Strategy for Integration

As we have seen, integration is more challenging than differentiation. In finding the deriv-
ative of a function it is obvious which differentiation formula we should apply. But it may
not be obvious which technique we should use to integrate a given function.

Until now individual techniques have been applied in each section. For instance, we usu-
ally used substitution in Exercises 4.5, integration by parts in Exercises 7.1, and partial frac-
tions in Exercises 7.4. But in this section we present a collection of miscellaneous integrals
in random order and the main challenge is to recognize which technique or formula to use.
No hard and fast rules can be given as to which method applies in a given situation, but we
give some advice on strategy that you may find useful.

A prerequisite for applying a strategy is a knowledge of the basic integration formulas.
In the following table we have collected the integrals from our previous list together with
several additional formulas that we have learned in this chapter. Most of them should be
memorized. It is useful to know them all, but the ones marked with an asterisk need not be



memorized since they are easily derived. Formula 19 can be avoided by using partial frac-
tions, and trigonometric substitutions can be used in place of Formula 20.

Table of Integration Formulas Constants of integration have been omitted.
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Once you are armed with these basic integration formulas, if you don’t immediately see
how to attack a given integral, you might try the following four-step strategy.

1. Simplify the Integrand if Possible Sometimes the use of algebraic manipulation
or trigonometric identities will simplify the integrand and make the method of
integration obvious. Here are some examples:

fﬁ(l +\/;)dx=f(\/;+x)dx

tan 6 sin 0
do = ’0de
j sec’6 j cos 6 o

- f sin 6 cos 0dO = %jsin 20d6

f (sin x + cos x)*dx = f (sin®x + 2 sin x cos x + cos’x) dx

=J.(l + 2 sin x cos x) dx



2. Look for an Obvious Substitution Try to find some function u = g(x) in the
integrand whose differential du = ¢'(x) dx also occurs, apart from a constant fac-
tor. For instance, in the integral

f_xzx_ N dx

we notice that if u = x> — 1, then du = 2x dx. Therefore we use the substitu-
tion u = x> — 1 instead of the method of partial fractions.

3. Classify the Integrand According to Its Form If Steps 1 and 2 have not led to the

solution, then we take a look at the form of the integrand f(x).

(a) Trigonometric functions. If f(x) is a product of powers of sin x and cos x,
of tan x and sec x, or of cot x and csc x, then we use the substitutions recom-
mended in Section 7.2.

(b) Rational functions. If f is a rational function, we use the procedure of Sec-
tion 7.4 involving partial fractions.

(c) Integration by parts. If f(x) is a product of a power of x (or a polynomial) and
a transcendental function (such as a trigonometric, exponential, or logarithmic
function), then we try integration by parts, choosing u and dv according to the
advice given in Section 7.1. If you look at the functions in Exercises 7.1, you
will see that most of them are the type just described.

(d) Radicals. Particular kinds of substitutions are recommended when certain
radicals appear.

(i) If v/£x2 £ a? occurs, we use a trigonometric substitution according to the
table in Section 7.3.

(i1) If {/ax + b occurs, we use the rationalizing substitution u = +/ax + b.
More generally, this sometimes works for {/g(x) .

4. Try Again If the first three steps have not produced the answer, remember that

there are basically only two methods of integration: substitution and parts.

(a) Try substitution. Even if no substitution is obvious (Step 2), some inspiration
or ingenuity (or even desperation) may suggest an appropriate substitution.

(b) Try parts. Although integration by parts is used most of the time on products
of the form described in Step 3(c), it is sometimes effective on single func-
tions. Looking at Section 7.1, we see that it works on tan™'x, sin”'x, and In x,
and these are all inverse functions.

