PROOF LAB II: INDUCTION - HINTS AND TIPS.

Outlining your proof:

1. Define $P(n)$.

Rewrite the claim in the best way for you to use induction.
2. Compute base case(s).

Usually $P(0)$ or $P(1)$. You might have to do more than one base case to get the induction step to work.
3. Explicitly state your goal.
"Assume $P(n)$ and prove $P(n+1)$, which is. . ."
4. Do inductive step.

This is usually where the real work happens.
5. State your conclusion.

Rewrite your proof: Your final draft should read something like
"We will prove this claim by induction on n. First, for $n=a .^{*}$ we have [COMPUTATION]. Next, fix $n \geq a$ and assume [STATE THE CLAIM] for that value of n. Then [USE THAT ASSUMPTION TO SHOW CLAIM FOR $n+\left.1\right|^{* *}$. Thus, by induction, the claim holds for all $n \geq a$."

Note: In my rewrite, I didn't ever say anything about $P(n)$. For example, compare the following two writeups of the same inductive proof of $n<2^{n}$ for all $n \in \mathbb{Z}_{\geq 0}$.
Proof by induction (first draft - don't turn this in).
Define $P(n): P(n)$ is " $n<2^{n}$ ".
Base case: The least value of n is 0 , so the base case is $P(0)$:

$$
0<1=2^{0}
$$

Goal: Assume $P(n)$ and show $P(n+1)$, which is

$$
P(n+1): \quad n+1<2^{n+1}
$$

Inductive step: (Assume $P(n)$ and show $P(n+1)$)
Fix $n \geq 0$ and assume $n<2^{n}$ (this is the IH). Then since $n \geq 0$,

$$
n+1 \stackrel{\text { IH }}{<} 2^{n}+1 \leq 2^{n}+2^{n}=2\left(2^{n}\right)=2^{n+1}
$$

Conclusion: So since $P(0)$ is true, and $P(n)$ implies $P(n+1)$, we have $P(k)$ is true for all $k \in \mathbb{Z}_{\geq 0}$.

Proof (final draft). For $n=0$, we have

$$
0<1=2^{0}
$$

as desired. Now, fix $n \geq 0$ and assume $n<2^{n}$ (for that n). Then since $n \geq 0$, we have

$$
n+1<2^{n}+1 \leq 2^{n}+2^{n}=2\left(2^{n}\right)=2^{n+1}
$$

Thus, the claim holds for all $n \geq 0$ by induction.

[^0]Problems. Prove each of the following using proof by induction. Assume throughout that n is an integer.
I. (\star) If $x_{1}, x_{2}, \ldots, x_{n}$ are odd integers, then their product,

$$
\prod_{i=1}^{n} x_{i} \quad \text { is also odd. }
$$

[Note that $x_{1}, x_{2}, \ldots, x_{n}$ is an arbitrary list of odd numbers (you don't get to choose what these numbers are!).]

Hint: Since x_{i} is odd, for each i, we can write $x_{i}=2 k_{i}+1$ for some $k_{i} \in \mathbb{Z}$. Start with $\prod_{i=1}^{1} x_{i}$. Then for $n \geq 1$, you have $\prod_{i=1}^{n+1} x_{i}=\left(\prod_{i=1}^{n} x_{i}\right) x_{i+1}$.
II. (\star) For all odd natural numbers $n, n^{2}-1$ is divisible by 8 .
[Warning: Do not induct on n. Instead, start by writing what it means for n to be odd.]
Hint: Since n is odd, we can write $n=2 k+1$ for some $k \in \mathbb{Z}$. As implied above, you don't want to induct on n; you want to induct on k, starting with $k=0$ (careful!! if $n=1$, then $k=0$). Then $n^{2}-1$ is divisible by 8 is equivalent to $n^{2}-1=8 \ell$ for some $\ell \in \mathbb{Z}$. Plug in $n=2 k+1$ into that equation and simplify. Then move on to $n=2(k+1)+1$.
III. ($\star \star$) For all $n \geq 1$ and $0 \leq x \leq \pi$, we have $\sin (n x) \leq n \sin (x)$.
[You may use the angle addition formula for $\sin (x)$.]
Hint: Expand $\sin (n x+x)$ using the angle addition formula. Then you can use the fact that $\cos (x) \leq 1$ for all x.
IV. ($* *)$ Let $a_{n}=2^{2^{n}}+1$. Then for all $n \geq 2$, the last digit of a_{n} is 7 . \dagger
[Hint: Rephrase "last digit is 7 " in terms of remainders.]
Hint: "The last digit of a_{n} is 7 " is equivalent to $a_{n}=10 k+7$ for some $k \in \mathbb{Z}_{\geq 0}$.
V. $(\star \star \star)$ The Fibonacci Numbers F_{1}, F_{2}, \ldots, are defined by the recursive rule

$$
F_{1}=1 \quad F_{2}=1 \quad \text { and } \quad F_{n+1}=F_{n}+F_{n-1} \text { for all } n \geq 3 .
$$

