Polar coordinates

A coordinate system represents a point in the plane by an ordered pair of numbers.
Cartesian coordinate system: start with x and y axes (perpendicular); points given by (x, y), where x is the the distance to the right of the y-axis, and y is the distance up from the x-axis.

Polar coordinate system: start with positive x-axis from before; points given by (r, θ), where r is the distance from the origin, and θ is the angle between the positive x - axis and a ray from the origin to the point, measuring counter-clockwise as usual.

Polar coordinates

Polar coordinate system: start with positive x-axis from before; points given by (r, θ), where r is the distance from the origin, and θ is the angle between the positive x - axis and a ray from the origin to the point, measuring counter-clockwise as usual.

For example,

$$
(r, \theta)=(2,3 \pi)
$$

$$
(r, \theta)=(2,-2 \pi / 3)
$$

Polar axes

We plotted:
$(1,5 \pi / 4),(2,3 \pi),(2,-2 \pi / 3)$
You try:
$(1 / 2, \pi / 6),(3 / 2,2 \pi / 3)$ $(2,-\pi / 4),(1,-5 \pi / 4)$

Polar axes

Negative radius: If r is negative, move backwards along the ray of angle θ.
For example, plot $(r, \theta)=(-3,3 \pi / 4)$.

Polar axes

We plotted:

$(1,5 \pi / 4),(2,3 \pi),(2,-2 \pi / 3)$
$(1 / 2, \pi / 6),(3 / 2,2 \pi / 3)$

$$
(2,-\pi / 4),(1,-5 \pi / 4)
$$

$$
(-1,3 \pi / 4)
$$

You try:
$(-1,0),(-2, \pi / 3)$, $(-3 / 2,-\pi / 4)$

Polar axes

Notice we have some relations:

$$
\begin{gathered}
(r, \theta)=(r, \theta+k \cdot 2 \pi) \quad \text { for } k=0, \pm 1, \pm 2, \ldots \\
(-r, \theta)=(r, \theta \pm \pi)
\end{gathered}
$$

Graphing

Just like we used to graph $y=f(x)$ or $x=g(y)$, now we graph things like $r=f(\theta)$ or $\theta=g(r)$.
Constant graphs:

Note:
$r=c$
is the same as

$$
r=-c
$$

Graphing

Just like we used to graph $y=f(x)$ or $x=g(y)$, now we graph things like $r=f(\theta)$ or $\theta=g(r)$.
Constant graphs:

Note:
$\theta=c$
is the same as

$$
\theta=c+2 k \pi
$$

Graph the function $r=2 \cos (\theta)$.
First, on a Cartesian (θ, r) plot, this function looks like
-2,
(1) Plot points, (2) piece together segments

θ	r
0	2
$\pi / 6$	$\sqrt{3}$
$\pi / 4$	$\sqrt{2}$
$\pi / 3$	1
$\pi / 2$	0
$2 \pi / 3$	-1
$3 \pi / 4$	$-\sqrt{2}$
$5 \pi / 6$	$-\sqrt{3}$
π	2

Graph the function $r=2 \cos (\theta)$.
First, on a Cartesian (θ, r) plot, this function looks like

(1) Plot points, (2) piece together segments,
(3) stop at the end of one full period.

θ	r
0	2
$\pi / 6$	$\sqrt{3}$
$\pi / 4$	$\sqrt{2}$
$\pi / 3$	1
$\pi / 2$	0
$2 \pi / 3$	-1
$3 \pi / 4$	$-\sqrt{2}$
$5 \pi / 6$	$-\sqrt{3}$
π	2

You try:

Note that on a $\theta-r$ axis, the curve $r=1+\sin (\theta)$ looks like

Sketch a graph of $r=1+\sin (\theta)$ on an $x-y$ axis by plotting points, and piecing together segments as in the last example.

Note:
This graph is called the cardioid.

You try:

Note that on a $\theta-r$ axis, the curve $r=\cos (2 \theta)$ looks like

Sketch a graph of $r=\cos (2 \theta)$ on an $x-y$ axis by plotting points, and piecing together segments as in the last example.

