x\} \in X$.

Operations on sets

Let X and Y be sets.
The union of X and Y is

$$
X \cup Y=\{x \mid x \in X \text { or } x \in Y\}
$$

the set consisting of elements that are in X or in Y, or in both.

Operations on sets

Let X and Y be sets.
The union of X and Y is

$$
X \cup Y=\{x \mid x \in X \text { or } x \in Y\}
$$

the set consisting of elements that are in X or in Y, or in both.
The intersection of X and Y is

$$
X \cap Y=\{x \mid x \in X \text { and } x \in Y\}
$$

consisting of elements that are in X and in Y.

Operations on sets

Let X and Y be sets.
The union of X and Y is

$$
X \cup Y=\{x \mid x \in X \text { or } x \in Y\}
$$

the set consisting of elements that are in X or in Y, or in both.
The intersection of X and Y is

$$
X \cap Y=\{x \mid x \in X \text { and } x \in Y\}
$$

consisting of elements that are in X and in Y.
The difference of X and Y, denoted $X \backslash Y$ or $X-Y$, is the set of elements that are in X but not in Y.

Operations on sets

Let X and Y be sets.
The union of X and Y is

$$
X \cup Y=\{x \mid x \in X \text { or } x \in Y\}
$$

the set consisting of elements that are in X or in Y, or in both.
The intersection of X and Y is

$$
X \cap Y=\{x \mid x \in X \text { and } x \in Y\}
$$

consisting of elements that are in X and in Y.
The difference of X and Y, denoted $X \backslash Y$ or $X-Y$, is the set of elements that are in X but not in Y. Note: we do not require that Y is a subset of X.

Operations on sets

Let X and Y be sets.
The union of X and Y is

$$
X \cup Y=\{x \mid x \in X \text { or } x \in Y\}
$$

the set consisting of elements that are in X or in Y, or in both.
The intersection of X and Y is

$$
X \cap Y=\{x \mid x \in X \text { and } x \in Y\}
$$

consisting of elements that are in X and in Y.
The difference of X and Y, denoted $X \backslash Y$ or $X-Y$, is the set of elements that are in X but not in Y. Note: we do not require that Y is a subset of X. If Y is a subset of X, then $X-Y$ the complement of Y in X, denoted by Y^{c}.

Operations on sets

Let X and Y be sets.
The union of X and Y is

$$
X \cup Y=\{x \mid x \in X \text { or } x \in Y\}
$$

the set consisting of elements that are in X or in Y, or in both.
The intersection of X and Y is

$$
X \cap Y=\{x \mid x \in X \text { and } x \in Y\}
$$

consisting of elements that are in X and in Y.
The difference of X and Y, denoted $X \backslash Y$ or $X-Y$, is the set of elements that are in X but not in Y. Note: we do not require that Y is a subset of X. If Y is a subset of X, then $X-Y$ the complement of Y in X, denoted by Y^{c}.
The product of X and Y is

$$
X \times Y=\{(x, y) \mid x \in X, y \in Y\}
$$

the set of all possible (ordered) pairs (x, y) where $x \in X$ and $y \in Y$.

Functions

Let X and Y be sets.
A function or map f from X to Y, written $f: X \rightarrow Y$, is an assignment of one $y \in Y$ for each $x \in X$.

Functions

Let X and Y be sets.
A function or map f from X to Y, written $f: X \rightarrow Y$, is an assignment of one $y \in Y$ for each $x \in X$. The unique element in Y associated to x is denoted $f(x)$.

Functions

Let X and Y be sets.
A function or map f from X to Y, written $f: X \rightarrow Y$, is an assignment of one $y \in Y$ for each $x \in X$. The unique element in Y associated to x is denoted $f(x)$. The set X is called the source or domain of f, and Y is called the target or codomain of f.

Functions

Let X and Y be sets.
A function or map f from X to Y, written $f: X \rightarrow Y$, is an assignment of one $y \in Y$ for each $x \in X$. The unique element in Y associated to x is denoted $f(x)$. The set X is called the source or domain of f, and Y is called the target or codomain of f.

To describe a function f, we can use a formula, like $f(x)=x^{2}$.

Functions

Let X and Y be sets.
A function or map f from X to Y, written $f: X \rightarrow Y$, is an assignment of one $y \in Y$ for each $x \in X$. The unique element in Y associated to x is denoted $f(x)$. The set X is called the source or domain of f, and Y is called the target or codomain of f.

To describe a function f, we can use a formula, like $f(x)=x^{2}$. Or we can use a picture, like

Functions

Let X and Y be sets.
A function or map f from X to Y, written $f: X \rightarrow Y$, is an assignment of one $y \in Y$ for each $x \in X$. The unique element in Y associated to x is denoted $f(x)$. The set X is called the source or domain of f, and Y is called the target or codomain of f.

To describe a function f, we can use a formula, like $f(x)=x^{2}$. Or we can use a picture, like

Note: every element of X gets one element in Y, but not necessarily vice versa; and two distinct elements of X may map to the same element in Y.

Some examples:
(i) Fix some $c \in \mathbb{R}$. The constant function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=c$ only has the value c.

