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Work example: Leaky bucket

The bucket weights 2 Ibs, the rope is 20 ft long and weights a total of 10 Ibs. The
rope is wound around the pulley at a rate of 2 ft/s. The bucket starts out holding 15
Ib of water and leaks at a rate of 1/10 Ib/s. How much work is required to lift the
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Wbucket = 2(20) ‘ Wrope = %(20)2
Water = 9(20) + 4*10(20)2

So in total,
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Example: Define the parametric curve by
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For all ¢: For 0 <t < 4:
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0
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Example:

Unit circle.

x(t) = cos(t)

Plotting points

Yy
(cost, sint)

t=0

y(t) = sin(?),

t=

3

T
2

0<t<27

This curve traces out a circle!
(Recall the unit circle)

Converting to a function
of just z and y:

2%+ y? = cos?(t) +sin®(t) = 1.

You try: Graph and compare the following parametric curves to
each other and the example above.

(2) x(t) = cos(t/3), y(t) = sin(t/3),

(1) =(t) = cos(2t),y(t) = sin(2t),

0<t<2m,

0<t< 2.
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If | want a circle centered at the point (2,5), that's the same as
shifting all the z-coordinates right by 3 and all the y-coordinates
up by 5:

x(t) =cos(t) +2 y(t) =sin(t)+5, 0<t<2m.

If instead | still want a circle centered at (0,0), but | want its radius
dilated to 3, | want to multiply the x and y coordinates all by 3:
x(t) =3cos(t) y(t)=3sin(t), 0<t <27

If | want a bigger circle that's also shifted, dilate first and then shift
(just as before). A circle of radius r, centered at (a,b) is given by
x(t) =rcos(t)+a y(t)=rsin(t)+b, 0<t<2r.



Graph transformations

Since a parametric curve gives the = and y coordinates separately,
transformations are a little more straightforward.

Example: We saw that x(t) = cos(t), y(t) =sin(t), 0 <t < 27 is
the unit circle centered at the origin.

If | want a circle centered at the point (2,5), that's the same as
shifting all the z-coordinates right by 3 and all the y-coordinates
up by 5:

x(t) =cos(t) +2 y(t) =sin(t)+5, 0<t<2m.

If instead | still want a circle centered at (0,0), but | want its radius
dilated to 3, | want to multiply the x and y coordinates all by 3:
x(t) =3cos(t) y(t)=3sin(t), 0<t <27

If | want a bigger circle that's also shifted, dilate first and then shift
(just as before). A circle of radius r, centered at (a,b) is given by
x(t) =rcos(t)+a y(t)=rsin(t)+b, 0<t<2r.
Check:
(x —a)®+ (y — b)? = (rcos(t))? + (rsin(t))? = r2(cos?(t) + sin%(t)) = r2.v



You try:

Sketch the following curves and give a formula for their shape just
in terms of x and y.

(Hint: Think about graph transformations, and scaling or shifting
either or both coordinates to get them to fit the pythagorean
identity.) Give an example of a domain for ¢ that would trace the
curve exactly once.

1. z(t) = 2cos(t), y(t) = sin(t).

2. z(t) = cos(t), y(t) = 3sin(t)

3. z(t) = cos(t), y(t) = sin(—t)

4. x(t) = 5cos(2t), y(t) = 3sin(2t)

5. x(t) = cos(t), y(t) = sin(—t).

6. x(t) = sin(t), y(t) = cos(t).

7. x(t) = 2cos(t) + 1, y(t) = 3(sin(t) — 4)
8. x(t) = 5cos(—t) + 1, y(t) = 2sin(t) + 5.



Example: Sketch

x(t) =sin(t), y(t) = sin?(t).
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We could solve for ¢ from one and plug it into the other. But as a

shortcut, it's clear to see that y = sin?(t) = z2.
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But —1 <sin(z) < 1, so the x values can't go outside these
bounds.
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Example: Sketch

x(t) =sin(t), y(t) = sin?(t).

We could solve for ¢ from one and plug it into the other. But as a
shortcut, it's clear to see that y = sin?(¢) = x2. So this curve

appears to be a parabola.
\ A

‘ 21
\t=-m/2+2kn

] ,
t=m/2+2kmn
-1 1

t=0, +T0, =2, ...

But —1 <sin(z) < 1, so the x values can't go outside these

bounds. This is actually a curve traced out by a particle bouncing

back and forth between (—1,1) and (1,1) along the curve y = 2.



Take a wheel or radius 7, and mark one point on its boundary. Now
roll that wheel, and trace the path that the marked point takes:
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Center: The edge of the circle has all
touched the ground. So the distance
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Take a wheel or radius 7, and mark one point on its boundary. Now
roll that wheel, and trace the path that the marked point takes:
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This curve is called a cycloid. To calculate its formula, we'll use a
param. curve:

y Parameter: 6, the rot’'l angle of circle.
Center: The edge of the circle has all
touched the ground. So the distance

of the center from the y-axis is the arc

g Cren length of the circle with angle 6. So the
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A Then
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Take a wheel or radius 7, and mark one point on its boundary. Now
roll that wheel, and trace the path that the marked point takes:
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This curve is called a cycloid. To calculate its formula, we'll use a
param. curve:

y Parameter: 6, the rot’'l angle of circle.
Center: The edge of the circle has all
touched the ground. So the distance

of the center from the y-axis is the arc

g Cren length of the circle with angle 6. So the
R===17¢ center is at C' = (rf,r).
A Then
0 r vz =|0T|—|PQ| =718 —rsiné,
fe— 16 —|

y=|TC|—|QC| =r —rcosé.