Converting between Cartesian and polar

$$
x=r \cos (\theta) \quad y=r \sin (\theta)
$$

To get back, we must solve for r and θ. To solve for r, we have the Pythagorean identity:

$$
x^{2}+y^{2}=(r \cos (\theta))^{2}+(r \sin (\theta))=r^{2}\left(\cos ^{2}(\theta)+\sin ^{2}(\theta)\right)=r^{2} \cdot 1 .
$$

So

$$
r=\sqrt{x^{2}+y^{2}} \text {. }
$$

To solve for θ, we eliminate r by dividing:

$$
y / x=(r \sin (\theta)) /(r \cos (\theta))=\sin (\theta) / \cos (\theta)=\tan (\theta) .
$$

So

$$
\theta=\arctan (y / x) \text {. }
$$

Converting between Cartesian and polar

$$
\begin{gathered}
x=r \cos (\theta) \quad y=r \sin (\theta) \\
r=\sqrt{x^{2}+y^{2}} \quad \theta=\arctan (y / x) \\
\hline
\end{gathered}
$$

You try: Convert the following points by filling out the rest of the table. Check by plotting.

(x, y)	(r, θ)
	$(2, \pi / 3)$
$(1,0)$	$(-1, \pi / 4)$
$(1,-1)$	

Writing polar functions in terms of x and y

$$
\begin{gathered}
x=r \cos (\theta) \quad y=r \sin (\theta) \\
r=\sqrt{x^{2}+y^{2}} \quad \theta=\arctan (y / x)
\end{gathered}
$$

Example: $r=2 \cos (\theta)$. From $x=r \cos (\theta)$, we get $\cos (\theta)=x / r$. So

$$
r=2 \cos (\theta)=2 x / r .
$$

So

$$
2 x=(2 x / r) r=(r) r=r^{2}=x^{2}+y^{2} . \text { Thus } 0=x^{2}-x+y^{2} .
$$

Completing the square gives

$$
(x-1)^{2}+y^{2}=1,
$$

which is a unit circle shifted right by 1 , as we saw.
You try: Write the following polar functions in terms of x and y.

$$
\text { (1) } r=3, \quad \text { (2) } \theta=\pi / 3, \quad \text { (3) } r=\sin (\theta) \text {. }
$$

Write the following Cartesian functions in terms of r and θ.
(1) $x^{2}+y^{2}=4$,
(2) $(x / 3)^{2}+y^{2}=1$,
(3) $x=2$.

Calculus with polar curves

Recall from last time, if I have a parametric curve $x=x(t)$, $y=y(t)$, then the slope of the line tangent to the curve plotted on an $x-y$ axis is

$$
\frac{d y}{d x}=\frac{d y}{d t} / \frac{d x}{d t}
$$

We can use this result if we think about a polar curve as a parametric curve in parameter θ :

$$
r=r(\theta) \quad \longleftrightarrow \quad \begin{aligned}
& x=r(\theta) \cos (\theta) \\
& y=r(\theta) \sin (\theta)
\end{aligned}
$$

Example: $r=e^{\theta}$ is the same as the parametric curve

$$
x=e^{\theta} \cos (\theta), \quad y=e^{\theta} \sin (\theta)
$$

So now

$$
\frac{d y}{d x}=\frac{d y}{d \theta} / \frac{d x}{d \theta}=\frac{\frac{d}{d \theta}(r(\theta) \sin (\theta))}{\frac{d}{d \theta}(r(\theta) \cos (\theta))}=\frac{r^{\prime}(\theta) \sin (\theta)+r(\theta) \cos (\theta)}{r^{\prime}(\theta) \cos (\theta)-r(\theta) \sin (\theta)} .
$$

Calculus with polar curves

$$
\frac{d y}{d x}=\frac{d y}{d \theta} / \frac{d x}{d \theta}=\frac{\frac{d}{d \theta}(r(\theta) \sin (\theta))}{\frac{d}{d \theta}(r(\theta) \cos (\theta))}=\frac{r^{\prime}(\theta) \sin (\theta)+r(\theta) \cos (\theta)}{r^{\prime}(\theta) \cos (\theta)-r(\theta) \sin (\theta)} .
$$

Example: Let $r=1+\sin (\theta)$, the cardioid. We have $\frac{d r}{d \theta}=\cos (\theta)$, so that

$$
\begin{aligned}
& \frac{d y}{d \theta}=\cos (\theta) \sin (\theta)+(1+\sin (\theta)) \cos (\theta)=\cos (\theta)(1+2 \sin (\theta)) \\
& \frac{d x}{d \theta}=\cos (\theta) \cos (\theta)+(1+\sin (\theta)) \sin (\theta) \\
& =\left(1-\sin ^{2}(\theta)\right)+(1+\sin (\theta)) \sin (\theta)=(1+\sin (\theta))(1-2 \sin (\theta)) . \\
& \text { So } \frac{d y}{d x}=(\cos (\theta)(1+2 \sin (\theta))) /(1+\sin (\theta))(1-2 \sin (\theta))
\end{aligned}
$$

You try: For what θ are the tangent lines to this cardioid horizontal? vertical?

$$
r=1+\sin (\theta)
$$

