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object. This is the amount of force exerted, times the distance d
moved. If f(x) is the force exerted as a function of position x, then
the amount of work done moving the object from z =atoxz =bis

W:/abf(:r) da.

To set up these problems (mostly word problems), your goal is to
calculate the function f(z) and then integrate.

If the word problem involves a spring, you want to use Hooke's law:
f(x) = kx, where k is a constant particular to the spring.
Otherwise, you usually want to use Newton's second law of motion:
f(x) = ma, where a is usually the accel. of gravity.

Note: in the metric system, g = 9.8 m/s2. In the US system,
“pounds” force of a mass under gravity on Earth.
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Example 2: Suppose a force of 40 N is requires to hold a spring

5cm from its equilibrium. How much work is done in stretching is

from 5cm to 8 cm from equilibrium?

Answer: Here, we're not given the force equation, so we have to

calculate it. It's a spring problem, so we want to use Hooke's law,

f(x) = kx. Step 1 is calculate k. Step 2 is plug in and integrate.
(1) f(x) =40 N =kx = £0.05 m, so k= 40/.05 = 800.

(2) W = [;/7F 800z da = 1.56 J.
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A 200-1b cable is 100 ft long and hangs vertically from the top of a
tall building. How much work is required to lift the cable to the
top of the building?

Answer: Use Newton's 2nd law: f(z) = ma. We want this to end
up a function of position. Draw a picture!
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We're using the US system, so
f(xz) = m(z). Also, as | pull the
cable up, the weight of what's left
changes. So f(x) is a percentage of
100 t the total weight of the cable.

> Percentage: x/100.
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So
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W = / 22 dr = 100%*ft-1b.
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A tank has the shape of an inverted circular cone with height 10 m
and base radius 4 m. It is filled with water to a height of 8 m. Find
the work required to empty the tank by pumping all of the water
to the top of the tank. (The density of water is p =1000 kg m3.)

Answer: Use Newton's 2nd law: f(z) = ma. Again, we want this
to end up a function of position. Draw a picture!

Starting picture: Add coordinate axes:

Think of the work
as lifting each water
molecule up to the top
of the tank. Of course,
all the water that's at
a fixed height takes the
same amount of work
per molecule. Slice it
horizontally!
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Slices with Cut vertically to
constant height: compute r(x):
(%)=
(0,4)

10 ¢ (%,)=(1040)

X
dF =g dM = gp dV similar triangles: r(x)/(10 —x) = 4/10
= (9.8)(1000) (772 (x)dx) So r(z) = (10 — z)

Thus dF = (9.8)(1000)(r) (2(10 — z))* dz, so that

2

10
W:/ (9.8)(1000) () (2(10 — 2))? da.
2



You try
Set up the following problems.

1. A chain lying on the ground is 5 m long, and its mass is 100
kg. How much work is required to raise one end of the chain
to a height of 7 m?

2. A rectangular swimming pool has sides of length 20 ft and 30
ft, and a constant height of 6 ft. It is filled with water to a
depth of 5 ft. How much work is required to pump all of the
water out over the side (top)? (Use the fact that water
weighs 62.5 Ib ft3.)






