
Work example: Leaky bucket
Suppose you lift a bucket of water straight up using a rope
attached to a pulley. But as you lift the bucket, it leaks water at a
constant rate.

The bucket weights 2 lbs, the rope is 20 ft long and
weights a total of 10 lbs. The rope is wound around the pulley at a
rate of 2 ft/s. The bucket starts out holding 15 lb of water and
leaks at a rate of 1/10 lb/s. How much work is required to lift the
bucket to the top?

Answer: We do this problem in three parts, (1) the bucket, (2) the
rope, and (3) the water.
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(1) Bucket. The bucket exerts a force of 2 lbs,

and is lifted 20 ft, so Wbucket = 2(20) ft-lbs .

(2) Rope. Break the rope into vertical
segments of length ∆x. Each segment ex-
erts a force of (10/20 lb/ft) ∆x ft, and the
segment of rope at height x gets lifted x ft.

Wrope =
∫ 20
0 (10/20)xdx = 1

2(x2/2)
∣∣∣20
0

= 1
4(20)2.
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(3) Water. The work done to lift the water from height x to
height x−∆x is f(x)∆x, where f(x) = weight of water
remaining at position x, so that Wwater =

∫ 20
0 f(x)dx. As a

function of time, starting from when the bucket begins to be lifted,
the position of the bucket is x = 20− 2t. So time, as a function of

position, is t = 10− 1
2x . Also as a function of time, the weight

of the bucket is 10− (1/10)t. So

f(x) = 10− (1/10)t(x) = 10− (1/10)(10− 1
2x) = 9 + 1

20x .

So

Wwater =

∫ 20

0
9 + 1

20x dx = (9x+ 1
40x

2)
∣∣∣20
0

= 9(20) + 1
40(20)2 .
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9.1 Parametric curves
In the water portion of the previous problem, position and weight
started out as functions of time:

x(t) = 20− 2t and f(t) = 10− (1/10)t.

These are called parametric equations,
with parameter t. Separately, they’re
just two functions of time. But to-
gether, they are coupled by their com-
mon parameter. We can thus graph f
versus x by varying t.

To find the equation for f as a function
of x, we solved x for t, and plugged that
into f :

t = 10− 1
2x,

so

f = 10− (1/10)(10− 1
2x) = 9 + 1

20x.

5 10 15 20

2

4

6

8

10

x(t)

f(t)

t=0
t=5t=10

x(0)=20, f(0)=10
x(5)=10, f(5)=9.5
x(10)=0, f(10)=9
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describe by an equation of the form because fails the Vertical Line Test.
But the - and -coordinates of the particle are functions of time and so we can write

and . Such a pair of equations is often a convenient way of describ-
ing a curve and gives rise to the following definition.

Suppose that and are both given as functions of a third variable (called a
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(called parametric equations). Each value of determines a point , which we
can plot in a coordinate plane. As varies, the point varies and
traces out a curve , which we call a parametric curve. The parameter does not nec-
essarily represent time and, in fact, we could use a letter other than for the parame-
ter. But in many applications of parametric curves, does denote time and therefore
we can interpret as the position of a particle at time .

EXAMPLE 1 Sketch and identify the curve defined by the parametric equations

SOLUTION Each value of gives a point on the curve, as shown in the table. For
instance, if , then , and so the corresponding point is . In
Figure 2 we plot the points determined by several values of the parameter
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y ! f !x"

y ! t!t"x ! f !t"

tyx

y ! t!t"x ! f !t"

!x, y"t
!x, y" ! ! f !t", t!t""t

C

!x, y" ! ! f !t", t!t""

y ! t ! 1x ! t2 " 2t

t
!0, 1"y ! 1x ! 0t ! 0

t!x, y"

C C
C

x y

FIGURE 2 

0
t=0

t=1

t=2
t=3

t=4

t=_1
t=_2

(0, 1)

y

x
8

t

t
t

t

PARAMETRIC EQUATIONS AND
POLAR COORDINATES
So far we have described plane curves by giving as a function of or as a function of 

or by giving a relation between and that defines implicitly as a function of
. In this chapter we discuss two new methods for describing curves.

Some curves, such as the cycloid, are best handled when both and are given in terms of a third
variable called a parameter . Other curves, such as the cardioid, have their most
convenient description when we use a new coordinate system, called the polar coordinate system.
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This curve is suited best writing x as a function of y, so solve for
t in terms of y and plug in:

t = y − 1, so x = (y − 1)2 − 2(y − 1) = (y − 2)2 − 1.
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PARAMETRIC EQUATIONS AND
POLAR COORDINATES
So far we have described plane curves by giving as a function of or as a function of 

or by giving a relation between and that defines implicitly as a function of
. In this chapter we discuss two new methods for describing curves.

Some curves, such as the cycloid, are best handled when both and are given in terms of a third
variable called a parameter . Other curves, such as the cardioid, have their most
convenient description when we use a new coordinate system, called the polar coordinate system.
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This curve is suited best writing x as a function of y, so solve for
t in terms of y and plug in:

t = y − 1, so x = (y − 1)2 − 2(y − 1) = (y − 2)2 − 1.



Example: Define the parametric curve by

x(t) = t2 − 2t, y(t) = t+ 1.

For all t:

501

9.1 PARAMETRIC CURVES
Imagine that a particle moves along the curve shown in Figure 1. It is impossible to
describe by an equation of the form because fails the Vertical Line Test.
But the - and -coordinates of the particle are functions of time and so we can write

and . Such a pair of equations is often a convenient way of describ-
ing a curve and gives rise to the following definition.

Suppose that and are both given as functions of a third variable (called a
param eter) by the equations

(called parametric equations). Each value of determines a point , which we
can plot in a coordinate plane. As varies, the point varies and
traces out a curve , which we call a parametric curve. The parameter does not nec-
essarily represent time and, in fact, we could use a letter other than for the parame-
ter. But in many applications of parametric curves, does denote time and therefore
we can interpret as the position of a particle at time .

EXAMPLE 1 Sketch and identify the curve defined by the parametric equations

SOLUTION Each value of gives a point on the curve, as shown in the table. For
instance, if , then , and so the corresponding point is . In
Figure 2 we plot the points determined by several values of the parameter
and we join them to produce a curve.
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POLAR COORDINATES
So far we have described plane curves by giving as a function of or as a function of 

or by giving a relation between and that defines implicitly as a function of
. In this chapter we discuss two new methods for describing curves.

Some curves, such as the cycloid, are best handled when both and are given in terms of a third
variable called a parameter . Other curves, such as the cardioid, have their most
convenient description when we use a new coordinate system, called the polar coordinate system.
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For 0 ≤ t ≤ 4:

A particle whose position is given by the parametric equations moves along the
curve in the direction of the arrows as increases. Notice that the consecutive points
marked on the curve appear at equal time intervals but not at equal distances. That is
because the particle slows down and then speeds up as increases.

It appears from Figure 2 that the curve traced out by the particle may be a 
parab ola. This can be confirmed by eliminating the parameter as follows. We
obtain from the second equation and substitute into the first equation.
This gives

and so the curve represented by the given parametric equations is the parabola
. ■

No restriction was placed on the parameter in Example 1, so we assumed that
could be any real number. But sometimes we restrict to lie in a finite interval. For
instance, the parametric curve

shown in Figure 3 is the part of the parabola in Example 1 that starts at the point
and ends at the point . The arrowhead indicates the direction in which the curve
is traced as increases from 0 to 4.

