HOMEWORK 9 MATH 308 DUE: 11/20/2018

Throughout, let a, b, and c be non-zero integers.

1. Consider the following statements:

i. a is divisible by 3;

- ii. a is divisible by 9;
- iii. a is divisible by 12;
- **iv.** a = 24;

v. a^2 is divisible by 3;

vi. a is even and divisible by 3.

Which conditions are necessary for a to be divisible by 6? Which are sufficient? Which are necessary and sufficient?

- 2. Run the Euclidean algorithm with a = 30, b = 12.
- 3. Recall from lecture that executing the Euclidean algorithm for a = 100 and b = 36 gives the following equations:

$$100 = 36 * 2 + 28,\tag{E1}$$

$$36 = 28 * 1 + 8, \tag{E2}$$

$$28 = 8 * 3 + 4, \tag{E3}$$

$$8 = 4 * 2 + 0. \tag{E4}$$

- (a) Follow these steps to express 4 as an *integer combination* of 100 and 36, i.e., find (possibly negative) integers x and y such that 100x + 36y = 4:
 - (i) Use equation (E3) to express 4 as an integer combination of 8 and 28 (find integers x and y such that 8x + 28y = 4).
 - (ii) Use equation (E2) to express 8 as an integer combination of 28 and 36.
 - (iii) Use equation (E1) to express 28 as an integer combination of 36 and 100.
 - (iv) Plug your equation from part (ii) into your equation in part (i), expanding and simplifying, to express 4 as an integer combination of 28 and 36.
 - (v) Plug your equation from part (iii) into your equation in part (iv), expanding and simplifying, to express 4 as an integer combination of 36 and 100.
- (b) Make an argument (write an informal proof) justifying the following claim:

For any positive integers a and b, there exist integers x and y satisfying gcd(a, b) = ax + by. 4. Consider Euclid's Lemma and its proof from Chapter 28 of "How to think...":

Euclid's Lemma. Suppose that n, a, and b are natural numbers. If n|ab and gcd(n, a) = 1, then n|b.

Proof. Since gcd(n, a) = 1, there exist integers k and ℓ such that $kn + \ell a = 1$. Thus $knb + \ell ab = b$. We obviously have n|knb. We also have n|ab, so n|lab. Thus n|knb + lab, i.e. n|b.

(a) Analyze the theorem statement: give examples, non-examples, assumptions and conclusions, compare to other results, etc. Compare to the statement given in class.

HOMEWORK 9

- (b) Identify in the proof (here) where the hypotheses were used.
- (c) What theorems/lemmas/etc. were used in the proof?
- (d) Compare/contrast this proof to the proof from class.
- (e) Analyze what happens when we drop the hypothesis that gcd(n, a) = 1.
- 5. Prove the following.
 - (a) We have a|b if and only if -a|b.
 - (b) If δ is a common divisor of a and b, then $\delta | \gcd(a, b)$.
 - (c) If $a \ge 4$ is not prime, then a|(a-1)!.
- 6. Use strong induction to prove the division algorithm: For any $a, b \in \mathbb{Z}$ with $b \neq 0$, there are unique integers q and r satisfying

$$a = bq + r$$
 and $0 \le r < |b|$.

[Recall: We sketched a proof in class. You'll need to do two cases.]

- 7. An integer ℓ is called a *common multiple* of non-zero integers a and b if $a|\ell$ and $b|\ell$. The smallest positive such ℓ is called the *least common multiple* of a and b, denoted lcm(a, b). For example, lcm(3,7) = 21 and lcm(12, 66) = 132.
 - (a) Compute lcm(12, 8), lcm(30, 20), lcm(-10, 22), and lcm(9, 10).
 - (b) Prove that if a|m and b|m, then lcm(a, b)|m.
 - (c) Prove that for any $r\mathbb{Z}$, we have $\operatorname{lcm}(ra, rb) = r \operatorname{lcm}(a, b)$.
 - (d) Show that ab = gcd(a, b)lcm(a, b).