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Polar coordinates
Polar coordinate system: start with positive x-axis from before;
points given by (7,0), where r is the distance from the origin, and
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Polar coordinates
Polar coordinate system: start with positive x-axis from before;
points given by (7,0), where r is the distance from the origin, and
0 is the angle between the positive z- axis and a ray from the

origin to the point, measuring counter-clockwise as usual.
P(r,0)
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For example,

(r,0) = (1,5m/4) (r,0) = (2,3m) (r, 9)0: (2,—27/3)
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Polar axes

] 1/ 2}
-1,3m/4) = (1, -n/4) = (1, Tn/4)]

Notice we have some relations:

(r,0)=(r,0+k-2r) fork=0,%+1,£2...;

(—=r,0) = (r,0 £ ).
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Graphing
Just like we used to graph y = f(z) or x = g(y), now we graph
things like r = f(0) or 6 = g(r).
Constant graphs:

6 = constant
Note:

0=c

0 is the same as
0 =c+ 2krm
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Graph the function r = 2 cos(0).

First, on a Cartesian (6, r) plot, this function looks like
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You try:

Note that on a 6-r axis, the curve r = 1 4 sin(6) looks like

r
2

o _

[ n/2 |3 3n/2 2n

Sketch a graph of » = 1 + sin(6) on an x-y axis by plotting points,
and piecing together segments as in the last example.

Note:
E 5 1 2 This graph is called the
cardioid.




You try:

Note that on a 6-r axis, the curve r = cos(26) looks like

VARV

Sketch a graph of r = cos(26) on an z-y axis by plotting points,
and piecing together segments as in the last example.
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The conversion from polar to cartesian comes the standard unit
circle game, only now with radius r instead of 1:

‘a: =rcos(f) y=rsin(h) ‘
To get back, we must solve for r and 6. To solve for r, we have
the Pythagorean identity:
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To get back, we must solve for r and 6. To solve for r, we have
the Pythagorean identity:

2? +y? = (rcos(9))? + (rsin()) = r?(cos?(9) + sin*(0)) = r* - 1.

So
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To solve for 6, we eliminate r by dividing:

y/xz = (rsin(0))/(r cos(0))
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To get back, we must solve for r and 6. To solve for r, we have
the Pythagorean identity:

2? +y? = (rcos(9))? + (rsin()) = r?(cos?(9) + sin*(0)) = r* - 1.
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To solve for 6, we eliminate r by dividing:

y/x = (rsin(@))/(r cos(9)) = sin(f)/ cos(d)
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To get back, we must solve for r and 6. To solve for r, we have
the Pythagorean identity:

2? +y? = (rcos(9))? + (rsin()) = r?(cos?(9) + sin*(0)) = r* - 1.
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To solve for 6, we eliminate r by dividing:

y/x = (rsin(@))/(r cos(f)) = sin(f)/ cos(f) = tan(h).
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To get back, we must solve for r and 6. To solve for r, we have
the Pythagorean identity:

2? +y? = (rcos(9))? + (rsin()) = r?(cos?(9) + sin*(0)) = r* - 1.

So
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To solve for 6, we eliminate r by dividing:

y/x = (rsin(@))/(r cos(f)) = sin(f)/ cos(f) = tan(h).

So

‘9 = arctan(y/z) ‘
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‘:L' =rcos(f) y=rsin(h) ‘

r=+/224+y? 0= arctan(y/x)

You try: Convert the following points by filling out the rest of the
table. Check by plotting.

(z,y) | (r0) ;
(1,V3) (2,7/3)

(=v2/2,-v2/2) | (-1,7/4) 1 T
(1,0) (1,0)
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Example: r = 2cos(6).
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Writing polar functions in terms of x and y

‘x =rcos(f) y=rsin(h) ‘
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Example: r = 2cos(f). From x = rcos(f), we get cos(0) = z/r.
So
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which is a unit circle shifted right by 1, as we saw.



Writing polar functions in terms of x and y

‘x =rcos(f) y=rsin(h) ‘

‘r =a?+y? 6 =arctan(y/x) ‘

Example: r = 2cos(f). From x = rcos(f), we get cos(0) = z/r.
So

r = 2cos(f) = 2x/r.
So
22 = (2z/r)r = (r)r =r? =22 + 4% Thus 0 = 2% — x + ¢,
Completing the square gives

($—1)2+y2 = 1>
which is a unit circle shifted right by 1, as we saw.
You try: Write the following polar functions in terms of = and y.
(1)r=3, (2)0=mn/3, (3)r=sin(0).
Write the following Cartesian functions in terms of r and 6.
(1) a? + y2 =4, (2) ($/3)2 + y2 =1, (3) =2
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Recall from last time, if | have a parametric curve x = z(t),
y = y(t), then the slope of the line tangent to the curve plotted on
an x-y axis is
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de — dt/ dt

We can use this result if we think about a polar curve as a
parametric curve in parameter 6:
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Calculus with polar curves

Recall from last time, if | have a parametric curve x = z(t),
y = y(t), then the slope of the line tangent to the curve plotted on
an x-y axis is

dy dy dx

de — dt/ dt

We can use this result if we think about a polar curve as a
parametric curve in parameter 6:

x = r(0)cos(h)

r=r(0) y = r(0)sin(0)

Example: r = €’ is the same as the parametric curve
z=e’cos(), y=e’sin(h).

