YOUR NAME HERE Math 308 Homework 11 12/11/2018

For this assignment only, if you prefer, you may turn in partially or fully hand-written solutions.

For problems 1–3, you may use our old working knowledge of number systems like \mathbb{Z} and \mathbb{R} . For problems 4–6, use the new set-theoretic definitions we developed, and only use assumptions about their properties as listed in the prompt.

- 1. For the following relations on X determine whether they are reflexive, symmetric, and/or transitive. State whether they are equivalence relations or not and if they are describe their equivalence classes.
 - (a) Let $X = \mathbb{Z}$ and define \sim by $x \sim y$ if x y is odd.
 - (b) Let $X = \mathbb{R}$ and define \sim by $x \sim y$ if $xy \neq 0$.
 - (c) Let $X = \mathbb{R} \times \mathbb{R}$ and define \sim by $(a, b) \sim (c, d)$ if (a c)(b d) = 0.
- 2. Let \sim be an equivalence relation on a set A, and for each $a \in A$, let

$$[a] = \{b \in A \mid a \sim b\}$$

denote the equivalence class of x.

- (a) Prove that if $x \in [y]$, then $y \in [x]$. [See notes.]
- (b) Prove that for all $x, y \in A$ that either $[x] \cap [y] = \emptyset$ or [x] = [y]. [Use part (a)).]
- (c) Prove that the equivalence classes partition A (see notes). [Use part (b)).]
- 3. Let \sim be the equivalence relation on \mathbb{Z} given by $a \sim b$ if $a \equiv b \pmod{n}$. Define $\mathbb{Z}_n = \{[a] \mid a \in \mathbb{Z}\}$, where [a] is the equivalence class of a modulo n.
 - (a) Briefly explain why it makes sense to define $+: \mathbb{Z}_n \times \mathbb{Z}_n \to \mathbb{Z}_n$ and $\cdot: \mathbb{Z}_n \times \mathbb{Z}_n \to \mathbb{Z}_n$ by

$$[a] + [b] = [a+b]$$
 and $[a] \cdot [b] = [a+b]$.

[If [a] = [a'] and [b] = [b'], do we know that [a] + [b] = [a'] + [b']?]

- (b) Briefly check that \mathbb{Z}_n is a commutative ring. (By "briefly", I mean you can say things like "since addition and multiplication satisfy ___ in \mathbb{Z} , we have the same properties in \mathbb{Z}_n .")
- (c) Find an n so that \mathbb{Z}_n is not a field (justify your answer).

4. Natural numbers. For the following, use the set theoretic definition of $\mathbb{Z}_{>0}$ developed in class. Let $a, b, c \in \mathbb{Z}_{>0}$.

Recall, we defined \leq by

$$a \le b$$
 if $b = S(S(\cdots S(a) \cdots))$.

and addition by

$$a + 0 = a$$
; and $a + S(b) = S(a + b)$,

where $S: \mathbb{Z}_{\geq 0} \to \mathbb{Z}_{\geq 0}$ is the successor function.

Using these definitions of + and \leq , prove that if $a \leq b$ then $a + c \leq b + c$. You may want to use induction on c. You may assume that addition is associative.

- 5. Rational numbers. For the following, use the set theoretic definition of \mathbb{Q} developed in class. You may assume all properties we listed about addition, multiplication, and comparisons in \mathbb{Z} , like associativity, commutativity, additive inverses, etc.
 - (a) Show that $\frac{0}{a} = \frac{0}{b}$ for all $a, b \in \mathbb{Z}_{\neq 0}$. (b) We defined addition by

$$\frac{a}{b} + \frac{c}{d} = \frac{a \cdot d + b \cdot c}{b \cdot d}$$
 and $\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$,

where the addition and multiplication on the right-hand-side of each equation is in Z. We also said that for any $a \in \mathbb{Z}$, that in \mathbb{Q} , a is defined as $\frac{a}{1}$.

- Using these definitions, prove the following. (i) We have $\frac{a}{b} + 0 = \frac{a}{b}$ for all $\frac{a}{b} \in \mathbb{Q}$. (ii) We have $\frac{a}{b} + \left(\frac{-a}{b}\right) = 0$ for all $\frac{a}{b} \in \mathbb{Q}$.
- (iii) We have $\frac{a}{b} \cdot \frac{b}{a} = 1$ for all $\frac{a}{b} \in \mathbb{Q}$ with $b \neq 0$. [You'll need to show that $\frac{c}{c} = 1$ for all $c \in \mathbb{Z}_{\neq 0}$.]
- 6. Real numbers. Recall that the set \mathcal{R} of Dedekind cuts is the subsets of \mathbb{Q} satisfying properties (i)-(iii) on page 30 of "Elementary analysis" (see below), with operations defined settheoretically. As in class, define $0^* = \{y \in \mathbb{Q} \mid y < 0\}$. You may assume all properties we listed about addition, multiplication, and comparisons in \mathbb{Q} , like associativity, commutativity, additive inverses, etc.

For $\alpha, \beta \in \mathcal{R}$, we defined $\alpha + \beta = \{a + b \mid a \in \alpha, b \in \beta\}$.

- (a) Briefly verify that $0^* \in \mathcal{R}$.
- (b) Prove that for $\alpha, \beta \in \mathcal{R}$, we have $\alpha + \beta \in \mathcal{R}$. You get to assume that α satisfies (i) $\alpha \neq \mathbb{Q}, \emptyset$; (ii) if $r \in \alpha$ and $s \in \mathbb{Q}$ satisfy s < r, then $s \in \alpha$; and (iii) α doesn't have a maximum (and similarly for β). Your goal is to show that $\alpha + \beta$ also satisfies those three properties.
- (c) Briefly check that $\{a \in \mathbb{Q} \mid a^3 < 2\}$ is a Dedekind cut, but $\{a \in \mathbb{Q} \mid a^2 < 2\}$ is not. [You many use arithmetic properties of \mathbb{Q} without proof.]
- (d) Show that $\alpha + 0^* = \alpha$ for all $\alpha \in \mathcal{R}$.