## PROOF LAB III: CONTRADICTION

Problems. Prove each of the following using proof by contradiction.
I. ( $\star$ ) For two integers $a$ and $b$, assume that $4 \mid\left(a^{2}+b^{2}\right)$. Then at least one of $a$ or $b$ is even.

Hint: Then negation of "at least one of $a$ or $b$ is even" is " $a$ and $b$ are both odd". So start with, "Suppose $a$ and $b$ are odd, so that $a=2 k+1$ and $b=2 \ell+1$ for some $k, \ell \in \mathbb{Z}$."
II. ( $\star$ ) Let $a, b, c \in \mathbb{Z}$. Assume that $\operatorname{gcd}(a, b)=1$ and $a b=c^{2}$. Then both $a$ and $b$ are squares of integers.

Hint: Consider the prime factorizations of $a, b$, and $c$.
III. ( $\star \star$ ) Let $\triangle A B C$ be a right triangle. Then at least one of the sides has either non-integer length or even-integer length.
[Hint: Start by drawing a picture, and writing a corresponding equation about the lengths of the triangle's sides. Then rewrite the statement "At least one of the sides has either noninteger length or even-integer length" as an if-then statement.]

Hint: Call the sides of the right triangle $a, b$, and $c$, with $c$ being the length of the hypotenuse. Thus $a^{2}+b^{2}=c^{2}$. Now we can rewrite "At least one of the sides has either non-integer length or even-integer length" as "If $a, b, c \in \mathbb{Z}$ then at least one of $a, b$, or $c$ is even." Therefore the negation is "There exists a solution $a, b, c \in \mathbb{Z}$ such that $a, b$, and $c$ are all odd."
IV. $\left(\star \star\right.$ ) The none of the roots of $f(x)=x^{3}+x+1$ are rational.

Hint: The negation of "none of the roots are rational" is "there exists a rational root." So start with "Let $x \in \mathbb{Q}$ satisfy $x^{3}+x+1=0$. Since $x \in \mathbb{Q}$, there exist $a, b \in \mathbb{Z}$ such that $x=a / b$."
V. $(\star \star)$ Let $n>1$ be a positive integer that is not prime (i.e. is composite). Then $n$ has a prime divisor less than or equal to $\sqrt{n}$.

Hint: We have proven that every positive integer has a prime factorization, so start with "Since $n \in \mathbb{Z}_{>1}$, we can write $n=p_{1} \cdots p_{\ell}$ for some (not necessarily distinct) primes $p_{1}, \ldots$, $p_{\ell}$. And since $n$ is composite, $\ell \geq 2$." Then the negation of " $n$ has a prime divisor less than or equal to $\sqrt{n}$ " is " $p_{i} \geq \sqrt{n}$ for all $i$."
VI. Pick one:
$(\star)$ If $x$ and $y$ are positive real numbers, then $\sqrt{x+y} \neq \sqrt{x}+\sqrt{y}$.
$(\star \star \star)$ If $x$ and $y$ are non-zero real numbers, then $\sqrt{x+y} \neq \sqrt{x}+\sqrt{y}$.

Hint: Why is the second part worth so many more stars? Well, in the positive real numbers, $x \mapsto \sqrt{x}$ is a function; where we always map $x$ to the positive real number whose square is $x$. But if $x$ is a negative real number, then when we go to take a square root, we find that we're actually living in $\mathbb{C}$. And in $\mathbb{C}, x \mapsto \sqrt{x}$ isn't a function. Namely, $\sqrt{x}$ stands for any solution to the equation $y^{2}=x$ ( $x$ is fixed; solve for $y$ ). So the added difficulty isn't in the problem solving or setting up the contradiction; it's in the care that you must take in writing the solution. The danger is in getting a 0 on the "fluency" and "validity" portions.
VII. $(\star \star \star)$ Let $A \subseteq \mathbb{R}$. We say $A$ is dense in $\mathbb{R}$ if for every open interval $(a, b)=\{x \in \mathbb{R} \mid a<x<b\}$ in $\mathbb{R}$, there is at least one element of $A$ in $(a, b)$, i.e. $(a, b) \cap A \neq \emptyset$.
Claim: The set of rational numbers $\mathbb{Q}$ and the set of irrational numbers $X=\mathbb{R}-\mathbb{Q}$ are both dense in $\mathbb{R}$.
[Note: This basically, is a two-part problem-(1) show $\mathbb{Q}$ is dense in $\mathbb{R}$, and (2) show $\mathbb{R}-\mathbb{Q}$ is dense in $\mathbb{R}$. You do not have to prove both by contradiction-you are just required to use proof by contradiction somewhere in your proof.]

Hint: Let $(x, y)$ be an interval in $\mathbb{R}$. For (1), since $y>x$, we have $y-x>0$. Let $n$ be the smallest integer strictly greater than $1 /(y-x)$ (in particular, $n \geq 1$ ). Then $0<1 / n<y-x$. Can you prove that the intersection of $\{m / n \mid m \in \mathbb{Z}\}$ and $(a, b)$ is non-empty?

For (2), show that $\mathbb{Q}+\sqrt{2}=\{x+\sqrt{2} \mid x \in \mathbb{Q}\}$ is a subset of $\mathbb{R}-\mathbb{Q}$ (every number of the form $m / n+\sqrt{2}$ with $m, n \in \mathbb{Z}$ is irrational); and then show $\mathbb{Q}+\sqrt{2}$ is dense in $\mathbb{R}$.

