PROOF LAB I: DIRECT PROOF - HINTS

I. (\star) Show that for positive real numbers x and y, we have $x>y$ if and only if $x^{2}>y^{2}$.

HINT(S):

- Compare x^{2} and y^{2} to $x y$ using the fact that "If $a>0$, then $b>c$ if and only if $a b>a c$ ".
II. (\star) Let x be an integer. Prove that x^{n} is odd if and only if x is odd. (Hint: One direction uses the "binomial theorem", given above.)

HINT(S):

- Specifically, to prove " x is odd" \Rightarrow " x^{n} is odd", you'll need the binomial theorem.
- To show something is odd, you need to write it as 2 (some integer) +1 .
- I think it's easiest to show " x^{n} is odd" \Rightarrow " x is odd" by showing the contrapositive. DOn't try to take an nth root!
III. ($\star \star$) Let $f: X \rightarrow Y$ be a function between two sets X and Y. Suppose A and B are subsets of X. Show that $f(A \cup B)=f(A) \cup f(B)$.

HINT(S):

- Start, for your own benefit, by writing the (set) definition of $f(A \cup B), f(A), f(B)$, and $f(A) \cup f(B)$.
- Go back to lecture 9, and use the set equality proof technique. Namely, start with "Let $x \in f(A \cup B)$. Then.... So $x \in f(A) \cup f(B)$." Then vice versa.
IV. $(\star \star)$ Let X be a set, and let A and B be subsets of X. Prove $B-A=(A \cup B)-A$.

HINT(S):

- Again, go back to the lecture 9 notes, and use the set equality proof technique. Namely, start with "Let $x \in B-A$ " and go from there.
V. $(\star \star \star)$ Suppose x and y are rational numbers such that $x<y$. Prove that there exists $z \in \mathbb{Q}$ such that $x<z<y$. That is, between every two rationals there exists another rational.

HINT(S):

- If you use the "midpoint", $z=(x+y) / 2$, you must prove that it is both rational and strictly between x and y. Try not to use "theorems" that we haven't proven.
VI. ($\star \star \star$) Prove that the following statements are equivalent for A and B subsets of X.
(i) $A \subseteq B$,
(ii) $A \cap B^{c}=\emptyset$,
(iii) $A^{c} \cup B=X$.

HINT(S):

- Try showing $(A \subseteq B) \Rightarrow\left(A \cap B^{c}=\emptyset\right)$
("Let $x \in A \cap B^{c}$. Then since $A \subset B, \ldots$); $\left(A \cap B^{c}=\emptyset\right) \Rightarrow\left(A^{c} \cup B=X\right) ;$
("Let $x \in A^{c} \cup B$. Then since $A \cap B^{c}=\emptyset, \ldots$);
and
$\left(A^{c} \cup B=X\right) \Rightarrow(A \subseteq B)$
("Let $x \in A$. Then since $A^{c} \cup B=X, \ldots$);
VII. $(\star \star \star)$ Prove that the following statements are equivalent.
(i) There exists unique x such that $P(x)$ is true.
(ii) There exists x such that (a) $P(x)$ holds and (b) for all y, we have $P(y) \Rightarrow y=x$.
(iii) There exists x so that for all $y, P(y)$ is true if and only if $y=x$.
(iv) There exists x such that $P(x)$ holds, and for all y and z, we have $(P(y) \wedge P(z)) \Rightarrow y=z$.

HINT(S):

- "There exists unique x such that $P(x)$ is true" means two things: there exists an x such that $P(x)$ is true; and there is not more than one x such that $P(x)$ is true.
- Most of these are just rewording the first statement-it's your job to make sure the first statement has been reworded correctly.
VIII. $(\star \star \star)$ Let $x_{1}, x_{2}, x_{3}, \ldots x_{n}$ be an arrangement of the numbers $1,2,3, \ldots n$. (For example if $n=5$ we could have $x_{1}=4, x_{2}=3, x_{3}=5, x_{4}=1, x_{5}=2$.) Prove that if n is odd, then $\left(x_{1}-1\right)\left(x_{2}-2\right)\left(x_{3}-3\right) \cdots\left(x_{n}-n\right)$ is even.
(Hint: Consider sums rather than products. You may use the fact that if the sum of some integers n_{1}, \ldots, n_{ℓ} is even, and exactly m of those are odd, then m is an even number.)

HINT(S):

- The hint above asks for you to notice that $x_{1}+x_{2}+\cdots+x_{n}=1+2+\cdots+n$. Now, subtract $1+2+\cdots+n$ from both sides and rearrange so that you're saying something about the sum of $\left(x_{i}-i\right)$'s.