Some examples:
(i) Fix some $c \in \mathbb{R}$. The constant function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=c$ only has the value c.
(ii) The cardinality of a set is a function given by
$\|:$ Finite sets $\rightarrow \mathbb{Z}_{\geqslant 0}$.

Some examples:
(i) Fix some $c \in \mathbb{R}$. The constant function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=c$ only has the value c.
(ii) The cardinality of a set is a function given by
$\|:$ Finite sets $\rightarrow \mathbb{Z}_{\geqslant 0}$.
(iii) The identity map on X is the map

$$
\text { id }: X \rightarrow X \quad \text { given by } \quad f(x)=x \text { for all } x \in X
$$

Some examples:
(i) Fix some $c \in \mathbb{R}$. The constant function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=c$ only has the value c.
(ii) The cardinality of a set is a function given by
$\|:$ Finite sets $\rightarrow \mathbb{Z}_{\geqslant 0}$.
(iii) The identity map on X is the map

$$
\text { id }: X \rightarrow X \quad \text { given by } \quad f(x)=x \text { for all } x \in X
$$

Non-example: The formula $f(x)=1 /(1-x)$ does not define a function from \mathbb{R} to \mathbb{R}, since it is not defined at $x=1$.

A function $f: X \rightarrow Y$ is called one-to-one or injective if every element in Y gets mapped to by at most one $x \in X$.

A function $f: X \rightarrow Y$ is called one-to-one or injective if every element in Y gets mapped to by at most one $x \in X$. Some examples of injective functions:

$$
f(x)=3 x-5 \text { with domain } \mathbb{C}
$$

A function $f: X \rightarrow Y$ is called one-to-one or injective if every element in Y gets mapped to by at most one $x \in X$. Some examples of injective functions:

$$
f(x)=3 x-5 \text { with domain } \mathbb{C},
$$

$$
f(x)=x^{2} \text { with domain } \mathbb{R}_{\geqslant 0}
$$

A function $f: X \rightarrow Y$ is called one-to-one or injective if every element in Y gets mapped to by at most one $x \in X$. Some examples of injective functions:

$$
f(x)=3 x-5 \text { with domain } \mathbb{C},
$$

$$
f(x)=x^{2} \text { with domain } \mathbb{R}_{\geqslant 0}
$$

A function $f: X \rightarrow Y$ is called one-to-one or injective if every element in Y gets mapped to by at most one $x \in X$. Some examples of functions that are not injective:

$$
f(x)=x^{2} \text { with domain } \mathbb{R}
$$

A function $f: X \rightarrow Y$ is called one-to-one or injective if every element in Y gets mapped to by at most one $x \in X$. Some examples of functions that are not injective:

$$
f(x)=x^{2} \text { with domain } \mathbb{R},
$$

The image of a function $f: X \rightarrow Y$ is

$$
f(X)=\{y \in Y \mid f(x)=y \text { for some } x \in X\}
$$

The image of a function $f: X \rightarrow Y$ is

$$
f(X)=\{y \in Y \mid f(x)=y \text { for some } x \in X\}
$$

A function is called onto or surjective if the codomain and the image are the same set.

The image of a function $f: X \rightarrow Y$ is

$$
f(X)=\{y \in Y \mid f(x)=y \text { for some } x \in X\}
$$

A function is called onto or surjective if the codomain and the image are the same set.

Some examples of surjective functions:
$f(x)=3 x-5$ with domain and codomain \mathbb{R},

The image of a function $f: X \rightarrow Y$ is

$$
f(X)=\{y \in Y \mid f(x)=y \text { for some } x \in X\}
$$

A function is called onto or surjective if the codomain and the image are the same set.

Some examples of surjective functions:

$$
\begin{aligned}
& f(x)=3 x-5 \text { with domain and codomain } \mathbb{R}, \\
& f(x)=x^{2} \text { with domain } \mathbb{R} \text { and codomain } \mathbb{R} \geqslant 0,
\end{aligned}
$$

The image of a function $f: X \rightarrow Y$ is

$$
f(X)=\{y \in Y \mid f(x)=y \text { for some } x \in X\}
$$

A function is called onto or surjective if the codomain and the image are the same set.

Some examples of surjective functions:
$f(x)=3 x-5$ with domain and codomain \mathbb{R}, $f(x)=x^{2}$ with domain \mathbb{R} and codomain $\mathbb{R}_{\geqslant 0}$,

A function is called onto or surjective if the codomain and the image are the same set.

Some examples of functions that are not surjective:

$$
f(x)=3 x-5 \text { with domain } \mathbb{R} \text { and codomain } \mathbb{C}
$$

A function is called onto or surjective if the codomain and the image are the same set.

Some examples of functions that are not surjective:

$$
\begin{gathered}
f(x)=3 x-5 \text { with domain } \mathbb{R} \text { and codomain } \mathbb{C}, \\
f(x)=x^{2} \text { with domain and codomain } \mathbb{R},
\end{gathered}
$$

A function is called onto or surjective if the codomain and the image are the same set.

Some examples of functions that are not surjective:

$$
\begin{aligned}
& f(x)=3 x-5 \text { with domain } \mathbb{R} \text { and codomain } \mathbb{C}, \\
& f(x)=x^{2} \text { with domain and codomain } \mathbb{R},
\end{aligned}
$$