In general, the curve with parametric equations

has initial point and terminal point .

EXAMPLE 2 What curve is represented by the following parametric equations?

SOLUTION If we plot points, it appears that the curve is a circle. We can confirm
this impression by eliminating Observe that

Thus the point moves on the unit circle . Notice that in this 
example the parameter can be interpreted as the angle (in radians) shown in Fig-
ure 4. As increases from 0 to , the point moves once
around the circle in the counterclockwise direction starting from the point . ■

EXAMPLE 3 What curve is represented by the given parametric equations?

SOLUTION Again we have

so the parametric equations again represent the unit circle . But as
increases from 0 to , the point starts at and moves
twice around the circle in the clockwise direction as indicated in Figure 5. ■
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■ This equation in and describes 
where the particle has been, but it 
doesn’t tell us when the particle was at a
particular point. The parametric equations
have an advantage––they tell us when the
particle was at a point. They also indicate
the direction of the motion.
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Writing the function just in terms of x and y loses some
information.

If we’re thinking about the parametric function as a
particle traveling on the x-y plane over time, we calculated that it
traces the curve x = (y − 2)2 − 1, but it doesn’t tell us what
direction or how fast. Further, we have put no restriction on t.



Example: Define the parametric curve by

x(t) = t2 − 2t, y(t) = t+ 1.

For all t:

501

9.1 PARAMETRIC CURVES
Imagine that a particle moves along the curve shown in Figure 1. It is impossible to
describe by an equation of the form because fails the Vertical Line Test.
But the - and -coordinates of the particle are functions of time and so we can write

and . Such a pair of equations is often a convenient way of describ-
ing a curve and gives rise to the following definition.

Suppose that and are both given as functions of a third variable (called a
param eter) by the equations

(called parametric equations). Each value of determines a point , which we
can plot in a coordinate plane. As varies, the point varies and
traces out a curve , which we call a parametric curve. The parameter does not nec-
essarily represent time and, in fact, we could use a letter other than for the parame-
ter. But in many applications of parametric curves, does denote time and therefore
we can interpret as the position of a particle at time .

EXAMPLE 1 Sketch and identify the curve defined by the parametric equations

SOLUTION Each value of gives a point on the curve, as shown in the table. For
instance, if , then , and so the corresponding point is . In
Figure 2 we plot the points determined by several values of the parameter
and we join them to produce a curve.
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PARAMETRIC EQUATIONS AND
POLAR COORDINATES
So far we have described plane curves by giving as a function of or as a function of 

or by giving a relation between and that defines implicitly as a function of
. In this chapter we discuss two new methods for describing curves.

Some curves, such as the cycloid, are best handled when both and are given in terms of a third
variable called a parameter . Other curves, such as the cardioid, have their most
convenient description when we use a new coordinate system, called the polar coordinate system.
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For 0 ≤ t ≤ 4:

A particle whose position is given by the parametric equations moves along the
curve in the direction of the arrows as increases. Notice that the consecutive points
marked on the curve appear at equal time intervals but not at equal distances. That is
because the particle slows down and then speeds up as increases.

It appears from Figure 2 that the curve traced out by the particle may be a 
parab ola. This can be confirmed by eliminating the parameter as follows. We
obtain from the second equation and substitute into the first equation.
This gives

and so the curve represented by the given parametric equations is the parabola
. ■

No restriction was placed on the parameter in Example 1, so we assumed that
could be any real number. But sometimes we restrict to lie in a finite interval. For
instance, the parametric curve

shown in Figure 3 is the part of the parabola in Example 1 that starts at the point
and ends at the point . The arrowhead indicates the direction in which the curve
is traced as increases from 0 to 4.

In general, the curve with parametric equations

has initial point and terminal point .

EXAMPLE 2 What curve is represented by the following parametric equations?

SOLUTION If we plot points, it appears that the curve is a circle. We can confirm
this impression by eliminating Observe that

Thus the point moves on the unit circle . Notice that in this 
example the parameter can be interpreted as the angle (in radians) shown in Fig-
ure 4. As increases from 0 to , the point moves once
around the circle in the counterclockwise direction starting from the point . ■

EXAMPLE 3 What curve is represented by the given parametric equations?

SOLUTION Again we have

so the parametric equations again represent the unit circle . But as
increases from 0 to , the point starts at and moves
twice around the circle in the clockwise direction as indicated in Figure 5. ■
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■ This equation in and describes 
where the particle has been, but it 
doesn’t tell us when the particle was at a
particular point. The parametric equations
have an advantage––they tell us when the
particle was at a point. They also indicate
the direction of the motion.
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Writing the function just in terms of x and y loses some
information. If we’re thinking about the parametric function as a
particle traveling on the x-y plane over time, we calculated that it
traces the curve x = (y − 2)2 − 1, but it doesn’t tell us what
direction or how fast.

Further, we have put no restriction on t.



Example: Define the parametric curve by

x(t) = t2 − 2t, y(t) = t+ 1.

For all t:

501

9.1 PARAMETRIC CURVES
Imagine that a particle moves along the curve shown in Figure 1. It is impossible to
describe by an equation of the form because fails the Vertical Line Test.
But the - and -coordinates of the particle are functions of time and so we can write

and . Such a pair of equations is often a convenient way of describ-
ing a curve and gives rise to the following definition.

Suppose that and are both given as functions of a third variable (called a
param eter) by the equations

(called parametric equations). Each value of determines a point , which we
can plot in a coordinate plane. As varies, the point varies and
traces out a curve , which we call a parametric curve. The parameter does not nec-
essarily represent time and, in fact, we could use a letter other than for the parame-
ter. But in many applications of parametric curves, does denote time and therefore
we can interpret as the position of a particle at time .

EXAMPLE 1 Sketch and identify the curve defined by the parametric equations

SOLUTION Each value of gives a point on the curve, as shown in the table. For
instance, if , then , and so the corresponding point is . In
Figure 2 we plot the points determined by several values of the parameter
and we join them to produce a curve.

y ! f !x"

y ! t!t"x ! f !t"

tyx

y ! t!t"x ! f !t"

!x, y"t
!x, y" ! ! f !t", t!t""t

C

!x, y" ! ! f !t", t!t""

y ! t ! 1x ! t2 " 2t

t
!0, 1"y ! 1x ! 0t ! 0

t!x, y"

C C
C

x y

FIGURE 2 

0
t=0

t=1

t=2
t=3

t=4

t=_1
t=_2

(0, 1)

y

x
8

t

t
t

t

PARAMETRIC EQUATIONS AND
POLAR COORDINATES
So far we have described plane curves by giving as a function of or as a function of 

or by giving a relation between and that defines implicitly as a function of
. In this chapter we discuss two new methods for describing curves.

