
PROOF LAB II: INDUCTION – HINTS AND TIPS.

Outlining your proof:

1. Define P (n).
Rewrite the claim in the best way for you to use induction.

2. Compute base case(s).
Usually P (0) or P (1). You might have to do more than one base case to get the induction step to work.

3. Explicitly state your goal.
“Assume P (n) and prove P (n+ 1), which is. . . ”

4. Do inductive step.
This is usually where the real work happens.

5. State your conclusion.

Rewrite your proof: Your final draft should read something like

“We will prove this claim by induction on n. First, for n = a,∗ we have [COMPUTATION]. Next, fix n ≥ a
and assume [STATE THE CLAIM] for that value of n. Then [USE THAT ASSUMPTION TO SHOW

CLAIM FOR n+ 1]∗∗. Thus, by induction, the claim holds for all n ≥ a.”

Note: In my rewrite, I didn’t ever say anything about P (n). For example, compare the following
two writeups of the same inductive proof of n < 2n for all n ∈ Z≥0.

Proof by induction (first draft – don’t turn this in).

Define P (n): P (n) is “n < 2n”.
Base case: The least value of n is 0, so the base case is P (0):

0 < 1 = 20. X
Goal: Assume P (n) and show P (n+ 1), which is

P (n+ 1) : n+ 1 < 2n+1.
Inductive step: (Assume P (n) and show P (n+ 1))
Fix n ≥ 0 and assume n < 2n (this is the IH). Then since n ≥ 0,

n+ 1
IH
< 2n + 1 ≤ 2n + 2n = 2(2n) = 2n+1. X

Conclusion: So since P (0) is true, and P (n) implies P (n + 1), we have P (k) is true for all
k ∈ Z≥0.

�

Proof (final draft). For n = 0, we have
0 < 1 = 20,

as desired. Now, fix n ≥ 0 and assume n < 2n (for that n). Then since n ≥ 0, we have
n+ 1 < 2n + 1 ≤ 2n + 2n = 2(2n) = 2n+1.

Thus, the claim holds for all n ≥ 0 by induction. �

∗where a is something like 0 or 1 or 5—whatever the lower end of the domain of the problem is.
∗∗Don’t forget to point out where you use the “Induction Hypothesis”.



Problems. Prove each of the following using proof by induction. Assume throughout that n is
an integer.

I. (?) If x1, x2, ..., xn are odd integers, then their product,
n∏

i=1

xi is also odd.

[Note that x1, x2, ..., xn is an arbitrary list of odd numbers (you don’t get to choose what these
numbers are!).]

Hint: Since xi is odd, for each i, we can write xi = 2ki + 1 for some ki ∈ Z. Start with∏1
i=1 xi. Then for n ≥ 1, you have

∏n+1
i=1 xi = (

∏n
i=1 xi)xi+1.

II. (?) For all odd natural numbers n, n2 − 1 is divisible by 8.
[Warning: Do not induct on n. Instead, start by writing what it means for n to be odd.]

Hint: Since n is odd, we can write n = 2k+ 1 for some k ∈ Z. As implied above, you don’t
want to induct on n; you want to induct on k, starting with k = 0 (careful!! if n = 1, then
k = 0). Then n2 − 1 is divisible by 8 is equivalent to n2 − 1 = 8` for some ` ∈ Z. Plug in
n = 2k + 1 into that equation and simplify. Then move on to n = 2(k + 1) + 1.

III. (??) For all n ≥ 1 and 0 ≤ x ≤ π, we have sin(nx) ≤ n sin(x).
[You may use the angle addition formula for sin(x).]

Hint: Expand sin(nx+x) using the angle addition formula. Then you can use the fact that
cos(x) ≤ 1 for all x.

IV. (??) Let an = 22
n

+ 1. Then for all n ≥ 2, the last digit of an is 7. †

[Hint: Rephrase “last digit is 7” in terms of remainders.]

Hint: “The last digit of an is 7” is equivalent to an = 10k + 7 for some k ∈ Z≥0.

V. (? ? ?) The Fibonacci Numbers F1, F2, . . . , are defined by the recursive rule

F1 = 1 F2 = 1 and Fn+1 = Fn + Fn−1 for all n ≥ 3.

For all n ≥ 1, F5n is divisible by 5.
[Hint: For the induction step, let r be the remainder of F5n−1 when divided by 5.]

Hint: Working backwards, you have F5n+5 = F5n+4 + F5n+3, F5n+4 = F5n+3 + F5n+2, and
so on. You will assume something about F5n, so that’s how far back you’ll need to take that
computation.

†Fermat conjectured that for n ≥ 1, an is always prime. Indeed, a1 = 5, a2 = 17, a3 = 257, a4 = 65, 537 are all
prime. However, the conjecture fails for many large values of n (Fermat had a hard time checking because ai gets
really large quickly).



VI. (? ? ?) If u and v are differentiable functions of x, then

dn

dxn
uv =

n∑
k=0

(
n

k

)
ukvn−k,

where ui = di

dxiu and vi = di

dxi v.

[You will need to prove a lemma that shows
(
r
s

)
+
(

r
s+1

)
=
(
r+1
s+1

)
for all r, s ∈ Z≥0, to be proven

directly.]

Hint: Just try out the first few steps and see what happens. Namely,

d

dx
uv =

(
d

dx
u

)
v + u(

d

dx
v) = u1v0 + u0v1;

d2

dx2
uv =

d

dx
(u1v0 + u0v1))

=

(
d

dx
u1

)
v0 + u1(

d

dx
v0) +

(
d

dx
u0

)
v1 + u0(

d

dx
v1)

= u2v0 + u1v1 + u1v1 + u0v2

= u2v0 + 2u1v1 + u0v2 =
2∑

i=0

(
2

i

)
uiv2−i; and

d3

dx3
uv =

d

dx

(
d2

dx2
uv

)
=

d

dx

(
2∑

i=0

(
2

i

)
uiv2−i

)

=
2∑

i=0

(
2

i

)
d

dx
(uiv2−i) =

2∑
i=0

(
2

i

)
(ui+1v2−i + uiv2−i+1)

=

2∑
i=0

(
2

i

)
ui+1v2−i +

2∑
i=0

(
2

i

)
uiv2−i+1

= (u1v2 + 2u2v1 + u3v0) + (u0v3 + 2u1v2 + u2v1)

= u0v3 + 3u1v2 + 3u2v1 + u3v0.

Basically, this works exactly the same as the binomial theorem! To show the lemma
(
r
s

)
+
(

r
s+1

)
,

just plug in
(
a
b

)
= a!

b!(a−b)! , and simplify.


