Throughout, let n be a non-zero integer, and let a, b, and c be integers.

1. Find the least residue of $a \pmod{n}$ for each of the following:

(a)
$$a = 16, n = 5;$$
 (b) $a = 545, n = 12;$ (c) $a = -33, n = 22,$ (d) $a = 7, n = 7.$

- 2. Show that if $a \equiv b \pmod{n}$, then $a^k \equiv b^k \pmod{n}$ for all $k \in \mathbb{Z}_{\geq 0}$.
- 3. Division.
 - (a) Show that if gcd(a, b) = 1, then $ac \equiv bc \pmod{n}$ implies $a \equiv b \pmod{n}$.
 - (b) Prove or disprove: For all integers a and b, if $ab \equiv 0 \pmod{n}$, then $a \equiv 0 \pmod{n}$ or $b \equiv 0 \pmod{n}$.
 - (c) Prove or disprove: For all integers n > 3 and $a, b \in \mathbb{Z}$, if $a^2 \equiv 4 \pmod{n}$, then $a \equiv 2 \pmod{n}$.
- 4. Rewrite, fine-tune, and complete the book's proof of Fermat's little theorem.
- 5. While it is not true that $x^m \equiv_m x$ for all $m \in \mathbb{Z}_{\geq 2}$, $x \in \mathbb{Z}$, some generalizations of Fermat's little theorem hold.
 - (a) Find an example of $m \in \mathbb{Z}_{\geq 2}$ and $x \in \mathbb{Z}$ where $x^m \not\equiv_m x$.
 - (b) Show that $x^3 \equiv_6 x$ for all $x \in \mathbb{Z}$.
- 6. Classify each of the following as finite, countably infinite, or uncountable. Justify/prove your answers.
 - (a) The positive prime integers, $\{p \in \mathbb{Z}_{>0} \mid p \text{ is prime }\}$.
 - (b) The rational numbers with denominators a power of 2, $\{n/2^m \mid n \in \mathbb{Z}, m \in \mathbb{Z}_{>0}\}$.
 - (c) The complex numbers, \mathbb{C} .
 - (d) The irrational numbers, $\mathbb{R} \mathbb{Q}$.
- 7. Show that for any set A, we have $|A| < |\mathcal{P}(A)|$, where $\mathcal{P}(A)$ is the power set of A. (See class notes.)