7.3 Volumes by cylindrical shells

Recall from last time that if we have a cylindrical shape with height h and whose face has area A its volume is

$$
V(\text { cylinder })=A h .
$$

7.3 Volumes by cylindrical shells

Recall from last time that if we have a cylindrical shape with height h and whose face has area A its volume is

$$
V(\text { cylinder })=A h .
$$

On the other hand, a (circular) cylindrical shell with very small thickness $\Delta=\Delta x$ or Δy, with radius r and height h, has volume

$$
V(\text { cylindrical shell })=2 \pi r h \Delta
$$

(Cut the shell down one side and unfold to get a rectangle; the circumference of the cylinder was $2 \pi r$, so the length of the top is the same.)

Rotate a segment that's perpendicular to the axis of rotation, segment touching the axis:

Rotate a segment that's perpendicular to the axis of rotation, segment touching the axis:

segment not touching the axis:

Rotate a segment that's perpendicular to the axis of rotation, segment touching the axis:

segment not touching the axis:

Rotate a segment that's parallel to the axis of rotation:
y

Revisiting an example

Suppose we want to rotate the region bounded between $y=x^{2}$ and $y=x$ around the y-axis.

Revisiting an example

Suppose we want to rotate the region bounded between $y=x^{2}$ and $y=x$ around the y-axis. If I take slices perpendicular to the y-axis, I get washers:

Revisiting an example

Suppose we want to rotate the region bounded between $y=x^{2}$ and $y=x$ around the y-axis. If I take slices perpendicular to the y-axis, I get washers:

Now the variable is y, the radii are $r_{\text {in }}=x_{\text {left }}=y$ and $r_{\text {out }}=x_{\text {right }}=\sqrt{y}$, so that

$$
\Delta V=\pi\left((\sqrt{y})^{2}-y^{2}\right) \Delta y
$$

Revisiting an example

Suppose we want to rotate the region bounded between $y=x^{2}$ and $y=x$ around the y-axis. If I take slices perpendicular to the y-axis, I get washers:

Now the variable is y, the radii are $r_{\text {in }}=x_{\text {left }}=y$ and $r_{\text {out }}=x_{\text {right }}=\sqrt{y}$, so that

$$
\begin{gathered}
\Delta V=\pi\left((\sqrt{y})^{2}-y^{2}\right) \Delta y \\
\text { and so } V=\int_{0}^{1} \pi\left(y-y^{2}\right) d y=\pi\left(\frac{1}{2}-\frac{1}{3}\right)=\frac{\pi}{6}
\end{gathered}
$$

Revisiting an example

Suppose we want to rotate the region bounded between $y=x^{2}$ and $y=x$ around the y-axis. If, instead, \mathbf{I} take slices parallel to the y-axis, I get cylindrical shells:

Revisiting an example

Suppose we want to rotate the region bounded between $y=x^{2}$ and $y=x$ around the y-axis. If, instead, \mathbf{I} take slices parallel to the y-axis, I get cylindrical shells:

Now the variable is x, so the radius is x, and the height is $h=y_{\text {top }}-y_{\text {bot }}=x-x^{2}$.

Revisiting an example

Suppose we want to rotate the region bounded between $y=x^{2}$ and $y=x$ around the y-axis. If, instead, \mathbf{I} take slices parallel to the y-axis, I get cylindrical shells:

Now the variable is x, so the radius is x, and the height is $h=y_{\mathrm{top}}-y_{\mathrm{bot}}=x-x^{2}$. Thus

$$
\Delta V=2 \pi x\left(x-x^{2}\right) \Delta x
$$

Revisiting an example

Suppose we want to rotate the region bounded between $y=x^{2}$ and $y=x$ around the y-axis. If, instead, \mathbf{I} take slices parallel to the y-axis, I get cylindrical shells:

Now the variable is x, so the radius is x, and the height is $h=y_{\mathrm{top}}-y_{\mathrm{bot}}=x-x^{2}$. Thus

$$
\begin{gathered}
\Delta V=2 \pi x\left(x-x^{2}\right) \Delta x \\
\text { and so } V=\int_{0}^{1} 2 \pi\left(x^{2}-x^{3}\right) d x=2 \pi\left(\frac{1}{3}-\frac{1}{4}\right)=\frac{\pi}{6}
\end{gathered}
$$

Slice perpendicular to the axis of rotation:

Slice parallel to the axis of rotation:

(Different slices, different integral, same 3D shape, same answer)

Is one method ever "better" than the other?

