
7.3 Volumes by cylindrical shells
Recall from last time that if we have a cylindrical shape with
height h and whose face has area A its volume is

V (cylinder) = Ah.

On the other hand, a (circular) cylindrical shell with very small
thickness ∆ = ∆x or ∆y, with radius r and height h, has volume

V (cylindrical shell) = 2πrh∆.

(Cut the shell down one side and unfold to get a rectangle; the
circumference of the cylinder was 2πr, so the length of the top is
the same.)
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Rotate a segment that’s perpendicular to the axis of rotation,
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Revisiting an example
Suppose we want to rotate the region bounded between y = x2

and y = x around the y-axis.

If I take slices perpendicular to the
y-axis, I get washers:

Now the variable is y, the radii are rin = xleft = y and
rout = xright =

√
y, so that

∆V = π((
√
y)2 − y2)∆y,

and so V =

∫ 1

0
π(y − y2)dy = π(12 −

1
3) = π

6
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Slice perpendicular to the axis of rotation:

Slice parallel to the axis of rotation:

(Different slices, different integral, same 3D shape, same answer)



Is one method ever “better” than the other?

Take the region bounded between y = 2x2 − x3 and the x-axis,
and rotate it around the y-axis:

If I try to do washers (like last time), I run into the problem of
inverting f(x) = 2x2 − x3, separately over the intervals [0, 4/3]
and [4/3, 2]. Yuck! Now, the radius is x, the thickness is ∆x, and
the height is h = ytop − ybot = (2x2 − x3)− 0. So
∆V = 2πx(2x2 − x3)∆x. The curve intersects the x-axis at when
2x2 − x3 = 0, i.e. x = 0 and x = 2. So

V =

∫ 2

0
2πx(2x2−x3) dx = 2π

∫ 2

0
2x3−x4 dx = 2π

(
2
4x

4 − 1
5x

5
) ∣∣∣2

0

= 2π
(
1
224 − 1

525
)
− 0.
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You try:

For each of the following, (a) sketch a picture of the region, (b)
pick a method – discs/washers or cylindrical shells, and (c)
compute the volume of the described solid.

1. Rotate R around the y-axis, where R is the region bounded
between y = −(x− 1)2 + 2 and the x-axis.

2. Rotate R around the x-axis, where R is the region bounded
between y = −(x− 1)2 + 2 and the x-axis.

3. Rotate R around the y-axis, where R is the region bounded
below y = 1

2x
2, above the x-axis, and below the line

y = 2x− 2.



7.4: Arc length

Suppose you want to know what the length of a curve y = f(x) is
from the point (a, f(a)) to the point (b, f(b)):

a b

y=f(x)

one
piece−→

xi xi+1

Slice!
Let n go to ∞

�

` = lim
n→∞

n∑
i=1

(little length)i

=

∫ x=b

x=a
d`

d` =
√
dx2 + dy2

dy

dx

dl
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Manipulating into something we can actually calculate...

dy

dx

dl
Remember, y = f(x).

d` =
√
dx2 + dy2

=
√
dx2 + dy2

dx

dx

=

√
dx2 + dy2

dx2
dx =

√
dx2

dx2
+
dy2

dx2
dx

=

√(
dx

dx

)2

+

(
dy

dx

)2

dx

=

√
1 + (f ′(x))2 dx

So ` =

∫ b

x=a

√
1 + (f ′(x))2 dx
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Arc length function
Find the length of the arc y = x3/2, from x = 1 to x = 2.

1 2

1

2

3

f(x) = x3/2 =⇒ f ′(x) =
3

2
x1/2

So

1 + (f ′(x))2 = 1 +

(
3

2
x1/2

)2

= 1 +
9

4
x

So

` =

∫ 2

1

√
1 +

9

4
x dx =

∫ 2

1

(
1 +

9

4
x

)1/2

dx

=

(
4

9

)(
2

3

)(
1 +

9

4
x

)3/2
∣∣∣∣∣
2

x=1

= 8
27

((
1 + 9

4 · 2
)3/2 − (1 + 9

4

)3/2)
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Arc length function
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You try:

Set up (but do not integrate) the integrals which compute the
length of the following functions. Notice that most of the time,
the resulting integral is “hard” (not elementary).

1. f(x) = x2 from x = −3 to 2

∫ 2

−3

√
1 + (2x)2 dx

2. f(x) = x2 + 5 from x = −3 to 2

∫ 2

−3

√
1 + (2x)2 dx

3. f(x) = −x2 + π from x = −3 to 2

∫ 2

−3

√
1 + (−2x)2 dx

4. f(x) = sin(x) from x = 0 to π
2

∫ π/2
0

√
1 + cos2(x) dx

5. f(x) = ex from x = 0 to 1

∫ 1

0

√
1 + e2x dx

Notice that the first three have the same arc length!
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Arc length function
Suppose, instead, I have a particle traveling along the same curve,
y = x3/2, starting at x = 0, and traveling in the positive direction.
How far has the particle traveled as a function of x?

1 2

1

2

3

We saw that the arc length for this function over the interval [a, b]

is ` =
∫ b
a

√
1 + 9

4x dx. But I want my interval to be [0, x], so I

need to change my variable inside the integral:

`(x) =

∫ x

0

√
1 +

9

4
t dt =

(
4

9

)(
2

3

)(
1 +

9

4
t

)3/2
∣∣∣∣∣
x

t=0

=

(
4

9

)(
2

3

)((
1 +

9

4
x

)3/2

− 1

)
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You try

Compute the distance traveled, `(x) along the curve
y = 1

2x
2 − 1

4 ln(x), starting at the point (1, 1/2) and traveling in
the positive x-direction.
Hint:

1. Compute dy/dx.

2. Compute 1 + (dy/dx)2 and simplify. Notice that this factors
as a perfect square.

3. Simplify g(x) =
√

1 + (dy/dx)2.

4. Change variables and compute
∫ x
1 g(t) dt.



Arc length of functions x = f(y).

At the beginning, we had
d` =

√
dx2 + dy2 and multiplied both

sides by dx/dx.
dy

dx

dl

Now, suppose we want to know the length of a curve x = f(y) for
a ≤ y ≤ b. So now, multiply both sides by dy/dy!

d` =
√
dx2 + dy2

=
√
dx2 + dy2

dy

dy
=

√
dx2 + dy2

dy2
dy

=

√
dx2

dy2
+
dy2

dy2
dy =

√(
dx

dy

)2

+

(
dy

dy

)2

dy =

√(
dx

dy

)2

+ 1 dy

So ` =

∫ b

y=a

√(
dx

dy

)2

+ 1 dy
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You try

Compute the arclength of y = arccos(ex) for ln(1/2) ≤ x ≤ 0.
Hint:

1. Try setting it up in terms of x first.

2. Realize (1) is terrible. Solve y = arccos(ex) for x instead.
Compute the new bounds for y.

3. Calculate the arclength in terms of y. You may need some trig
integral stuff.
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1
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pi/3