Some curves, such as the cycloid, are best handled when both and are given in terms of a third
variable called a parameter . Other curves, such as the cardioid, have their most
convenient description when we use a new coordinate system, called the polar coordinate system.
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For 0 ≤ t ≤ 4:

A particle whose position is given by the parametric equations moves along the
curve in the direction of the arrows as increases. Notice that the consecutive points
marked on the curve appear at equal time intervals but not at equal distances. That is
because the particle slows down and then speeds up as increases.

It appears from Figure 2 that the curve traced out by the particle may be a 
parab ola. This can be confirmed by eliminating the parameter as follows. We
obtain from the second equation and substitute into the first equation.
This gives

and so the curve represented by the given parametric equations is the parabola
. ■

No restriction was placed on the parameter in Example 1, so we assumed that
could be any real number. But sometimes we restrict to lie in a finite interval. For
instance, the parametric curve

shown in Figure 3 is the part of the parabola in Example 1 that starts at the point
and ends at the point . The arrowhead indicates the direction in which the curve
is traced as increases from 0 to 4.

In general, the curve with parametric equations

has initial point and terminal point .

EXAMPLE 2 What curve is represented by the following parametric equations?

SOLUTION If we plot points, it appears that the curve is a circle. We can confirm
this impression by eliminating Observe that

Thus the point moves on the unit circle . Notice that in this 
example the parameter can be interpreted as the angle (in radians) shown in Fig-
ure 4. As increases from 0 to , the point moves once
around the circle in the counterclockwise direction starting from the point . ■

EXAMPLE 3 What curve is represented by the given parametric equations?

SOLUTION Again we have

so the parametric equations again represent the unit circle . But as
increases from 0 to , the point starts at and moves
twice around the circle in the clockwise direction as indicated in Figure 5. ■
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■ This equation in and describes 
where the particle has been, but it 
doesn’t tell us when the particle was at a
particular point. The parametric equations
have an advantage––they tell us when the
particle was at a point. They also indicate
the direction of the motion.

yx

FIGURE 3 

0

(8, 5)

(0, 1)

y

x

FIGURE 4 

3π
2t=

π
2t=

0
t

t=0

(1, 0)

(cos t, sin t)

t=2π

t=π
x

y

0

t=0, π, 2π

FIGURE 5 

x

y

(0, 1)

12280_ch09_ptg01_hr_501-511.qk_12280_ch09_ptg01_hr_501-511.qk  11/17/11  11:17 AM  Page 502

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Writing the function just in terms of x and y loses some
information. If we’re thinking about the parametric function as a
particle traveling on the x-y plane over time, we calculated that it
traces the curve x = (y − 2)2 − 1, but it doesn’t tell us what
direction or how fast. Further, we have put no restriction on t.



Example: Define the parametric curve by

x(t) = t2 − 2t, y(t) = t+ 1.

For all t:
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9.1 PARAMETRIC CURVES
Imagine that a particle moves along the curve shown in Figure 1. It is impossible to
describe by an equation of the form because fails the Vertical Line Test.
But the - and -coordinates of the particle are functions of time and so we can write

and . Such a pair of equations is often a convenient way of describ-
ing a curve and gives rise to the following definition.

Suppose that and are both given as functions of a third variable (called a
param eter) by the equations

(called parametric equations). Each value of determines a point , which we
can plot in a coordinate plane. As varies, the point varies and
traces out a curve , which we call a parametric curve. The parameter does not nec-
essarily represent time and, in fact, we could use a letter other than for the parame-
ter. But in many applications of parametric curves, does denote time and therefore
we can interpret as the position of a particle at time .

EXAMPLE 1 Sketch and identify the curve defined by the parametric equations

SOLUTION Each value of gives a point on the curve, as shown in the table. For
instance, if , then , and so the corresponding point is . In
Figure 2 we plot the points determined by several values of the parameter
and we join them to produce a curve.
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So far we have described plane curves by giving as a function of or as a function of 

or by giving a relation between and that defines implicitly as a function of
. In this chapter we discuss two new methods for describing curves.

Some curves, such as the cycloid, are best handled when both and are given in terms of a third
variable called a parameter . Other curves, such as the cardioid, have their most
convenient description when we use a new coordinate system, called the polar coordinate system.
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For 0 ≤ t ≤ 4:

A particle whose position is given by the parametric equations moves along the
curve in the direction of the arrows as increases. Notice that the consecutive points
marked on the curve appear at equal time intervals but not at equal distances. That is
because the particle slows down and then speeds up as increases.

It appears from Figure 2 that the curve traced out by the particle may be a 
parab ola. This can be confirmed by eliminating the parameter as follows. We
obtain from the second equation and substitute into the first equation.
This gives

and so the curve represented by the given parametric equations is the parabola
. ■

No restriction was placed on the parameter in Example 1, so we assumed that
could be any real number. But sometimes we restrict to lie in a finite interval. For
instance, the parametric curve

shown in Figure 3 is the part of the parabola in Example 1 that starts at the point
and ends at the point . The arrowhead indicates the direction in which the curve
is traced as increases from 0 to 4.

In general, the curve with parametric equations

has initial point and terminal point .

EXAMPLE 2 What curve is represented by the following parametric equations?

SOLUTION If we plot points, it appears that the curve is a circle. We can confirm
this impression by eliminating Observe that

Thus the point moves on the unit circle . Notice that in this 
example the parameter can be interpreted as the angle (in radians) shown in Fig-
ure 4. As increases from 0 to , the point moves once
around the circle in the counterclockwise direction starting from the point . ■

EXAMPLE 3 What curve is represented by the given parametric equations?

SOLUTION Again we have

so the parametric equations again represent the unit circle . But as
increases from 0 to , the point starts at and moves
twice around the circle in the clockwise direction as indicated in Figure 5. ■
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■ This equation in and describes 
where the particle has been, but it 
doesn’t tell us when the particle was at a
particular point. The parametric equations
have an advantage––they tell us when the
particle was at a point. They also indicate
the direction of the motion.
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Writing the function just in terms of x and y loses some
information. If we’re thinking about the parametric function as a
particle traveling on the x-y plane over time, we calculated that it
traces the curve x = (y − 2)2 − 1, but it doesn’t tell us what
direction or how fast. Further, we have put no restriction on t.



Example: Define the parametric curve by

x(t) = t2 − 2t, y(t) = t+ 1.

For all t:

501

9.1 PARAMETRIC CURVES
Imagine that a particle moves along the curve shown in Figure 1. It is impossible to
describe by an equation of the form because fails the Vertical Line Test.
But the - and -coordinates of the particle are functions of time and so we can write

and . Such a pair of equations is often a convenient way of describ-
ing a curve and gives rise to the following definition.

Suppose that and are both given as functions of a third variable (called a
param eter) by the equations

(called parametric equations). Each value of determines a point , which we
can plot in a coordinate plane. As varies, the point varies and
traces out a curve , which we call a parametric curve. The parameter does not nec-
essarily represent time and, in fact, we could use a letter other than for the parame-
ter. But in many applications of parametric curves, does denote time and therefore
we can interpret as the position of a particle at time .

EXAMPLE 1 Sketch and identify the curve defined by the parametric equations

SOLUTION Each value of gives a point on the curve, as shown in the table. For
instance, if , then , and so the corresponding point is . In
Figure 2 we plot the points determined by several values of the parameter
and we join them to produce a curve.
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or by giving a relation between and that defines implicitly as a function of
. In this chapter we discuss two new methods for describing curves.