(¢) Manipulate the integrand. Algebraic manipulations (perhaps rationalizing the
denominator or using trigonometric identities) may be useful in transforming
the integral into an easier form. These manipulations may be more substantial
than in Step |1 and may involve some ingenuity. Here is an example:

1+cosx jl+cosx
— dx

jl—cosxzjl—cosx. 1+cosx

1 F cosix COS X
= J. dx = cscix + dx
sin’x sin’x

(d) Relate the problem to previous problems. When you have built up some expe-
rience in integration, you may be able to use a method on a given integral that
is similar to a method you have already used on a previous integral. Or you
may even be able to express the given integral in terms of a previous one. For

1 — cos’x




instance, | tan’x sec x dx is a challenging integral, but if we make use of the
identity tan’x = sec’x — 1, we can write

ftanzx sec x dx = f sec’x dx — f sec x dx

and if f sec’x dx has previously been evaluated (see Example 8 in Section 7.2),
then that calculation can be used in the present problem.

(e) Use several methods. Sometimes two or three methods are required to evalu-
ate an integral. The evaluation could involve several successive substitutions
of different types, or it might combine integration by parts with one or more
substitutions.

In the following examples we indicate a method of attack but do not fully work out the
integral.

ks

In Step 1 we rewrite the integral:

({0) X

tan’x
f —dx = f tan’x sec’x dx
cos’x

The integral is now of the form f tan”x sec”"x dx with m odd, so we can use the advice in
Section 7.2.
Alternatively, if in Step 1 we had written

f tan’x 5 j sin’x J. sin’x
x — —
cos’x cos’x cos x cos x

then we could have continued as follows with the substitution # = cos x:

s

sin’x 1 — cos’x . 1 —u?

f g x—j smxdx=f (—du)
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According to (ii) in Step 3(d), we substitute u = \/; . Then x = u?, so dx = 2u du and
j eV dx =2 f ue"du

The integrand is now a product of u and the transcendental function e“ so it can be inte-
grated by parts. s
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No algebraic simplification or substitution is obvious, so Steps 1 and 2 don’t apply here.
The integrand is a rational function so we apply the procedure of Section 7.4, remember-
ing that the first step is to divide. .

dx
EXAMPLE q f S
m x+/In x

Here Step 2 is all that is needed. We substitute # = In x because its differential is
du = dx/x, which occurs in the integral. e

1_
(VI EXAMPLE 5 f,/ler dx
X

Although the rationalizing substitution

laiion
1=

works here [(ii) in Step 3(d)], it leads to a very complicated rational function. An easier
method is to do some algebraic manipulation [either as Step 1 or as Step 4(c)]. Multiply-
ing numerator and denominator by 4/1 — x, we have

= = 5
d= oseate it i
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B Can We Integrate All Continuous Functions?

The question arises: Will our strategy for integration enable us to find the integral of every
continuous function? For example, can we use it to evaluate | ¢* dx? The answer is No, at
least not in terms of the functions that we are familiar with.

The functions that we have been dealing with in this book are called elementary func-
tions. These are the polynomials, rational functions, power functions (x“), exponential func-
tions (a*), logarithmic functions, trigonometric and inverse trigonometric functions,
hyperbolic and inverse hyperbolic functions, and all functions that can be obtained from
these by the five operations of addition, subtraction, multiplication, division, and composi-
tion. For instance, the function

x2—1
X +2x—1

sin 2x

flx) = + In(cosh x) — xe
is an elementary function.
If f is an elementary function, then f’ is an elementary function but f f(x) dx need not
. . 2 . . . . . .
be an elementary function. Consider f(x) = e*. Since f is continuous, its integral exists,
and if we define the function F by

Fx) = jo" e’ di
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Exercises

then we know from Part 1 of the Fundamental Theorem of Calculus that
F'(x) = e

Thus f(x) = ¢* has an antiderivative F, but it has been proved that F is not an elementary
functlon This means that no matter how hard we try, we will never succeed in evaluating
f e dx in terms of the functions we know. (In Chapter 11, however, we will see how to
express j‘e dx as an infinite series.) The same can be said of the following integrals:

f %x dx J sin(x?) dx f cos(e”) dx

f\/mdx j——dx fsmxdx

X

In fact, the majority of elementary functions don’t have elementary antiderivatives. You may
be assured, though, that the integrals in the following exercises are all elementary functions.
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