
7.5 Surface area
When we did areas, the basic slices were rectangles, with

�A = h�x or h�y.

When we did volumes of revolution, the basic slices came from
revolving rectangles around an axis. Depending on whether the
rectangles were parallel or perpendicular to the axis, we got
washers, with
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or cylindrical shells, with

�V = 2⇡rh�x or 2⇡rh�y.

Last time, we calculated arc length, the basic slices were line
segments, with
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Today: instead of rotating filled in regions around an axis and
calculating the volume of the shape, we will rotate curves around
an axis and calculate the surface area of the shape.

The arc length approximation was a lot like when we approximated
area with trapezoids, where each piece is a line with some slope,
instead of constant lines
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Now, if we rotate one of those segments around the x-axis, we get
a slice that looks like

, which is part of the cone .



So we need the surface area of a cross-section of a cone,

which depends on the lateral length ` of the slice, and the average
of the radius r

1

of the small circle and the radius r
2

of the big
circle.This surface area is given by (see section 7.5)
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(i.e. the area of the circular cylinder whose height is the the lateral
length ` and whose radius is the average of the two extreme radii).

In our slice from the previous slide,
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the lateral length is �` and the two radii are given by the height of
the function at x
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Example
dA = 2⇡f(x)

p
1 + (f 0(x))2 dx

Calculate the surface area of shape generated by rotating the curve
y =

p
4� x

2, �1  x  1, around the x-axis:
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You try:
Set up the following problems (simplify until you have something
you can integrate, but don’t finish the integration).
Calculate the surface area of shape resulting from. . .

1. revolving y =
p
1 + e

x for 0  x  1 around the x-axis;
2. revolving y = 1 + 2x2 for 1  x  2 around the x-axis;
3. revolving y = sin(x) for 0  x  ⇡/4 around the x-axis.



Changing the axis of rev. doesn’t change the variable:
We started with dA = 2⇡rd`.
If I revolve around the y-axis instead, I can still write d` in terms of
x. The di↵erence is that the radius is the distance from the y axis
instead of the di↵erence from the x-axis. So r = x!
Example: Revolve the curve y = x

2 for 1  x  2 around the
y-axis.

If I want my variable to be x, I have r = x, and
d` =

p
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Let u = 1 + 4x2, so that du = 8xdx, and u goes from 1 + 4 = 5
to 1 + 4(4) = 17. So

A =

Z
17

5

⇡

4

u

1/2

du = ⇡

4

2

3

u

3/2

���
17

5

= ⇡

6

((17)3/2 � 53/2).

We can force a variable change
We started with dA = 2⇡rd`. I could choose to write d` in terms
of y instead, as

d` =
p
1 + (dx/dy)2 dy.

Example again: Revolve the curve y = x

2 for 1  x  2 around
the y-axis.

Now if I want my variable to be y, I have r = x =
p
y, and
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You try:
Consider the shape generated by revolving

y = 1

2

p
x� 1 3  x  9

around the x-axis. Compute (if possible) the resulting surface area
in two ways, using x as the variable, and then using y as the
variable. Then do the same thing for rotating the same curve
around the y-axis.



7.6 “Work” from physics

In physics, work W means the the e↵ort it takes to move an
object. This is the amount of force exerted, times the distance d

moved. Newton’s second law of motion describes force F as mass
m times acceleration a: F = ma. But acceleration is the second
derivative of position s(t) versus time t. So

F = m

d

2

s

dt
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and W = Fd.

So if acceleration and mass are constant, we have a simple problem
or arithmetic.

Example: Lifting a 1.2 kg book takes a force of mg, where g = 9.8
m/s2 is the acceleration of gravity. So lifting the book 0.7 m o↵
the ground takes an e↵ort of

W = (1.2 kg)(9.8 m/s2)(0.7 m) = (1.2)(9.8)(0.1) J,
where J is joules ( kg ⇤ m2 / s2). Note, 1 kg ⇤ m / s2 = N, a
Newton.In the US system, we use the pound.

Non-constant force
If, on the other hand, force is not constant, we need some calculus!
Suppose an object is being moved in the positive x-direction from
x = 1 to x = b. Let f(x) be the force exerted as a function of
position x. Then we can approximate W by breaking [a, b] into n

subintervals, picking an x
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in each subinterval, and approximating
f(x) as f(x

i

) over that interval, so that
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Example: When a particle is moved by a force of f(x) = x

2 + 2x
pounds (x in feet), how much work is done by moving is from
x = 1 to x = 3?
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Hooke’s law
Hooke’s law states that the force required to stretch a spring x

units beyond equilibrium is proportional to x:

F = kx, where k is constant, depending on the spring.
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where is a positive constant (called the spring constant). Hooke’s Law holds pro-
vided that is not too large (see Figure 1).

EXAMPLE 2 A force of 40 N is required to hold a spring that has been stretched
from its natural length of 10 cm to a length of 15 cm. How much work is done in
stretching the spring from 15 cm to 18 cm?

SOLUTION According to Hooke’s Law, the force required to hold the spring
stretched meters beyond its natural length is . When the spring is
stretched from 10 cm to 15 cm, the amount stretched is cm m. This means
that so

Thus and the work done in stretching the spring from 15 cm to 18 cm is

■

EXAMPLE 3 A 200-lb cable is 100 ft long and hangs vertically from the top of a
tall building. How much work is required to lift the cable to the top of the building?

SOLUTION Here we don’t have a formula for the force function, but we can use an
argument similar to the one that led to Definition 4.

Let’s place the origin at the top of the building and the -axis pointing downward
as in Figure 2. We divide the cable into small parts with length . If is a point
in the such interval, then all points in the interval are lifted by approximately the
same amount, namely . The cable weighs 2 pounds per foot, so the weight of the

part is . Thus the work done on the part, in foot-pounds, is 

We get the total work done by adding all these approximations and letting the
number of parts become large (so ):

■

EXAMPLE 4 A tank has the shape of an inverted circular cone with height 10 m and
base radius 4 m. It is filled with water to a height of 8 m. Find the work required to
empty the tank by pumping all of the water to the top of the tank. (The density of
water is 1000 kg!m .)

SOLUTION Let’s measure depths from the top of the tank by introducing a vertical
coordinate line as in Figure 3. The water extends from a depth of 2 m to a depth 
of 10 m and so we divide the interval into n subintervals with endpoints

and choose in the th subinterval. This divides the water into
layers. The th layer is approximated by a circular cylinder with radius and 
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■ If we had placed the origin at the 
bottom of the cable and the -axis
upward, we would have gotten

which gives the same answer.
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FIGURE 1 
Hooke’s Law

x0frictionless
surface

x0 x

ƒ=kx

(a) Natural position of spring

(b) Stretched position of spring
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0 is equilibrium

Example: Suppose a force of 40 N is requires to hold a spring 5cm
from its equilibrium. How much work is done in stretching is from
5cm to 8 cm from equilibrium?

Change to meters, using 1 cm = 0.01 m. Then using Hooke’s law,

f(x) = 40 N = kx = k0.05 m, so k = 40/.05 = 800.

Thus f(x) = kx = 800x. So

W =

Z
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800x dx = 400x2
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= 1.56 J.