Some curves, such as the cycloid, are best handled when both and are given in terms of a third
variable called a parameter . Other curves, such as the cardioid, have their most
convenient description when we use a new coordinate system, called the polar coordinate system.
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For 0 ≤ t ≤ 4:

A particle whose position is given by the parametric equations moves along the
curve in the direction of the arrows as increases. Notice that the consecutive points
marked on the curve appear at equal time intervals but not at equal distances. That is
because the particle slows down and then speeds up as increases.

It appears from Figure 2 that the curve traced out by the particle may be a 
parab ola. This can be confirmed by eliminating the parameter as follows. We
obtain from the second equation and substitute into the first equation.
This gives

and so the curve represented by the given parametric equations is the parabola
. ■

No restriction was placed on the parameter in Example 1, so we assumed that
could be any real number. But sometimes we restrict to lie in a finite interval. For
instance, the parametric curve

shown in Figure 3 is the part of the parabola in Example 1 that starts at the point
and ends at the point . The arrowhead indicates the direction in which the curve
is traced as increases from 0 to 4.

In general, the curve with parametric equations

has initial point and terminal point .

EXAMPLE 2 What curve is represented by the following parametric equations?

SOLUTION If we plot points, it appears that the curve is a circle. We can confirm
this impression by eliminating Observe that

Thus the point moves on the unit circle . Notice that in this 
example the parameter can be interpreted as the angle (in radians) shown in Fig-
ure 4. As increases from 0 to , the point moves once
around the circle in the counterclockwise direction starting from the point . ■

EXAMPLE 3 What curve is represented by the given parametric equations?

SOLUTION Again we have

so the parametric equations again represent the unit circle . But as
increases from 0 to , the point starts at and moves
twice around the circle in the clockwise direction as indicated in Figure 5. ■
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■ This equation in and describes 
where the particle has been, but it 
doesn’t tell us when the particle was at a
particular point. The parametric equations
have an advantage––they tell us when the
particle was at a point. They also indicate
the direction of the motion.
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Writing the function just in terms of x and y loses some
information. If we’re thinking about the parametric function as a
particle traveling on the x-y plane over time, we calculated that it
traces the curve x = (y − 2)2 − 1, but it doesn’t tell us what
direction or how fast. Further, we have put no restriction on t.



Example: Unit circle.

x(t) = cos(t) y(t) = sin(t), 0 ≤ t ≤ 2π

Plotting points

A particle whose position is given by the parametric equations moves along the
curve in the direction of the arrows as increases. Notice that the consecutive points
marked on the curve appear at equal time intervals but not at equal distances. That is
because the particle slows down and then speeds up as increases.

It appears from Figure 2 that the curve traced out by the particle may be a 
parab ola. This can be confirmed by eliminating the parameter as follows. We
obtain from the second equation and substitute into the first equation.
This gives

and so the curve represented by the given parametric equations is the parabola
. ■

No restriction was placed on the parameter in Example 1, so we assumed that
could be any real number. But sometimes we restrict to lie in a finite interval. For
instance, the parametric curve

shown in Figure 3 is the part of the parabola in Example 1 that starts at the point
and ends at the point . The arrowhead indicates the direction in which the curve
is traced as increases from 0 to 4.

In general, the curve with parametric equations

has initial point and terminal point .

EXAMPLE 2 What curve is represented by the following parametric equations?

SOLUTION If we plot points, it appears that the curve is a circle. We can confirm
this impression by eliminating Observe that

Thus the point moves on the unit circle . Notice that in this 
example the parameter can be interpreted as the angle (in radians) shown in Fig-
ure 4. As increases from 0 to , the point moves once
around the circle in the counterclockwise direction starting from the point . ■

EXAMPLE 3 What curve is represented by the given parametric equations?

SOLUTION Again we have

so the parametric equations again represent the unit circle . But as
increases from 0 to , the point starts at and moves
twice around the circle in the clockwise direction as indicated in Figure 5. ■
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where the particle has been, but it 
doesn’t tell us when the particle was at a
particular point. The parametric equations
have an advantage––they tell us when the
particle was at a point. They also indicate
the direction of the motion.
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This curve traces out a circle!
(Recall the unit circle)

Converting to a function
of just x and y:

x2 + y2 = cos2(t) + sin2(t) = 1.

You try: Graph and compare the following parametric curves to
each other and the example above.

(1) x(t) = cos(2t), y(t) = sin(2t), 0 ≤ t ≤ 2π;

(2) x(t) = cos(t/3), y(t) = sin(t/3), 0 ≤ t ≤ 2π.



Example: Unit circle.

x(t) = cos(t) y(t) = sin(t), 0 ≤ t ≤ 2π
Plotting points

A particle whose position is given by the parametric equations moves along the
curve in the direction of the arrows as increases. Notice that the consecutive points
marked on the curve appear at equal time intervals but not at equal distances. That is
because the particle slows down and then speeds up as increases.

It appears from Figure 2 that the curve traced out by the particle may be a 
parab ola. This can be confirmed by eliminating the parameter as follows. We
obtain from the second equation and substitute into the first equation.
This gives

and so the curve represented by the given parametric equations is the parabola
. ■

No restriction was placed on the parameter in Example 1, so we assumed that
could be any real number. But sometimes we restrict to lie in a finite interval. For
instance, the parametric curve

shown in Figure 3 is the part of the parabola in Example 1 that starts at the point
and ends at the point . The arrowhead indicates the direction in which the curve
is traced as increases from 0 to 4.

In general, the curve with parametric equations

has initial point and terminal point .

EXAMPLE 2 What curve is represented by the following parametric equations?

SOLUTION If we plot points, it appears that the curve is a circle. We can confirm
this impression by eliminating Observe that

Thus the point moves on the unit circle . Notice that in this 
example the parameter can be interpreted as the angle (in radians) shown in Fig-
ure 4. As increases from 0 to , the point moves once
around the circle in the counterclockwise direction starting from the point . ■

EXAMPLE 3 What curve is represented by the given parametric equations?

SOLUTION Again we have

so the parametric equations again represent the unit circle . But as
increases from 0 to , the point starts at and moves
twice around the circle in the clockwise direction as indicated in Figure 5. ■
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■ This equation in and describes 
where the particle has been, but it 
doesn’t tell us when the particle was at a
particular point. The parametric equations
have an advantage––they tell us when the
particle was at a point. They also indicate
the direction of the motion.
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This curve traces out a circle!
(Recall the unit circle)

Converting to a function
of just x and y:

x2 + y2 = cos2(t) + sin2(t) = 1.

You try: Graph and compare the following parametric curves to
each other and the example above.

(1) x(t) = cos(2t), y(t) = sin(2t), 0 ≤ t ≤ 2π;

(2) x(t) = cos(t/3), y(t) = sin(t/3), 0 ≤ t ≤ 2π.



Example: Unit circle.

x(t) = cos(t) y(t) = sin(t), 0 ≤ t ≤ 2π
Plotting points

A particle whose position is given by the parametric equations moves along the
curve in the direction of the arrows as increases. Notice that the consecutive points
marked on the curve appear at equal time intervals but not at equal distances. That is
because the particle slows down and then speeds up as increases.

