
Warm up

Recall from last time, given a polar curve r = r(✓),

dy

dx

=

dy

d✓

,
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=

d

d✓

(r(✓) sin(✓))

d
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(r(✓) cos(✓))

=

r

0
(✓) sin(✓) + r(✓) cos(✓)

r

0
(✓) cos(✓)� r(✓) sin(✓)

.

1. Last time, we calculated that for the cardioid
r(✓) = 1 + sin(✓),

dy

d✓

= cos(✓)(1 + 2 sin(✓))

dx

d✓

= (1 + sin(✓))(1� 2 sin(✓)).

For what ✓ are the tangent lines to this cardioid horizontal?
vertical?

2. Calculate dy/dx for the following polar curves. What are the
slopes at which each curve crosses the x and y axes?
(a) r(✓) = 2

(b) r(✓) = ✓

(c) r(✓) = cos(2✓)



Area

Recall that the area of a wedge of a circle with angle ✓ is given by

shaped only for certain values of and . (Cassini thought
that these curves might represent planetary orbits better
than Kepler’s ellipses.) Investigate the variety of shapes
that these curves may have. In particular, how are and
related to each other when the curve splits into two parts?

67. Let be any point (except the origin) on the curve
. If is the angle between the tangent line at

and the radial line , show that

[Hint: Observe that in the figure.]

68. (a) Use Exercise 67 to show that the angle between the
tangent line and the radial line is at every
point on the curve .

; (b) Illustrate part (a) by graphing the curve and the tangent
lines at the points where and .

(c) Prove that any polar curve with the property
that the angle between the radial line and the tangent
line is a constant must be of the form , where

and are constants.
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ca

ca; 62. Use a graph to estimate the -coordinate of the highest
points on the curve . Then use calculus to find
the exact value.

; 63. (a) Investigate the family of curves defined by the polar
equations , where is a positive integer.
How is the number of loops related to ?

(b) What happens if the equation in part (a) is replaced by
?

; 64. A family of curves is given by the equations
, where is a real number and is a posi-

tive integer. How does the graph change as increases?
How does it change as changes? Illustrate by graph-
ing enough members of the family to support your 
conclusions.

; 65. A family of curves has polar equations

Investigate how the graph changes as the number
changes. In particular, you should identify the transitional
values of for which the basic shape of the curve changes.

; 66. The astronomer Giovanni Cassini (1625–1712) studied 
the family of curves with polar equations

where and are positive real numbers. These curves are
called the ovals of Cassini even though they are oval
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9.4 AREAS AND LENGTHS IN POLAR COORDINATES
In this section we develop the formula for the area of a region whose boundary is
given by a polar equation. We need to use the formula for the area of a sector of a 
circle

where, as in Figure 1, is the radius and is the radian measure of the central angle.
Formula 1 follows from the fact that the area of a sector is proportional to its central
angle: . (See also Exercise 69 in Section 6.2.)

Let be the region, illustrated in Figure 2, bounded by the polar curve 
and by the rays and , where is a positive continuous function and where

. We divide the interval into subintervals with endpoints , 
, , . . . , and equal width . The rays then divide into smaller

regions with central angle . If we choose in the th subinterval
, then the area of the th region is approximated by the area of the sector

of a circle with central angle and radius . (See Figure 3.)
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A = ⇡r

2

(✓/2⇡) =

1

2

✓r

2

.

Let r = f(✓) be a positive continuous function for ✓ over [a, b], and
let R be the region bounded by r and the rays ✓ = a and ✓ = b.

Thus from Formula 1 we have

and so an approximation to the total area of is

It appears from Figure 3 that the approximation in improves as . But the
sums in are Riemann sums for the function , so

It therefore appears plausible (and can in fact be proved) that the formula for the area
of the polar region is

Formula 3 is often written as

with the understanding that . Note the similarity between Formulas 1 and 4.
When we apply Formula 3 or 4 it is helpful to think of the area as being swept out

by a rotating ray through that starts with angle and ends with angle .

