1. Using what we learned from chapters $10 \& 11$, rewrite you proofs of the following problems.
(a) Let a and b be real numbers. Show that

$$
\frac{a+b}{2} \geq \sqrt{a b} \quad \text { for all } \quad 0<a \leq b
$$

(b) Show that

$$
a^{2}+b^{2}+c^{2} \geq a b+b c+c a
$$

for all positive integers a, b, and c.
2. Submit a revision of your Proof Without Words from Homework 2.
3. Use a truth table to check that for statements A, B, and C, we have

$$
\begin{gathered}
((A \Rightarrow B) \wedge(B \Rightarrow C) \wedge(C \Rightarrow A)) \\
\\
\Leftrightarrow \\
((A \Leftrightarrow B) \wedge(B \Leftrightarrow C) \wedge(A \Leftrightarrow C))
\end{gathered}
$$

is a tautology. (You might want to transpose your truth table, so that the columns are the T/F options, and the rows are the statements.)
4. Show that the sum of two consecutive odd numbers is a multiple of 4 .
5. What is wrong with the following argument?

We have

$$
2=4 \Rightarrow 2 \pi=4 \pi \Rightarrow \sin (2 \pi)=\sin (4 \pi) \Rightarrow 0=0 .
$$

Therefore $2=4$.
6. Consider the following:

Claim. For all $n \in \mathbb{N}$, the number $n^{2}+5 n+6$ is not prime.
Find the mistake in the following 'proofs'.
(a)

For $n=2$, we have $n^{2}+5 n+6=22+10+6=20$, which is not prime. Hence the theorem is true.
(b)

Suppose that n is a natural number, so in particular $n>0$. If $n^{2}+5 n+6$ is not prime, then $n^{2}+5 n+6=p q$ for some natural numbers p and q such that $0<p<n^{2}+5 n+6$ and $0<q<n^{2}+5 n+6$. Since $n^{2}+5 n+6=p q$ and p and q do not equal 1 or $n^{2}+5 n+6$, then $n^{2}+5 n+6$ is not prime, which was to be shown.
7. Find the error in the following proof that the sum of two rational numbers is rational.

Suppose that m and n are rational numbers, so that we can write $m=p / q$ and $n=r / s$ where p, q, r, and s are integers (and q and s are non-zero). Then

$$
m+n=\frac{p}{q}+\frac{r}{s} .
$$

Since the sum of two fractions is a fraction, then $m+n$ must be a fraction. Hence, $m+n$ is rational.
8. Heres another error that people make. What is it? ??

The following proves the statement $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}\left((y+1) x^{2}=\frac{1+y}{y^{4}}\right)$:
Suppose that $x=1 / y^{2}$. Then

$$
(y+1) x^{2}=(y+1)\left(\frac{1}{y^{2}}\right)^{2}=\frac{y+1}{y^{4}}=\frac{1+y}{y^{4}} .
$$

9. Write a basic plan/outline for a proof for each of the Proof Lab: Direct Proof problems.

For example, suppose you had the following problem:
Let x and y be real numbers. If $y>x>0$, then

$$
\frac{x+1}{y+1}>\frac{x}{y} .
$$

Then your basic outline would be:
Proof sketch.

- Start with: "Let x and y be real numbers with $y>x>0$."
- Goal: Conclude $\frac{x+1}{y+1}>\frac{x}{y}$.
- To try: Start with $\frac{x+1}{y+1}>\frac{x}{y}$ and work backwards? Don't forget to reorder computations in the end!