It appears from Figure 2 that the curve traced out by the particle may be a 
parab ola. This can be confirmed by eliminating the parameter as follows. We
obtain from the second equation and substitute into the first equation.
This gives

and so the curve represented by the given parametric equations is the parabola
. ■

No restriction was placed on the parameter in Example 1, so we assumed that
could be any real number. But sometimes we restrict to lie in a finite interval. For
instance, the parametric curve

shown in Figure 3 is the part of the parabola in Example 1 that starts at the point
and ends at the point . The arrowhead indicates the direction in which the curve
is traced as increases from 0 to 4.

In general, the curve with parametric equations

has initial point and terminal point .

EXAMPLE 2 What curve is represented by the following parametric equations?

SOLUTION If we plot points, it appears that the curve is a circle. We can confirm
this impression by eliminating Observe that

Thus the point moves on the unit circle . Notice that in this 
example the parameter can be interpreted as the angle (in radians) shown in Fig-
ure 4. As increases from 0 to , the point moves once
around the circle in the counterclockwise direction starting from the point . ■

EXAMPLE 3 What curve is represented by the given parametric equations?

SOLUTION Again we have

so the parametric equations again represent the unit circle . But as
increases from 0 to , the point starts at and moves
twice around the circle in the clockwise direction as indicated in Figure 5. ■
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particular point. The parametric equations
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This curve traces out a circle!
(Recall the unit circle)

Converting to a function
of just x and y:

x2 + y2 = cos2(t) + sin2(t) = 1.

You try: Graph and compare the following parametric curves to
each other and the example above.

(1) x(t) = cos(2t), y(t) = sin(2t), 0 ≤ t ≤ 2π;

(2) x(t) = cos(t/3), y(t) = sin(t/3), 0 ≤ t ≤ 2π.



Example: Unit circle.

x(t) = cos(t) y(t) = sin(t), 0 ≤ t ≤ 2π
Plotting points

A particle whose position is given by the parametric equations moves along the
curve in the direction of the arrows as increases. Notice that the consecutive points
marked on the curve appear at equal time intervals but not at equal distances. That is
because the particle slows down and then speeds up as increases.

It appears from Figure 2 that the curve traced out by the particle may be a 
parab ola. This can be confirmed by eliminating the parameter as follows. We
obtain from the second equation and substitute into the first equation.
This gives

and so the curve represented by the given parametric equations is the parabola
. ■

No restriction was placed on the parameter in Example 1, so we assumed that
could be any real number. But sometimes we restrict to lie in a finite interval. For
instance, the parametric curve

shown in Figure 3 is the part of the parabola in Example 1 that starts at the point
and ends at the point . The arrowhead indicates the direction in which the curve
is traced as increases from 0 to 4.

In general, the curve with parametric equations

has initial point and terminal point .

EXAMPLE 2 What curve is represented by the following parametric equations?

SOLUTION If we plot points, it appears that the curve is a circle. We can confirm
this impression by eliminating Observe that

Thus the point moves on the unit circle . Notice that in this 
example the parameter can be interpreted as the angle (in radians) shown in Fig-
ure 4. As increases from 0 to , the point moves once
around the circle in the counterclockwise direction starting from the point . ■

EXAMPLE 3 What curve is represented by the given parametric equations?

SOLUTION Again we have

so the parametric equations again represent the unit circle . But as
increases from 0 to , the point starts at and moves
twice around the circle in the clockwise direction as indicated in Figure 5. ■
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■ This equation in and describes 
where the particle has been, but it 
doesn’t tell us when the particle was at a
particular point. The parametric equations
have an advantage––they tell us when the
particle was at a point. They also indicate
the direction of the motion.
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This curve traces out a circle!
(Recall the unit circle)

Converting to a function
of just x and y:

x2 + y2 = cos2(t) + sin2(t)

= 1.

You try: Graph and compare the following parametric curves to
each other and the example above.

(1) x(t) = cos(2t), y(t) = sin(2t), 0 ≤ t ≤ 2π;

(2) x(t) = cos(t/3), y(t) = sin(t/3), 0 ≤ t ≤ 2π.



Example: Unit circle.

x(t) = cos(t) y(t) = sin(t), 0 ≤ t ≤ 2π
Plotting points
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. ■
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shown in Figure 3 is the part of the parabola in Example 1 that starts at the point
and ends at the point . The arrowhead indicates the direction in which the curve
is traced as increases from 0 to 4.

In general, the curve with parametric equations

has initial point and terminal point .
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SOLUTION If we plot points, it appears that the curve is a circle. We can confirm
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Thus the point moves on the unit circle . Notice that in this 
example the parameter can be interpreted as the angle (in radians) shown in Fig-
ure 4. As increases from 0 to , the point moves once
around the circle in the counterclockwise direction starting from the point . ■

EXAMPLE 3 What curve is represented by the given parametric equations?

SOLUTION Again we have

so the parametric equations again represent the unit circle . But as
increases from 0 to , the point starts at and moves
twice around the circle in the clockwise direction as indicated in Figure 5. ■

t

t
t ! y ! 1

x ! t 2 ! 2t ! !y ! 1"2 ! 2!y ! 1" ! y 2 ! 4y " 3

x ! y 2 ! 4y " 3

t

x ! t 2 ! 2t y ! t " 1 0 # t # 4

!0, 1"
!8, 5"

t

x ! f !t" y ! t!t" a # t # b

! f !a", t!a"" ! f !b", t!b""

x ! cos t y ! sin t 0 # t # 2$

t.

x 2 " y 2 ! cos2t " sin2t ! 1

!x, y" x 2 " y 2 ! 1
t

t 2$ !x, y" ! !cos t, sin t"

t

!1, 0"

0 # t # 2$y ! cos 2tx ! sin 2t

x 2 " y 2 ! sin2 2t " cos2 2t ! 1

tx 2 " y 2 ! 1
!0, 1"!x, y" ! !sin 2t, cos 2t"2$

V

t
t

502 CHAPTER 9 PARAMETRIC EQUATIONS AND POLAR COORDINATES

Unless otherwise noted, all content on this page is © Cengage Learning.

■ This equation in and describes 
where the particle has been, but it 
doesn’t tell us when the particle was at a
particular point. The parametric equations
have an advantage––they tell us when the
particle was at a point. They also indicate
the direction of the motion.

yx

FIGURE 3 

0

(8, 5)

(0, 1)

y

x

FIGURE 4 

3π
2t=

π
2t=

0
t

t=0

(1, 0)

(cos t, sin t)

t=2π

t=π
x

y

0

t=0, π, 2π

FIGURE 5 

x

y

(0, 1)

12280_ch09_ptg01_hr_501-511.qk_12280_ch09_ptg01_hr_501-511.qk  11/17/11  11:17 AM  Page 502

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This curve traces out a circle!
(Recall the unit circle)

Converting to a function
of just x and y:

x2 + y2 = cos2(t) + sin2(t) = 1.

You try: Graph and compare the following parametric curves to
each other and the example above.

(1) x(t) = cos(2t), y(t) = sin(2t), 0 ≤ t ≤ 2π;

(2) x(t) = cos(t/3), y(t) = sin(t/3), 0 ≤ t ≤ 2π.