EXAMPLE 1 Find the area enclosed by one loop of the four-leaved rose
.

SOLUTION The curve was sketched in Example 8 in Section 9.3.
Notice from Figure 4 that the region enclosed by the right loop is swept out by a ray
that rotates from to . Therefore Formula 4 gives

■

EXAMPLE 2 Find the area of the region that lies inside the circle and
outside the cardioid .

SOLUTION The cardioid (see Example 7 in Section 9.3) and the circle are sketched
in Figure 5 and the desired region is shaded. The values of and in Formula 4 are
determined by finding the points of intersection of the two curves. They intersect
when , which gives , so , . The desired
area can be found by subtracting the area inside the cardioid between and 
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Thus from Formula 1 we have

and so an approximation to the total area of is

It appears from Figure 3 that the approximation in improves as . But the
sums in are Riemann sums for the function , so

It therefore appears plausible (and can in fact be proved) that the formula for the area
of the polar region is

Formula 3 is often written as

with the understanding that . Note the similarity between Formulas 1 and 4.
When we apply Formula 3 or 4 it is helpful to think of the area as being swept out

by a rotating ray through that starts with angle and ends with angle .

EXAMPLE 1 Find the area enclosed by one loop of the four-leaved rose
.

SOLUTION The curve was sketched in Example 8 in Section 9.3.
Notice from Figure 4 that the region enclosed by the right loop is swept out by a ray
that rotates from to . Therefore Formula 4 gives

■

EXAMPLE 2 Find the area of the region that lies inside the circle and
outside the cardioid .

SOLUTION The cardioid (see Example 7 in Section 9.3) and the circle are sketched
in Figure 5 and the desired region is shaded. The values of and in Formula 4 are
determined by finding the points of intersection of the two curves. They intersect
when , which gives , so , . The desired
area can be found by subtracting the area inside the cardioid between and 
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We can approximate the area of R by slicing it into wedges!

Area

Let r = f(✓) be a positive continuous function for ✓ over [a, b], and
let R be the region bounded by r and the rays ✓ = a and ✓ = b.

Thus from Formula 1 we have

and so an approximation to the total area of is

It appears from Figure 3 that the approximation in improves as . But the
sums in are Riemann sums for the function , so

It therefore appears plausible (and can in fact be proved) that the formula for the area
of the polar region is

Formula 3 is often written as

with the understanding that . Note the similarity between Formulas 1 and 4.
When we apply Formula 3 or 4 it is helpful to think of the area as being swept out

by a rotating ray through that starts with angle and ends with angle .

EXAMPLE 1 Find the area enclosed by one loop of the four-leaved rose
.

SOLUTION The curve was sketched in Example 8 in Section 9.3.
Notice from Figure 4 that the region enclosed by the right loop is swept out by a ray
that rotates from to . Therefore Formula 4 gives

■

EXAMPLE 2 Find the area of the region that lies inside the circle and
outside the cardioid .

SOLUTION The cardioid (see Example 7 in Section 9.3) and the circle are sketched
in Figure 5 and the desired region is shaded. The values of and in Formula 4 are
determined by finding the points of intersection of the two curves. They intersect
when , which gives , so , . The desired
area can be found by subtracting the area inside the cardioid between and 
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Thus from Formula 1 we have

and so an approximation to the total area of is

It appears from Figure 3 that the approximation in improves as . But the
sums in are Riemann sums for the function , so

It therefore appears plausible (and can in fact be proved) that the formula for the area
of the polar region is

Formula 3 is often written as

with the understanding that . Note the similarity between Formulas 1 and 4.
When we apply Formula 3 or 4 it is helpful to think of the area as being swept out

by a rotating ray through that starts with angle and ends with angle .

EXAMPLE 1 Find the area enclosed by one loop of the four-leaved rose
.

SOLUTION The curve was sketched in Example 8 in Section 9.3.
Notice from Figure 4 that the region enclosed by the right loop is swept out by a ray
that rotates from to . Therefore Formula 4 gives

■

EXAMPLE 2 Find the area of the region that lies inside the circle and
outside the cardioid .

