
PROOF LAB III: CONTRADICTION

Problems. Prove each of the following using proof by contradiction.

I. (?) For two integers a and b, assume that 4|(a2 + b2). Then at least one of a or b is even.

Hint: Then negation of “at least one of a or b is even” is “a and b are both odd”. So start
with, “Suppose a and b are odd, so that a = 2k + 1 and b = 2` + 1 for some k, ` ∈ Z.”

II. (?) Let a, b, c ∈ Z. Assume that gcd(a, b) = 1 and ab = c2. Then both a and b are squares of
integers.

Hint: Consider the prime factorizations of a, b, and c.

III. (? ?) Let 4ABC be a right triangle. Then at least one of the sides has either non-integer
length or even-integer length.

[Hint: Start by drawing a picture, and writing a corresponding equation about the lengths
of the triangle’s sides. Then rewrite the statement “At least one of the sides has either non-
integer length or even-integer length” as an if-then statement.]

Hint: Call the sides of the right triangle a, b, and c, with c being the length of the hy-
potenuse. Thus a2 + b2 = c2. Now we can rewrite “At least one of the sides has either
non-integer length or even-integer length” as “If a, b, c ∈ Z then at least one of a, b, or c is
even.” Therefore the negation is “There exists a solution a, b, c ∈ Z such that a, b, and c are
all odd.”

IV. (? ?) The none of the roots of f(x) = x3 + x + 1 are rational.

Hint: The negation of “none of the roots are rational” is “there exists a rational root.” So
start with “Let x ∈ Q satisfy x3 + x + 1 = 0. Since x ∈ Q, there exist a, b ∈ Z such that
x = a/b.”

V. (? ?) Let n > 1 be a positive integer that is not prime (i.e. is composite). Then n has a prime
divisor less than or equal to

√
n.

Hint: We have proven that every positive integer has a prime factorization, so start with
“Since n ∈ Z>1, we can write n = p1 · · · p` for some (not necessarily distinct) primes p1, . . . ,
p`. And since n is composite, ` ≥ 2.” Then the negation of “n has a prime divisor less than
or equal to

√
n” is “pi ≥

√
n for all i.”
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VI. Pick one:
(?) If x and y are positive real numbers, then

√
x + y 6=

√
x +
√
y.

(? ? ?) If x and y are non-zero real numbers, then
√
x + y 6=

√
x +
√
y.

Hint: Why is the second part worth so many more stars? Well, in the positive real numbers,
x 7→

√
x is a function; where we always map x to the positive real number whose square is

x. But if x is a negative real number, then when we go to take a square root, we find that
we’re actually living in C. And in C, x 7→

√
x isn’t a function. Namely,

√
x stands for any

solution to the equation y2 = x (x is fixed; solve for y). So the added difficulty isn’t in the
problem solving or setting up the contradiction; it’s in the care that you must take in writing
the solution. The danger is in getting a 0 on the “fluency” and ”validity” portions.

VII. (? ? ?) Let A ⊆ R. We say A is dense in R if for every open interval (a, b) = {x ∈ R | a < x < b}
in R, there is at least one element of A in (a, b), i.e. (a, b) ∩A 6= ∅.
Claim: The set of rational numbers Q and the set of irrational numbers X = R−Q are both
dense in R.

[Note: This basically, is a two-part problem—(1) show Q is dense in R, and (2) show R − Q
is dense in R. You do not have to prove both by contradiction—you are just required to use
proof by contradiction somewhere in your proof.]

Hint: Let (x, y) be an interval in R. For (1), since y > x, we have y − x > 0. Let n be the
smallest integer strictly greater than 1/(y − x) (in particular, n ≥ 1). Then 0 < 1/n < y − x.
Can you prove that the intersection of {m/n | m ∈ Z} and (a, b) is non-empty?

For (2), show that Q +
√

2 = {x +
√

2 | x ∈ Q} is a subset of R−Q (every number of the
form m/n +

√
2 with m,n ∈ Z is irrational); and then show Q +

√
2 is dense in R.