So now
dy dy dx

d
_df
de — do/ do 4 (r(0) cos(h))  r'(6)cos(d) —r(6)sin(f)




Calculus with polar curves

dy dy [dv 4 (r(0) sin(0)) _ r'(8)sin(#) 4 7(6) cos(6)

de —df/ df  L(r(f)cos(d)) '(0)cos(8) —r(0)sin(h)’

Example: Let r =1+ sin(#), the cardioid.
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dy _dy [dz _ an (r(8) sin(9)) _ 7'(0)sin(0) + r(6) cos(6)
de do/ df L (r()cos(0))

() cos(0) — r(0) sin(6)
Example: Let r = 1+ sin(f), the cardioid. We have % = cos(f)




Calculus with polar curves

dy _dy [dz _ an (r(8) sin(9)) _ 7'(0)sin(0) + r(6) cos(6)
de do/ df L (r()cos(0))

() cos(0) — r(0) sin(6)
Example: Let r = 1 + sin(f), the cardioid. We have % = cos(f),
so that
&y _ cos
do

(0) sin(0) + (1 + sin(0)) cos(9)
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dy dy [dx _ d%(r(ﬂ) sin(#)) _ ' (0) sin(8) + r(6) cos(6)
dr — df/ do  L(r(6)cos(6)) r'(6)cos(6) — r(0)sin(0)’

Example: Let r = 1 + sin(f), the cardioid. We have % = cos(f),
so that

% = cos(0) sin(0) + (1 + sin(6)) cos(6) = | cos(9)(1 + 2sin(0)) |




Calculus with polar curves

dy dy [dx _ d%(r(ﬂ) sin(#)) _ ' (0) sin(8) + r(6) cos(6)
dr — df/ do  L(r(6)cos(6)) r'(6)cos(6) — r(0)sin(0)’

Example: Let r = 1 + sin(f), the cardioid. We have % = cos(f),
so that

% = cos(0) sin(0) + (1 + sin(6)) cos(6) = | cos(9)(1 + 2sin(0)) |

dx

Y cos(#) cos(0)+(1+sin(f)) sin(d)




Calculus with polar curves

@ dy de d%(r(ﬂ) sin()) B ' (0) sin(6) + r(0) cos(6)
0)

dr — df/ do  L(r(6)cos(6)) r'(6)cos(6) — r()sin(

Example: Let r = 1 + sin(f), the cardioid. We have % = cos(f),
so that

% = cos(0) sin(0) + (1 + sin(6)) cos(6) = | cos(9)(1 + 2sin(0)) |
dx . .
7k cos(#) cos(0)+(1+sin(f)) sin(d)

= (1 —sin?(0)) + (1 +sin(6)) sin(0)




Calculus with polar curves

@ dy de d%(r(ﬂ) sin()) B ' (0) sin(6) + r(0) cos(6)
0)

dr — df/ do  L(r(6)cos(6)) r'(6)cos(6) — r()sin(

Example: Let r = 1 + sin(f), the cardioid. We have % = cos(f),
so that

% = cos(0) sin(0) + (1 + sin(6)) cos(6) = | cos(9)(1 + 2sin(0)) |
dx . .
7k cos(#) cos(0)+(1+sin(f)) sin(d)

= (1 —sin?(0)) + (1 +sin(f)) sin(9) = ‘ (14 sin(#))(1 — 2sin(6)) ‘




Calculus with polar curves

@ dy de d%(r(ﬂ) sin()) _ 7r'(0)sin(0) + () cos(0)
0)

dr — df/ do  L(r(6)cos(6)) r'(6)cos(6) — r()sin(

Example: Let r = 1 + sin(f), the cardioid. We have % = cos(f),
so that

% = cos(0) sin(0) + (1 + sin(6)) cos(6) = | cos(9)(1 + 2sin(0)) |
dx . .
7k cos(#) cos(0)+(1+sin(f)) sin(d)

= (1 —sin?(0)) + (1 +sin(f)) sin(9) = ‘ (14 sin(#))(1 — 2sin(6)) ‘

dy

So | 22 = (cos(e)(l + 2sm(9)))/(1 +sin(0))(1 — 23in(9)>




Calculus with polar curves

dy dy [dx _ d%(r(ﬂ) sin(0)) /() sin(0) + () cos(9)
dr — df/ do  L(r(6)cos(6)) r'(6)cos(6) — r(0)sin(0)’
Example: Let r = 1 + sin(f), the cardioid. We have % = cos(f),
so that

% = cos(0) sin(0) + (1 + sin(6)) cos(6) = | cos(9)(1 + 2sin(0)) |

dx : i
Y cos(#) cos(0)+(1+sin(6)) sin(6)

= (1 —sin?(0)) + (1 +sin(f)) sin(9) = ‘ (14 sin(#))(1 — 2sin(6)) ‘

So % - (cos(e)(l + 2sm(9)))/(1 +sin(0))(1 — 23in(9)>

You try: For what 6 are the tangent lines to this cardioid
horizontal? vertical?



r =1+ sin()