SOLUTION The cardioid (see Example 7 in Section 9.3) and the circle are sketched
in Figure 5 and the desired region is shaded. The values of and in Formula 4 are
determined by finding the points of intersection of the two curves. They intersect
when , which gives , so , . The desired
area can be found by subtracting the area inside the cardioid between and 
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We can approximate the area of R by slicing it into wedges! The
area of each wedge is approximately
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Example

For r = r(✓) positive, A =

Z
b

a

1

2

r

2

d✓

Find the area enclosed by one loop of the curve r = cos(2✓).
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One choice of a and b: a = �⇡/4, b = �⇡/4.
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You try

For r = r(✓) positive, A =

Z
b

a

1

2

r

2

d✓

1. Calculate the area enclosed by the cardioid r = 1 + sin(x).
2. Graph the curve r = sin(2✓) and calculate the area enclosed

by this curve. (Careful! The function sin(2✓) isn’t always
positive, and we want area! Look at the picture and decide
how to break up the problem.)



Area beween curves

Let R be the region bounded between curves r = f(✓) and
r = g(✓) (where 0  g(✓)  f(✓)) and rays ✓ = a and ✓ = b.

from the area inside the circle from to . Thus

Since the region is symmetric about the vertical axis , we can write

[because ]

■

Example 2 illustrates the procedure for finding the area of the region bounded by
two polar curves. In general, let be a region, as illustrated in Figure 6, that is 
bounded by curves with polar equations , , , and , where

and . The area of is found by subtracting the
area inside from the area inside , so using Formula 3 we have

| CAUTION The fact that a single point has many representations in polar coordi-
nates sometimes makes it difficult to find all the points of intersection of two polar
curves. For instance, it is obvious from Figure 5 that the circle and the cardioid have
three points of intersection; however, in Example 2 we solved the equations

and and found only two such points, and .
The origin is also a point of intersection, but we can’t find it by solving the equations
of the curves because the origin has no single representation in polar coordinates that
satisfies both equations. Notice that, when represented as or , the origin
satisfies and so it lies on the circle; when represented as , it sat-
isfies and so it lies on the cardioid. Think of two points moving along
the curves as the parameter value increases from 0 to . On one curve the origin is
reached at and ; on the other curve it is reached at . The points
don’t collide at the origin because they reach the origin at different times, but the
curves intersect there nonetheless.

Thus, to find all points of intersection of two polar curves, it is recommended that
you draw the graphs of both curves. It is especially convenient to use a graphing cal-
culator or computer to help with this task.

EXAMPLE 3 Find all points of intersection of the curves and .

SOLUTION If we solve the equations and , we get and
therefore ! , , , . Thus the values of between 0 and
that satisfy both equations are , , , . We have found four
points of inter section: , , and .

However, you can see from Figure 7 that the curves have four other points of
inter section—namely, , , , and . These can be
found using symmetry or by noticing that another equation of the circle is
and then solving the equations and . ■
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The area of R is given by
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Area beween curves
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2

((r

2

out

� r

2

in

)) d✓

Example: Find the area of the region that lies inside the circle
r = 3 sin(✓) and outside the cardioid r = 1 + sin(✓).
Answer: First, graph the functions.

-1 1

1

2

3 r=3 sin(θ)

r=1+sin(θ)

R

Next, identify the region
and the bounds.
Intersection points:
3 sin(✓) = 1+sin(✓), so sin(✓) =

1

2

,

so ✓ = ⇡/6, 5⇡/6 .

Setting up the integral:
r

out

= 3 sin(✓), r

in

= 1 + sin(✓)

(Check! Are both r’s positive over

the interval? If not, do we have to fix

anything?) X

So A =

Z
5⇡/6

⇡/6

1

2

((3 sin(✓))

2 � (1 + sin(✓))

2

) d✓



You try:

For r = r(✓) positive, A =

Z
b

a

1

2

r

2

d✓

For 0  r

in

 r

out

, A =

Z
b

a

1

2
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2

out

� r

2

in

)) d✓

1. We showed that the area of the region that lies inside the
circle r = 3 sin(✓) and outside the cardioid r = 1 + sin(✓) is
given by the integral

A =

Z
5⇡/6

⇡/6

1

2

((3 sin(✓))

2 � (1 + sin(✓))

2

) d✓.

