PROOF LAB I: DIRECT PROOF

Instructions:

Step 1 (Today).

Work together with your group to finish the full set of exercises.

Step 2 (This weekend and next week).

Each person: pick $8 \star$'s worth of exercises, and write up careful drafts of the proofs. Include key definitions and thorough reasoning-think about writing to convince a student taking Bridge next semester. Make sure a novice could follow and locate all critical components of the proof. See portfolio guidelines for further instruction.

Step 3 (By next Thursday).

Swap drafts with a peer editor. (Consider getting a peer's email address and sending them a pdf before class on Thursday.)

Provide written constructive criticism for your partner: Are key definitions included? Is the reasoning mathematically accurate? Are the key components of the proof easy to recognize? Is the notation clear? Would a few additional comments help a novice reader to follow more easily? Can the explanation be made more clean and concise?

Step 4 (Tuesday 10/16).
Turn in your proof second drafts, and comments from at least one peer editor on first drafts. (You will provide two versions of each proof-one first draft with comments, and one rewritten draft. Homework without peer editor comments will not be accepted.)

Note: To prove that multiple statements $X_{1}, X_{2}, \ldots, X_{n}$ are all equivalent, we showed on Homework $6 \# 3$ that you can either prove
(1) $X_{1} \Leftrightarrow X_{2}, X_{2} \Leftrightarrow X_{3}, \ldots$, and $X_{n-1} \Leftrightarrow X_{n}$, or (2) $X_{1} \Rightarrow X_{2} \Rightarrow \cdots \Rightarrow X_{n} \Rightarrow X_{1}$.

Theorem (Binomial theorem). For all real numbers a and b, and non-negative integers n, we have

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
$$

where $\binom{n}{k}=$ " n choose $k "=\frac{n!}{k!(n-k)!}$.
Recall that $n!=n(n-1) \cdots 2 \cdot 1$, where $0!=1$. In particular, $\binom{n}{k}$ is the number of ways to pick a subset of size k from a set of size n.

Example: We have
$\binom{4}{0}=\frac{4!}{0!4!}=1, \quad\binom{4}{1}=\frac{4!}{1!3!}=4, \quad\binom{4}{2}=\frac{4!}{2!2!}=6, \quad\binom{4}{3}=\frac{4!}{3!1!}=4, \quad$ and $\quad\binom{4}{4}=\frac{4!}{4!0!}=1$.
So $(a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$.

Problems. Complete each of the following using a direct proof.
I. (\star) Show that for positive real numbers x and y, we have $x>y$ if and only if $x^{2}>y^{2}$.
II. (\star) Let x be an integer. Prove that x^{n} is odd if and only if x is odd. (Hint: One direction uses the "binomial theorem", given above.)
III. ($\star \star$) Let $f: X \rightarrow Y$ be a function between two sets X and Y. Suppose A and B are subsets of X. Show that $f(A \cup B)=f(A) \cup f(B)$.
IV. $(\star \star)$ Let X be a set, and let A and B be subsets of X. Prove $B-A=(A \cup B)-A$.
V. $(\star \star \star)$ Suppose x and y are rational numbers such that $x<y$. Prove that there exists $z \in \mathbb{Q}$ such that $x<z<y$. That is, between every two rationals there exists another rational.
VI. ($\star \star \star$) Prove that the following statements are equivalent for A and B subsets of X.
(i) $A \subseteq B$,
(ii) $A \cap B^{c}=\emptyset$,
(iii) $A^{c} \cup B=X$.
VII. $(\star \star \star)$ Prove that the following statements are equivalent.
(i) There exists unique x such that $P(x)$ is true.
(ii) There exists x such that (a) $P(x)$ holds and (b) for all y, we have $P(y) \Rightarrow y=x$.
(iii) There exists x so that for all $y, P(y)$ is true if and only if $y=x$.
(iv) There exists x such that $P(x)$ holds, and for all y and z, we have $(P(y) \wedge P(z)) \Rightarrow y=z$.
VIII. $(\star \star \star)$ Let $x_{1}, x_{2}, x_{3}, \ldots x_{n}$ be an arrangement of the numbers $1,2,3, \ldots n$. (For example if $n=5$ we could have $x_{1}=4, x_{2}=3, x_{3}=5, x_{4}=1, x_{5}=2$.) Prove that if n is odd, then $\left(x_{1}-1\right)\left(x_{2}-2\right)\left(x_{3}-3\right) \cdots\left(x_{n}-n\right)$ is even.
(Hint: Consider sums rather than products. You may use the fact that if the sum of some integers n_{1}, \ldots, n_{ℓ} is even, and exactly m of those are odd, then m is even.)

