Throughout, let n be a non-zero integer, and let a, b, and c be integers.

1. Find the least residue of $a(\bmod n)$ for each of the following:
(a) $a=16, n=5$;
(b) $a=545, n=12$;
(c) $a=-33, n=22$, (d) $a=7, n=7$.
2. Show that if $a \equiv b(\bmod n)$, then $a^{k} \equiv b^{k}(\bmod n)$ for all $k \in \mathbb{Z}_{\geq 0}$.
3. Division.
(a) Show that if $\operatorname{gcd}(a, b)=1$, then $a c \equiv b c(\bmod n)$ implies $a \equiv b(\bmod n)$.
(b) Prove or disprove: For all integers a and b, if $a b \equiv 0(\bmod n)$, then $a \equiv 0(\bmod n)$ or $b \equiv 0$ $(\bmod n)$.
(c) Prove or disprove: For all integers $n>3$ and $a, b \in \mathbb{Z}$, if $a^{2} \equiv 4(\bmod n)$, then $a \equiv 2$ $(\bmod n)$.
4. Rewrite, fine-tune, and complete the book's proof of Fermat's little theorem.
5. While it is not true that $x^{m} \equiv_{m} x$ for all $m \in \mathbb{Z}_{\geq 2}, x \in \mathbb{Z}$, some generalizations of Fermat's little theorem hold.
(a) Find an example of $m \in \mathbb{Z}_{\geq 2}$ and $x \in \mathbb{Z}$ where $x^{m} \not \equiv_{m} x$.
(b) Show that $x^{3} \equiv_{6} x$ for all $x \in \mathbb{Z}$.
6. Classify each of the following as finite, countably infinite, or uncountable. Justify/prove your answers.
(a) The positive prime integers, $\left\{p \in \mathbb{Z}_{>0} \mid p\right.$ is prime $\}$.
(b) The rational numbers with denominators a power of $2,\left\{n / 2^{m} \mid n \in \mathbb{Z}, m \in \mathbb{Z}_{\geq 0}\right\}$.
(c) The complex numbers, \mathbb{C}.
(d) The irrational numbers, $\mathbb{R}-\mathbb{Q}$.
7. Show that for any set A, we have $|A|<|\mathcal{P}(A)|$, where $\mathcal{P}(A)$ is the power set of A. (See class notes.)
