Work example: Leaky bucket

Suppose you lift a bucket of water straight up using a rope attached to a pulley. But as you lift the bucket, it leaks water at a constant rate. The bucket weights 2 lbs , the rope is 20 ft long and weights a total of 10 lbs . The rope is wound around the pulley at a rate of $2 \mathrm{ft} / \mathrm{s}$. The bucket starts out holding 15 lb of water and leaks at a rate of $1 / 10 \mathrm{lb} / \mathrm{s}$. How much work is required to lift the bucket to the top?

Answer: We do this problem in three parts, (1) the bucket, (2) the rope, and (3) the water.

Work example: Leaky bucket

The bucket weights 2 lbs , the rope is 20 ft long and weights a total of 10 lbs . The rope is wound around the pulley at a rate of $2 \mathrm{ft} / \mathrm{s}$. The bucket starts out holding 15 lb of water and leaks at a rate of $1 / 10 \mathrm{lb} / \mathrm{s}$. How much work is required to lift the bucket to the top?

$$
W_{\text {bucket }}=2(20) \quad W_{\text {rope }}=\frac{1}{4}(20)^{2}
$$

(3) Water. The work done to lift the water from height x to height $x-\Delta x$ is $f(x) \Delta x$, where $f(x)=$ weight of water remaining at position x, so that $W_{\text {water }}=\int_{0}^{20} f(x) d x$. As a function of time, starting from when the bucket begins to be lifted, the position of the bucket is $x=20-2 t$. So time, as a function of position, is $t=10-\frac{1}{2} x$. Also as a function of time, the weight of the bucket is $10-(1 / 10) t$. So

$$
f(x)=10-(1 / 10) t(x)=10-(1 / 10)\left(10-\frac{1}{2} x\right)=9+\frac{1}{20} x .
$$

So

$$
W_{\text {water }}=\int_{0}^{20} 9+\frac{1}{20} x d x=\left.\left(9 x+\frac{1}{40} x^{2}\right)\right|_{0} ^{20}=9(20)+\frac{1}{40}(20)^{2} .
$$

Work example: Leaky bucket

The bucket weights 2 lbs , the rope is 20 ft long and weights a total of 10 lbs . The rope is wound around the pulley at a rate of $2 \mathrm{ft} / \mathrm{s}$. The bucket starts out holding 15 lb of water and leaks at a rate of $1 / 10 \mathrm{lb} / \mathrm{s}$. How much work is required to lift the bucket to the top?

$$
\begin{gathered}
W_{\text {bucket }}=2(20) \quad W_{\text {rope }}=\frac{1}{4}(20)^{2} \\
W_{\text {water }}=9(20)+\frac{1}{40}(20)^{2}
\end{gathered}
$$

So in total,

$$
W=W_{\text {bucket }}+W_{\text {rope }}+W_{\text {water }}=2(20)+\frac{1}{4}(20)^{2}+9(20)+\frac{1}{40}(20)^{2} .
$$

9.1 Parametric curves

In the water portion of the previous problem, position and weight started out as functions of time:

$$
x(t)=20-2 t \quad \text { and } \quad f(t)=10-(1 / 10) t .
$$

These are called parametric equations, with parameter t. Separately, they're just two functions of time. But together, they are coupled by their common parameter. We can thus graph f versus x by varying t.
To find the equation for f as a function of x, we solved x for t, and plugged that into f :

$$
t=10-\frac{1}{2} x
$$

SO

$$
f=10-(1 / 10)\left(10-\frac{1}{2} x\right)=9+\frac{1}{20} x .
$$

Example: Define the parametric curve by

$$
x(t)=t^{2}-2 t, \quad y(t)=t+1 .
$$

Plotting the curve: Pick a sample of values for t :

t	x	y
-2	8	-1
-1	3	0
0	0	1
1	-1	2
2	0	3
3	3	4
4	8	5

This curve is suited best writing x as a function of y, so solve for t in terms of y and plug in:

$$
t=y-1, \quad \text { so } x=(y-1)^{2}-2(y-1)=(y-2)^{2}-1 .
$$

Example: Define the parametric curve by

$$
x(t)=t^{2}-2 t, \quad y(t)=t+1
$$

For all t :

For $0 \leq t \leq 4$:

Writing the function just in terms of x and y loses some information. If we're thinking about the parametric function as a particle traveling on the $x-y$ plane over time, we calculated that it traces the curve $x=(y-2)^{2}-1$, but it doesn't tell us what direction or how fast. Further, we have put no restriction on t.