For all $n \geq 1, F_{5 n}$ is divisible by 5 .
[Hint: For the induction step, let r be the remainder of $F_{5 n-1}$ when divided by 5.]
Hint: Working backwards, you have $F_{5 n+5}=F_{5 n+4}+F_{5 n+3}, F_{5 n+4}=F_{5 n+3}+F_{5 n+2}$, and so on. You will assume something about $F_{5 n}$, so that's how far back you'll need to take that computation.

[^1]VI. ($\star \star \star$) If u and v are differentiable functions of x, then
$$
\frac{d^{n}}{d x^{n}} u v=\sum_{k=0}^{n}\binom{n}{k} u_{k} v_{n-k},
$$
where $u_{i}=\frac{d^{i}}{d x^{i}} u$ and $v_{i}=\frac{d^{i}}{d x^{i}} v$.
[You will need to prove a lemma that shows $\binom{r}{s}+\binom{r}{s+1}=\binom{r+1}{s+1}$ for all $r, s \in \mathbb{Z}_{\geq 0}$, to be proven directly.]

Hint: Just try out the first few steps and see what happens. Namely,

$$
\begin{aligned}
\frac{d}{d x} u v & =\left(\frac{d}{d x} u\right) v+u\left(\frac{d}{d x} v\right)=u_{1} v_{0}+u_{0} v_{1} ; \\
\frac{d^{2}}{d x^{2}} u v & \left.=\frac{d}{d x}\left(u_{1} v_{0}+u_{0} v_{1}\right)\right) \\
& =\left(\frac{d}{d x} u_{1}\right) v_{0}+u_{1}\left(\frac{d}{d x} v_{0}\right)+\left(\frac{d}{d x} u_{0}\right) v_{1}+u_{0}\left(\frac{d}{d x} v_{1}\right) \\
& =u_{2} v_{0}+u_{1} v_{1}+u_{1} v_{1}+u_{0} v_{2} \\
& =u_{2} v_{0}+2 u_{1} v_{1}+u_{0} v_{2}=\sum_{i=0}^{2}\binom{2}{i} u_{i} v_{2-i} ; \quad \text { and } \\
\frac{d^{3}}{d x^{3}} u v & =\frac{d}{d x}\left(\frac{d^{2}}{d x^{2}} u v\right)=\frac{d}{d x}\left(\sum_{i=0}^{2}\binom{2}{i} u_{i} v_{2-i}\right) \\
& =\sum_{i=0}^{2}\binom{2}{i} \frac{d}{d x}\left(u_{i} v_{2-i}\right)=\sum_{i=0}^{2}\binom{2}{i}\left(u_{i+1} v_{2-i}+u_{i} v_{2-i+1}\right) \\
& =\sum_{i=0}^{2}\binom{2}{i} u_{i+1} v_{2-i}+\sum_{i=0}^{2}\binom{2}{i} u_{i} v_{2-i+1} \\
& =\left(u_{1} v_{2}+2 u_{2} v_{1}+u_{3} v_{0}\right)+\left(u_{0} v_{3}+2 u_{1} v_{2}+u_{2} v_{1}\right) \\
& =u_{0} v_{3}+3 u_{1} v_{2}+3 u_{2} v_{1}+u_{3} v_{0} .
\end{aligned}
$$

Basically, this works exactly the same as the binomial theorem! To show the lemma $\binom{r}{s}+\binom{r}{s+1}$, just plug in $\binom{a}{b}=\frac{a!}{b!(a-b)!}$, and simplify.

[^0]: *where a is something like 0 or 1 or 5 -whatever the lower end of the domain of the problem is.
 **Don't forget to point out where you use the "Induction Hypothesis".

[^1]: ${ }^{\dagger}$ Fermat conjectured that for $n \geq 1, a_{n}$ is always prime. Indeed, $a_{1}=5, a_{2}=17, a_{3}=257, a_{4}=65,537$ are all prime. However, the conjecture fails for many large values of n (Fermat had a hard time checking because a_{i} gets really large quickly).