Graph transformations

Since a parametric curve gives the x and y coordinates separately,
transformations are a little more straightforward.

Example: We saw that x(t) = cos(t), y(t) = sin(t), 0 ≤ t ≤ 2π is
the unit circle centered at the origin.

If I want a circle centered at the point (2, 5), that’s the same as
shifting all the x-coordinates right by 3 and all the y-coordinates
up by 5:

x(t) = cos(t) + 2 y(t) = sin(t) + 5, 0 ≤ t ≤ 2π.

If instead I still want a circle centered at (0, 0), but I want its radius
dilated to 3, I want to multiply the x and y coordinates all by 3:

x(t) = 3 cos(t) y(t) = 3 sin(t), 0 ≤ t ≤ 2π.

If I want a bigger circle that’s also shifted, dilate first and then shift
(just as before). A circle of radius r, centered at (a, b) is given by

x(t) = r cos(t) + a y(t) = r sin(t) + b, 0 ≤ t ≤ 2π.
Check:

(x− a)2 + (y − b)2 = (r cos(t))2 + (r sin(t))2 = r2(cos2(t) + sin2(t)) = r2.X
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You try:

Sketch the following curves and give a formula for their shape just
in terms of x and y.
(Hint: Think about graph transformations, and scaling or shifting
either or both coordinates to get them to fit the pythagorean
identity.) Give an example of a domain for t that would trace the
curve exactly once.

1. x(t) = 2 cos(t), y(t) = sin(t).

2. x(t) = cos(t), y(t) = 3 sin(t).

3. x(t) = cos(t), y(t) = sin(−t).

4. x(t) = 5 cos(2t), y(t) = 3 sin(2t).

5. x(t) = cos(t), y(t) = sin(−t).

6. x(t) = sin(t), y(t) = cos(t).

7. x(t) = 2 cos(t) + 1, y(t) = 3(sin(t)− 4).

8. x(t) = 5 cos(−t) + 1, y(t) = 2 sin(t) + 5.



Example: Sketch

x(t) = sin(t), y(t) = sin2(t).

We could solve for t from one and plug it into the other. But as a
shortcut, it’s clear to see that y = sin2(t) = x2. So this curve
appears to be a parabola.

-1 1

2
?

But −1 ≤ sin(x) ≤ 1, so the x values can’t go outside these
bounds. This is actually a curve traced out by a particle bouncing
back and forth between (−1, 1) and (1, 1) along the curve y = x2.



Example: Sketch

x(t) = sin(t), y(t) = sin2(t).

We could solve for t from one and plug it into the other. But as a
shortcut, it’s clear to see that y = sin2(t) = x2.

So this curve
appears to be a parabola.

-1 1

2
?

But −1 ≤ sin(x) ≤ 1, so the x values can’t go outside these
bounds. This is actually a curve traced out by a particle bouncing
back and forth between (−1, 1) and (1, 1) along the curve y = x2.



Example: Sketch

x(t) = sin(t), y(t) = sin2(t).

We could solve for t from one and plug it into the other. But as a
shortcut, it’s clear to see that y = sin2(t) = x2. So this curve
appears to be a parabola.

-1 1

2
?

But −1 ≤ sin(x) ≤ 1, so the x values can’t go outside these
bounds. This is actually a curve traced out by a particle bouncing
back and forth between (−1, 1) and (1, 1) along the curve y = x2.



Example: Sketch

x(t) = sin(t), y(t) = sin2(t).

We could solve for t from one and plug it into the other. But as a
shortcut, it’s clear to see that y = sin2(t) = x2. So this curve
appears to be a parabola.

-1 1

1

2

3

But −1 ≤ sin(x) ≤ 1, so the x values can’t go outside these
bounds.

This is actually a curve traced out by a particle bouncing
back and forth between (−1, 1) and (1, 1) along the curve y = x2.



Example: Sketch

x(t) = sin(t), y(t) = sin2(t).

We could solve for t from one and plug it into the other. But as a
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t=0, ±𝝿, ±2𝝿, …

t=𝝿/2+2k𝝿
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But −1 ≤ sin(x) ≤ 1, so the x values can’t go outside these
bounds. This is actually a curve traced out by a particle bouncing
back and forth between (−1, 1) and (1, 1) along the curve y = x2.



Take a wheel or radius r, and mark one point on its boundary. Now
roll that wheel, and trace the path that the marked point takes:
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Graphing devices are particularly useful for sketching complicated curves. For
instance, the curves shown in Figures 9, 10, and 11 would be virtually impossible to
produce by hand.

THE CYCLOID

EXAMPLE 7 The curve traced out by a point on the circumference of a circle as
the circle rolls along a straight line is called a cycloid (see Figure 12). If the circle
has radius and rolls along the -axis and if one position of is the origin, find
parametric equations for the cycloid.

SOLUTION We choose as parameter the angle of rotation of the circle
when is at the origin). Suppose the circle has rotated through radians. Because
the circle has been in contact with the line, we see from Figure 13 that the distance
it has rolled from the origin is

Therefore the center of the circle is . Let the coordinates of be . 
Then from Figure 13 we see that

Therefore parametric equations of the cycloid are

One arch of the cycloid comes from one rotation of the circle and so is described by
. Although Equations 1 were derived from Figure 13, which illustrates

the case , it can be seen that these equations are still valid for other
values of (see Exercise 33).
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An animation in Module 9.1B
shows how the cycloid is formed as the
circle moves.
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This curve is called a cycloid. To calculate its formula, we’ll use a
param. curve:
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Parameter: θ, the rot’l angle of circle.
Center: The edge of the circle has all
touched the ground. So the distance
of the center from the y-axis is the arc
length of the circle with angle θ. So the
center is at C = (rθ, r).
Then

x = |OT | − |PQ| = rθ − r sin θ,
y = |TC| − |QC| = r − r cos θ.



Take a wheel or radius r, and mark one point on its boundary. Now
roll that wheel, and trace the path that the marked point takes:
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Graphing devices are particularly useful for sketching complicated curves. For
instance, the curves shown in Figures 9, 10, and 11 would be virtually impossible to
produce by hand.

THE CYCLOID

EXAMPLE 7 The curve traced out by a point on the circumference of a circle as
the circle rolls along a straight line is called a cycloid (see Figure 12). If the circle
has radius and rolls along the -axis and if one position of is the origin, find
parametric equations for the cycloid.

SOLUTION We choose as parameter the angle of rotation of the circle
when is at the origin). Suppose the circle has rotated through radians. Because
the circle has been in contact with the line, we see from Figure 13 that the distance
it has rolled from the origin is

Therefore the center of the circle is . Let the coordinates of be . 
Then from Figure 13 we see that

Therefore parametric equations of the cycloid are

One arch of the cycloid comes from one rotation of the circle and so is described by
. Although Equations 1 were derived from Figure 13, which illustrates

the case , it can be seen that these equations are still valid for other
values of (see Exercise 33).
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This curve is called a cycloid.

To calculate its formula, we’ll use a
param. curve:
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EXAMPLE 7 The curve traced out by a point on the circumference of a circle as
the circle rolls along a straight line is called a cycloid (see Figure 12). If the circle
has radius and rolls along the -axis and if one position of is the origin, find
parametric equations for the cycloid.