Example: Unit circle.

$$
x(t)=\cos (t) \quad y(t)=\sin (t), \quad 0 \leq t \leq 2 \pi
$$

Plotting points

This curve traces out a circle! (Recall the unit circle)

Converting to a function of just x and y :

$$
x^{2}+y^{2}=\cos ^{2}(t)+\sin ^{2}(t)=1 .
$$

You try: Graph and compare the following parametric curves to each other and the example above.

$$
\begin{aligned}
\text { (1) } x(t) & =\cos (2 t), y(t)=\sin (2 t), \quad 0 \leq t \leq 2 \pi \\
\text { (2) } x(t) & =\cos (t / 3), y(t)=\sin (t / 3), \quad 0 \leq t \leq 2 \pi
\end{aligned}
$$

Graph transformations

Since a parametric curve gives the x and y coordinates separately, transformations are a little more straightforward.
Example: We saw that $x(t)=\cos (t), y(t)=\sin (t), 0 \leq t \leq 2 \pi$ is the unit circle centered at the origin.

If I want a circle centered at the point $(2,5)$, that's the same as shifting all the x-coordinates right by 3 and all the y-coordinates up by 5 :

$$
x(t)=\cos (t)+2 \quad y(t)=\sin (t)+5, \quad 0 \leq t \leq 2 \pi
$$

If instead I still want a circle centered at $(0,0)$, but I want its radius dilated to 3 , I want to multiply the x and y coordinates all by 3 :

$$
x(t)=3 \cos (t) \quad y(t)=3 \sin (t), \quad 0 \leq t \leq 2 \pi .
$$

If I want a bigger circle that's also shifted, dilate first and then shift (just as before). A circle of radius r, centered at (a, b) is given by

$$
x(t)=r \cos (t)+a \quad y(t)=r \sin (t)+b, \quad 0 \leq t \leq 2 \pi .
$$

Check:

$$
(x-a)^{2}+(y-b)^{2}=(r \cos (t))^{2}+(r \sin (t))^{2}=r^{2}\left(\cos ^{2}(t)+\sin ^{2}(t)\right)=r^{2} \cdot \checkmark
$$

You try:

Sketch the following curves and give a formula for their shape just in terms of x and y.
(Hint: Think about graph transformations, and scaling or shifting either or both coordinates to get them to fit the pythagorean identity.) Give an example of a domain for t that would trace the curve exactly once.

1. $x(t)=2 \cos (t), y(t)=\sin (t)$.
2. $x(t)=\cos (t), y(t)=3 \sin (t)$.
3. $x(t)=\cos (t), y(t)=\sin (-t)$.
4. $x(t)=5 \cos (2 t), y(t)=3 \sin (2 t)$.
5. $x(t)=\cos (t), y(t)=\sin (-t)$.
6. $x(t)=\sin (t), y(t)=\cos (t)$.
7. $x(t)=2 \cos (t)+1, y(t)=3(\sin (t)-4)$.
8. $x(t)=5 \cos (-t)+1, y(t)=2 \sin (t)+5$.

Example: Sketch

$$
x(t)=\sin (t), \quad y(t)=\sin ^{2}(t) .
$$

We could solve for t from one and plug it into the other. But as a shortcut, it's clear to see that $y=\sin ^{2}(t)=x^{2}$. So this curve appears to be a parabola.

But $-1 \leq \sin (x) \leq 1$, so the x values can't go outside these bounds. This is actually a curve traced out by a particle bouncing back and forth between $(-1,1)$ and $(1,1)$ along the curve $y=x^{2}$.

Take a wheel or radius r, and mark one point on its boundary. Now roll that wheel, and trace the path that the marked point takes:

This curve is called a cycloid. To calculate its formula, we'll use a param. curve:

Parameter: θ, the rot'l angle of circle. Center: The edge of the circle has all touched the ground. So the distance of the center from the y-axis is the arc length of the circle with angle θ. So the center is at $C=(r \theta, r)$.
Then

$$
\begin{gathered}
x=|O T|-|P Q|=r \theta-r \sin \theta, \\
y=|T C|-|Q C|=r-r \cos \theta .
\end{gathered}
$$