Check that this integral evaluates to ⇡.
2. For the following regions, (i) graph the functions and identify

the region, (ii) decide how to break your integral up using the
above area formulas, (ii) calculate the area of the region.
(a) Let R be the region inside r = (1/2) sin(2✓) and outside

r = 1/4.
(b) Let R be the region enclosed by both r = 1 + sin(✓) and

r = 1� sin(✓).



Arc length (again!!)

Again! We start with

` =

Z
d`, where d` =

p
dx

2

+ dy

2

.

When we had y = f(x), we multiplied by dx/dx to get
d` =

p
1 + (dy/dx)

2

dx.
When we had x = f(y), we multiplied by dy/dy to get

d` =

p
(dx/dy)

2

+ 1 dy.
When we had x(t) and y(t), we multiplied by dt/dt to get

d` =

q�
dx

dt

�
2

+

�
dy

dt

�
2

dt.
Now we have

x(✓) = r(✓) cos(✓) and y(✓) = r(✓) sin(✓),

so multiply by d✓/d✓ to get

d` =

s✓
dx

d✓

◆
2

+

✓
dy

d✓

◆
2

d✓

(exactly the same as the t case above)

, now where

dx

d✓

=

d

d✓

r(✓) cos(✓) = r

0
(✓) cos(✓)� r(✓) sin(✓) , and

dy

d✓

=

d

d✓

r(✓) sin(✓) = r

0
(✓) sin(✓) + r(✓) cos(✓) .

Arc length (again!!)

Again! We start with

` =

Z
d`, where d` =

p
dx

2

+ dy

2

.

Now we have

x(✓) = r(✓) cos(✓) and y(✓) = r(✓) sin(✓),

so multiply by d✓/d✓ to get

d` =

s✓
dx

d✓

◆
2

+

✓
dy

d✓

◆
2

d✓

(exactly the same as the t case above), now where

dx

d✓

=

d

d✓

r(✓) cos(✓) = r

0
(✓) cos(✓)� r(✓) sin(✓) , and

dy

d✓

=

d

d✓

r(✓) sin(✓) = r

0
(✓) sin(✓) + r(✓) cos(✓) .



Arc length of parametric curves

` =

Z
b

✓=a

s✓
dx

d✓

◆
2

+

✓
dy

d✓

◆
2

d✓ , where
x(✓) = r(✓) cos(✓),

y(✓) = r(✓) sin(✓).

Example: Again! Let’s calculate the arc length of an arc of angle
A of a circle of radius R. The circle of radius R is given by the
polar curve r(✓) = R. So

x(✓) = R cos(✓) y(✓) = R sin(✓),

and an arc of angle A is the curve traced from ✓ = 0 to ✓ = A:

A

R
dx/d✓ = �R sin(✓)

dy/d✓ = R cos(✓)

d` =

p
(�R sin(✓))

2

+ (R cos(✓))

2

d✓ =

p
R

2

dt

So ` =

Z
A

✓=0

d` =

Z
A

0

R d✓ = R✓

��A
✓=0

= RA� 0 = RA .

You try

` =

Z
b

✓=a

s✓
dx

d✓

◆
2

+

✓
dy

d✓

◆
2

d✓ , where
x(✓) = r(✓) cos(✓),

y(✓) = r(✓) sin(✓).

1. Set up and simplify an integral that gives the length of the
curve r = ✓ from ✓ = ⇡/2 to ✓ = ⇡.

2. Calculate the length of the curve r = cos(✓) from ✓ = 0 to
✓ = ⇡. (Hint: after doing derivatives, before setting up, recall
double angle formulas.)

3. Calculate the length of the curve r = e

✓, from ✓ = 1 to ✓ = 2.