SOLUTION We choose as parameter the angle of rotation of the circle
when is at the origin). Suppose the circle has rotated through radians. Because
the circle has been in contact with the line, we see from Figure 13 that the distance
it has rolled from the origin is

Therefore the center of the circle is . Let the coordinates of be . 
Then from Figure 13 we see that

Therefore parametric equations of the cycloid are

One arch of the cycloid comes from one rotation of the circle and so is described by
. Although Equations 1 were derived from Figure 13, which illustrates

the case , it can be seen that these equations are still valid for other
values of (see Exercise 33).
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Parameter: θ, the rot’l angle of circle.
Center: The edge of the circle has all
touched the ground. So the distance
of the center from the y-axis is the arc
length of the circle with angle θ. So the
center is at C = (rθ, r).
Then

x = |OT | − |PQ| = rθ − r sin θ,
y = |TC| − |QC| = r − r cos θ.



Take a wheel or radius r, and mark one point on its boundary. Now
roll that wheel, and trace the path that the marked point takes:
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THE CYCLOID

EXAMPLE 7 The curve traced out by a point on the circumference of a circle as
the circle rolls along a straight line is called a cycloid (see Figure 12). If the circle
has radius and rolls along the -axis and if one position of is the origin, find
parametric equations for the cycloid.

SOLUTION We choose as parameter the angle of rotation of the circle
when is at the origin). Suppose the circle has rotated through radians. Because
the circle has been in contact with the line, we see from Figure 13 that the distance
it has rolled from the origin is

Therefore the center of the circle is . Let the coordinates of be . 
Then from Figure 13 we see that

Therefore parametric equations of the cycloid are

One arch of the cycloid comes from one rotation of the circle and so is described by
. Although Equations 1 were derived from Figure 13, which illustrates

the case , it can be seen that these equations are still valid for other
values of (see Exercise 33).
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circle moves.
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This curve is called a cycloid. To calculate its formula, we’ll use a
param. curve:
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THE CYCLOID

EXAMPLE 7 The curve traced out by a point on the circumference of a circle as
the circle rolls along a straight line is called a cycloid (see Figure 12). If the circle
has radius and rolls along the -axis and if one position of is the origin, find
parametric equations for the cycloid.

SOLUTION We choose as parameter the angle of rotation of the circle
when is at the origin). Suppose the circle has rotated through radians. Because
the circle has been in contact with the line, we see from Figure 13 that the distance
it has rolled from the origin is

Therefore the center of the circle is . Let the coordinates of be . 
Then from Figure 13 we see that

Therefore parametric equations of the cycloid are

One arch of the cycloid comes from one rotation of the circle and so is described by
. Although Equations 1 were derived from Figure 13, which illustrates

the case , it can be seen that these equations are still valid for other
values of (see Exercise 33).
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Parameter: θ, the rot’l angle of circle.
Center: The edge of the circle has all
touched the ground. So the distance
of the center from the y-axis is the arc
length of the circle with angle θ. So the
center is at C = (rθ, r).
Then

x = |OT | − |PQ| = rθ − r sin θ,
y = |TC| − |QC| = r − r cos θ.



Take a wheel or radius r, and mark one point on its boundary. Now
roll that wheel, and trace the path that the marked point takes:
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THE CYCLOID

EXAMPLE 7 The curve traced out by a point on the circumference of a circle as
the circle rolls along a straight line is called a cycloid (see Figure 12). If the circle
has radius and rolls along the -axis and if one position of is the origin, find
parametric equations for the cycloid.

SOLUTION We choose as parameter the angle of rotation of the circle
when is at the origin). Suppose the circle has rotated through radians. Because
the circle has been in contact with the line, we see from Figure 13 that the distance
it has rolled from the origin is

Therefore the center of the circle is . Let the coordinates of be . 
Then from Figure 13 we see that

Therefore parametric equations of the cycloid are

One arch of the cycloid comes from one rotation of the circle and so is described by
. Although Equations 1 were derived from Figure 13, which illustrates

the case , it can be seen that these equations are still valid for other
values of (see Exercise 33).
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This curve is called a cycloid. To calculate its formula, we’ll use a
param. curve:
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THE CYCLOID

EXAMPLE 7 The curve traced out by a point on the circumference of a circle as
the circle rolls along a straight line is called a cycloid (see Figure 12). If the circle
has radius and rolls along the -axis and if one position of is the origin, find
parametric equations for the cycloid.

SOLUTION We choose as parameter the angle of rotation of the circle
when is at the origin). Suppose the circle has rotated through radians. Because
the circle has been in contact with the line, we see from Figure 13 that the distance
it has rolled from the origin is

Therefore the center of the circle is . Let the coordinates of be . 
Then from Figure 13 we see that

Therefore parametric equations of the cycloid are

One arch of the cycloid comes from one rotation of the circle and so is described by
. Although Equations 1 were derived from Figure 13, which illustrates

the case , it can be seen that these equations are still valid for other
values of (see Exercise 33).
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Parameter: θ, the rot’l angle of circle.

Center: The edge of the circle has all
touched the ground. So the distance
of the center from the y-axis is the arc
length of the circle with angle θ. So the
center is at C = (rθ, r).
Then

x = |OT | − |PQ| = rθ − r sin θ,
y = |TC| − |QC| = r − r cos θ.



Take a wheel or radius r, and mark one point on its boundary. Now
roll that wheel, and trace the path that the marked point takes:
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THE CYCLOID

EXAMPLE 7 The curve traced out by a point on the circumference of a circle as
the circle rolls along a straight line is called a cycloid (see Figure 12). If the circle
has radius and rolls along the -axis and if one position of is the origin, find
parametric equations for the cycloid.

SOLUTION We choose as parameter the angle of rotation of the circle
when is at the origin). Suppose the circle has rotated through radians. Because
the circle has been in contact with the line, we see from Figure 13 that the distance
it has rolled from the origin is

Therefore the center of the circle is . Let the coordinates of be . 
Then from Figure 13 we see that

Therefore parametric equations of the cycloid are

One arch of the cycloid comes from one rotation of the circle and so is described by
. Although Equations 1 were derived from Figure 13, which illustrates

the case , it can be seen that these equations are still valid for other
values of (see Exercise 33).
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An animation in Module 9.1B
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This curve is called a cycloid. To calculate its formula, we’ll use a
param. curve:
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THE CYCLOID

EXAMPLE 7 The curve traced out by a point on the circumference of a circle as
the circle rolls along a straight line is called a cycloid (see Figure 12). If the circle
has radius and rolls along the -axis and if one position of is the origin, find
parametric equations for the cycloid.

SOLUTION We choose as parameter the angle of rotation of the circle
when is at the origin). Suppose the circle has rotated through radians. Because
the circle has been in contact with the line, we see from Figure 13 that the distance
it has rolled from the origin is

Therefore the center of the circle is . Let the coordinates of be . 
Then from Figure 13 we see that

Therefore parametric equations of the cycloid are

One arch of the cycloid comes from one rotation of the circle and so is described by
. Although Equations 1 were derived from Figure 13, which illustrates

the case , it can be seen that these equations are still valid for other
values of (see Exercise 33).
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Parameter: θ, the rot’l angle of circle.
Center: The edge of the circle has all
touched the ground. So the distance
of the center from the y-axis is the arc
length of the circle with angle θ. So the
center is at C = (rθ, r).

