PROOF LAB I: DIRECT PROOF - HINTS

I. (*) Show that for positive real numbers x and y, we have x > y if and only if $x^2 > y^2$.

HINT(S): • Compare x^2 and y^2 to xy using the fact that "If a > 0, then b > c if and only if ab > ac".

II. (*) Let x be an integer. Prove that x^n is odd if and only if x is odd. (Hint: One direction uses the "binomial theorem", given above.)

HINT(S):

- Specifically, to prove "x is odd" \Rightarrow "xⁿ is odd", you'll need the binomial theorem.
- To show something is odd, you need to write it as 2(some integer) + 1.
- I think it's easiest to show " x^n is odd" \Rightarrow "x is odd" by showing the contrapositive. DOn't try to take an nth root!
- III. $(\star \star)$ Let $f: X \to Y$ be a function between two sets X and Y. Suppose A and B are subsets of X. Show that $f(A \cup B) = f(A) \cup f(B)$.

HINT(S):

- Start, for your own benefit, by writing the (set) definition of $f(A \cup B)$, f(A), f(B), and $f(A) \cup f(B)$.
- Go back to lecture 9, and use the set equality proof technique. Namely, start with "Let $x \in f(A \cup B)$. Then... So $x \in f(A) \cup f(B)$." Then vice versa.
- IV. $(\star \star)$ Let X be a set, and let A and B be subsets of X. Prove $B A = (A \cup B) A$.

HINT(S):

- Again, go back to the lecture 9 notes, and use the set equality proof technique. Namely, start with "Let $x \in B A$ " and go from there.
- V. $(\star \star \star)$ Suppose x and y are rational numbers such that x < y. Prove that there exists $z \in \mathbb{Q}$ such that x < z < y. That is, between every two rationals there exists another rational.

HINT(S):

• If you use the "midpoint", z = (x+y)/2, you must prove that it is both rational and strictly between x and y. Try not to use "theorems" that we haven't proven.

VI. $(\star \star \star)$ Prove that the following statements are equivalent for A and B subsets of X.

(i) $A \subseteq B$, (ii) $A \cap B^c = \emptyset$, (iii) $A^c \cup B = X$. HINT(S): • Try showing $(A \subseteq B) \Rightarrow (A \cap B^c = \emptyset)$ ("Let $x \in A \cap B^c$. Then since $A \subset B$, ...); $(A \cap B^c = \emptyset) \Rightarrow (A^c \cup B = X)$; ("Let $x \in A^c \cup B$. Then since $A \cap B^c = \emptyset$, ...); and $(A^c \cup B = X) \Rightarrow (A \subseteq B)$ ("Let $x \in A$. Then since $A^c \cup B = X$, ...);

VII. $(\star \star \star)$ Prove that the following statements are equivalent.

- (i) There exists unique x such that P(x) is true.
- (ii) There exists x such that (a) P(x) holds and (b) for all y, we have $P(y) \Rightarrow y = x$.
- (iii) There exists x so that for all y, P(y) is true if and only if y = x.
- (iv) There exists x such that P(x) holds, and for all y and z, we have $(P(y) \land P(z)) \Rightarrow y = z$.

HINT(S):

- "There exists unique x such that P(x) is true" means two things: there exists an x such that P(x) is true; and there is not more than one x such that P(x) is true.
- Most of these are just rewording the first statement—it's your job to make sure the first statement has been reworded correctly.

VIII. $(\star \star \star)$ Let $x_1, x_2, x_3, \ldots x_n$ be an arrangement of the numbers $1, 2, 3, \ldots n$. (For example if n = 5 we could have $x_1 = 4, x_2 = 3, x_3 = 5, x_4 = 1, x_5 = 2$.) Prove that if n is odd, then $(x_1 - 1)(x_2 - 2)(x_3 - 3) \cdots (x_n - n)$ is even.

(Hint: Consider sums rather than products. You may use the fact that if the sum of some integers n_1, \ldots, n_ℓ is even, and exactly m of those are odd, then m is an even number.)

HINT(S):

• The hint above asks for you to notice that $x_1 + x_2 + \cdots + x_n = 1 + 2 + \cdots + n$. Now, subtract $1 + 2 + \cdots + n$ from both sides and rearrange so that you're saying something about the sum of $(x_i - i)$'s.