7.6 "Work" from physics

Last time: Work W means the the effort it takes to move an object. This is the amount of force exerted, times the distance d moved. If $f(x)$ is the force exerted as a function of position x, then the amount of work done moving the object from $x=a$ to $x=b$ is

$$
W=\int_{a}^{b} f(x) d x
$$

To set up these problems (mostly word problems), your goal is to calculate the function $f(x)$ and then integrate.
If the word problem involves a spring, you want to use Hooke's law:

$$
f(x)=k x, \quad \text { where } k \text { is a constant particular to the spring. }
$$

Otherwise, you usually want to use Newton's second law of motion:

$$
f(x)=m a, \quad \text { where } a \text { is usually the accel. of gravity. }
$$

Note: in the metric system, $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$. In the US system, "pounds" force of a mass under gravity on Earth.

Examples from last time:

Example 1: When a particle is moved by a force of $f(x)=x^{2}+2 x$ pounds (x in feet), how much work is done by moving is from $x=1$ to $x=3$?
Answer: Here, we're just given the force equation, so we just integrate:

$$
W=\int_{x=1}^{3} f(x) d x=\int_{1}^{3} x^{2}+2 x d x=\frac{50}{3} \mathrm{ft}-\mathrm{lb} .
$$

Example 2: Suppose a force of 40 N is requires to hold a spring 5 cm from its equilibrium. How much work is done in stretching is from 5 cm to 8 cm from equilibrium?
Answer: Here, we're not given the force equation, so we have to calculate it. It's a spring problem, so we want to use Hooke's law, $f(x)=k x$. Step 1 is calculate k. Step 2 is plug in and integrate.
(1) $f(x)=40 \mathrm{~N}=k x=k 0.05 \mathrm{~m}, \quad$ so $k=40 / .05=800$.
(2) $W=\int_{0.05}^{0.08} 800 x d x=1.56 \mathrm{~J}$.

Example 3

A 200-lb cable is 100 ft long and hangs vertically from the top of a tall building. How much work is required to lift the cable to the top of the building?
Answer: Use Newton's 2nd law: $f(x)=m a$. We want this to end up a function of position. Draw a picture!
 $f(x)=m(x)$. Also, as I pull the cable up, the weight of what's left changes. So $f(x)$ is a percentage of the total weight of the cable.
Percentage: $x / 100$.

$$
f(x)=\left(\frac{x}{100}\right) 200 \mathrm{lb}=2 x \mathrm{lb} .
$$

So

$$
W=\int_{0}^{100} 2 x d x=100^{2} \mathrm{ft}-\mathrm{lb}
$$

Example 4

A tank has the shape of an inverted circular cone with height 10 m and base radius 4 m . It is filled with water to a height of 8 m . Find the work required to empty the tank by pumping all of the water to the top of the tank. (The density of water is $\rho=1000 \mathrm{~kg} \mathrm{~m}^{3}$.)

Answer: Use Newton's 2nd law: $f(x)=m a$. Again, we want this to end up a function of position. Draw a picture!
Starting picture: Add coordinate axes: Think of the work
 as lifting each water molecule up to the top of the tank. Of course, all the water that's at a fixed height takes the same amount of work per molecule. Slice it horizontally!

Example 4

Slices with constant height:

$$
d F=g d M=g \rho d V
$$

$$
=(9.8)(1000)\left(\pi r^{2}(x) d x\right)
$$

Thus $d F=(9.8)(1000)(\pi)\left(\frac{2}{5}(10-x)\right)^{2} d x$, so that

$$
W=\int_{2}^{10}(9.8)(1000)(\pi)\left(\frac{2}{5}(10-x)\right)^{2} d x
$$

You try

Set up the following problems.

1. A chain lying on the ground is 5 m long, and its mass is 100 kg . How much work is required to raise one end of the chain to a height of 7 m ?
2. A rectangular swimming pool has sides of length 20 ft and 30 ft , and a constant height of 6 ft . It is filled with water to a depth of 5 ft . How much work is required to pump all of the water out over the side (top)? (Use the fact that water weighs $62.5 \mathrm{lb} \mathrm{ft}^{3}$.)