Then
x = |OT | − |PQ| = rθ − r sin θ,
y = |TC| − |QC| = r − r cos θ.



Take a wheel or radius r, and mark one point on its boundary. Now
roll that wheel, and trace the path that the marked point takes:
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EXAMPLE 7 The curve traced out by a point on the circumference of a circle as
the circle rolls along a straight line is called a cycloid (see Figure 12). If the circle
has radius and rolls along the -axis and if one position of is the origin, find
parametric equations for the cycloid.

SOLUTION We choose as parameter the angle of rotation of the circle
when is at the origin). Suppose the circle has rotated through radians. Because
the circle has been in contact with the line, we see from Figure 13 that the distance
it has rolled from the origin is

Therefore the center of the circle is . Let the coordinates of be . 
Then from Figure 13 we see that

Therefore parametric equations of the cycloid are

One arch of the cycloid comes from one rotation of the circle and so is described by
. Although Equations 1 were derived from Figure 13, which illustrates

the case , it can be seen that these equations are still valid for other
values of (see Exercise 33).

1

_1

_2 2

FIGURE 10
x=sin t-sin 2.3t  
y=cos t

1.5

_1.5

_1.5 1.5

FIGURE 9
x=sin t+   
y=cos t+

1
2 cos 5t+1

4 sin 13t
1
2 sin 5t+1

4 cos 13t

1.8

_1.8

_1.8 1.8

FIGURE 11
x=sin t+   
y=cos t+

1
2 sin 5t+1

4 cos 2.3t
1
2 cos 5t+1

4 sin 2.3t

P

Pxr

FIGURE 12 P

P
P

!! ! 0!
!P

" OT " ! arc PT ! r!

!x, y#PC!r!, r#

x ! " OT " " " PQ " ! r! " r sin ! ! r !! " sin !#

y ! " TC " " " QC " ! r " r cos ! ! r !1 " cos !#

! ! !y ! r !1 " cos !#x ! r !! " sin !#1

0 # ! # 2$
0 % ! % $$2
!

FIGURE 13

xO

y

T

C(r¨, r)r ¨

x
y

r¨

P Q

An animation in Module 9.1B
shows how the cycloid is formed as the
circle moves.

TEC

12280_ch09_ptg01_hr_501-511.qk_12280_ch09_ptg01_hr_501-511.qk  11/17/11  11:17 AM  Page 504

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This curve is called a cycloid. To calculate its formula, we’ll use a
param. curve:
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Parameter: θ, the rot’l angle of circle.
Center: The edge of the circle has all
touched the ground. So the distance
of the center from the y-axis is the arc
length of the circle with angle θ. So the
center is at C = (rθ, r).
Then

x = |OT | − |PQ|

= rθ − r sin θ,
y = |TC| − |QC| = r − r cos θ.



Take a wheel or radius r, and mark one point on its boundary. Now
roll that wheel, and trace the path that the marked point takes:
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Therefore the center of the circle is . Let the coordinates of be . 
Then from Figure 13 we see that

Therefore parametric equations of the cycloid are

One arch of the cycloid comes from one rotation of the circle and so is described by
. Although Equations 1 were derived from Figure 13, which illustrates

the case , it can be seen that these equations are still valid for other
values of (see Exercise 33).
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One arch of the cycloid comes from one rotation of the circle and so is described by
. Although Equations 1 were derived from Figure 13, which illustrates

the case , it can be seen that these equations are still valid for other
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Parameter: θ, the rot’l angle of circle.
Center: The edge of the circle has all
touched the ground. So the distance
of the center from the y-axis is the arc
length of the circle with angle θ. So the
center is at C = (rθ, r).
Then

x = |OT | − |PQ| = rθ − r sin θ,

y = |TC| − |QC| = r − r cos θ.
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has radius and rolls along the -axis and if one position of is the origin, find
parametric equations for the cycloid.

SOLUTION We choose as parameter the angle of rotation of the circle
when is at the origin). Suppose the circle has rotated through radians. Because
the circle has been in contact with the line, we see from Figure 13 that the distance
it has rolled from the origin is

Therefore the center of the circle is . Let the coordinates of be . 
Then from Figure 13 we see that

Therefore parametric equations of the cycloid are

One arch of the cycloid comes from one rotation of the circle and so is described by
. Although Equations 1 were derived from Figure 13, which illustrates

the case , it can be seen that these equations are still valid for other
values of (see Exercise 33).
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the circle rolls along a straight line is called a cycloid (see Figure 12). If the circle
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SOLUTION We choose as parameter the angle of rotation of the circle
when is at the origin). Suppose the circle has rotated through radians. Because
the circle has been in contact with the line, we see from Figure 13 that the distance
it has rolled from the origin is

Therefore the center of the circle is . Let the coordinates of be . 
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Therefore parametric equations of the cycloid are

One arch of the cycloid comes from one rotation of the circle and so is described by
. Although Equations 1 were derived from Figure 13, which illustrates

the case , it can be seen that these equations are still valid for other
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Parameter: θ, the rot’l angle of circle.
Center: The edge of the circle has all
touched the ground. So the distance
of the center from the y-axis is the arc
length of the circle with angle θ. So the
center is at C = (rθ, r).
Then

x = |OT | − |PQ| = rθ − r sin θ,
y = |TC| − |QC|

= r − r cos θ.



Take a wheel or radius r, and mark one point on its boundary. Now
roll that wheel, and trace the path that the marked point takes:
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the circle rolls along a straight line is called a cycloid (see Figure 12). If the circle
has radius and rolls along the -axis and if one position of is the origin, find
parametric equations for the cycloid.

SOLUTION We choose as parameter the angle of rotation of the circle
when is at the origin). Suppose the circle has rotated through radians. Because
the circle has been in contact with the line, we see from Figure 13 that the distance
it has rolled from the origin is

Therefore the center of the circle is . Let the coordinates of be . 
Then from Figure 13 we see that

Therefore parametric equations of the cycloid are

One arch of the cycloid comes from one rotation of the circle and so is described by
. Although Equations 1 were derived from Figure 13, which illustrates

the case , it can be seen that these equations are still valid for other
values of (see Exercise 33).
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when is at the origin). Suppose the circle has rotated through radians. Because
the circle has been in contact with the line, we see from Figure 13 that the distance
it has rolled from the origin is

Therefore the center of the circle is . Let the coordinates of be . 
Then from Figure 13 we see that

Therefore parametric equations of the cycloid are

One arch of the cycloid comes from one rotation of the circle and so is described by
. Although Equations 1 were derived from Figure 13, which illustrates
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Parameter: θ, the rot’l angle of circle.
Center: The edge of the circle has all
touched the ground. So the distance
of the center from the y-axis is the arc
length of the circle with angle θ. So the
center is at C = (rθ, r).
Then

x = |OT | − |PQ| = rθ − r sin θ,
y = |TC| − |QC| = r − r cos θ.