Is one method ever "better" than the other?

Take the region bounded between $y=2 x^{2}-x^{3}$ and the x-axis, and rotate it around the y-axis:

Is one method ever "better" than the other?

Take the region bounded between $y=2 x^{2}-x^{3}$ and the x-axis, and rotate it around the y-axis:

If I try to do washers (like last time), I run into the problem of inverting $f(x)=2 x^{2}-x^{3}$, separately over the intervals $[0,4 / 3]$ and $[4 / 3,2]$. Yuck!

Is one method ever "better" than the other?
Take the region bounded between $y=2 x^{2}-x^{3}$ and the x-axis, and rotate it around the y-axis:

Instead, I want to use cylindrical shells!

Is one method ever "better" than the other?

Take the region bounded between $y=2 x^{2}-x^{3}$ and the x-axis, and rotate it around the y-axis:

Instead, I want to use cylindrical shells! Now, the radius is x, the thickness is Δx, and the height is $h=y_{\mathrm{top}}-y_{\mathrm{bot}}=\left(2 x^{2}-x^{3}\right)-0$.

Is one method ever "better" than the other?

Take the region bounded between $y=2 x^{2}-x^{3}$ and the x-axis, and rotate it around the y-axis:

Instead, I want to use cylindrical shells! Now, the radius is x, the thickness is Δx, and the height is $h=y_{\mathrm{top}}-y_{\mathrm{bot}}=\left(2 x^{2}-x^{3}\right)-0$. So $\Delta V=2 \pi x\left(2 x^{2}-x^{3}\right) \Delta x$.

Is one method ever "better" than the other?

Take the region bounded between $y=2 x^{2}-x^{3}$ and the x-axis, and rotate it around the y-axis:

Instead, I want to use cylindrical shells! Now, the radius is x, the thickness is Δx, and the height is $h=y_{\mathrm{top}}-y_{\mathrm{bot}}=\left(2 x^{2}-x^{3}\right)-0$. So $\Delta V=2 \pi x\left(2 x^{2}-x^{3}\right) \Delta x$. The curve intersects the x-axis at when $2 x^{2}-x^{3}=0$, i.e. $x=0$ and $x=2$.

Is one method ever "better" than the other?

Take the region bounded between $y=2 x^{2}-x^{3}$ and the x-axis, and rotate it around the y-axis:

Instead, I want to use cylindrical shells! Now, the radius is x, the thickness is Δx, and the height is $h=y_{\mathrm{top}}-y_{\mathrm{bot}}=\left(2 x^{2}-x^{3}\right)-0$. So $\Delta V=2 \pi x\left(2 x^{2}-x^{3}\right) \Delta x$. The curve intersects the x-axis at when $2 x^{2}-x^{3}=0$, i.e. $x=0$ and $x=2$. So
$V=\int_{0}^{2} 2 \pi x\left(2 x^{2}-x^{3}\right) d x$

Is one method ever "better" than the other?

Take the region bounded between $y=2 x^{2}-x^{3}$ and the x-axis, and rotate it around the y-axis:

Instead, I want to use cylindrical shells! Now, the radius is x, the thickness is Δx, and the height is $h=y_{\mathrm{top}}-y_{\mathrm{bot}}=\left(2 x^{2}-x^{3}\right)-0$. So $\Delta V=2 \pi x\left(2 x^{2}-x^{3}\right) \Delta x$. The curve intersects the x-axis at when $2 x^{2}-x^{3}=0$, i.e. $x=0$ and $x=2$. So
$V=\int_{0}^{2} 2 \pi x\left(2 x^{2}-x^{3}\right) d x=2 \pi \int_{0}^{2} 2 x^{3}-x^{4} d x$

Is one method ever "better" than the other?

Take the region bounded between $y=2 x^{2}-x^{3}$ and the x-axis, and rotate it around the y-axis:

Instead, I want to use cylindrical shells! Now, the radius is x, the thickness is Δx, and the height is $h=y_{\text {top }}-y_{\text {bot }}=\left(2 x^{2}-x^{3}\right)-0$. So $\Delta V=2 \pi x\left(2 x^{2}-x^{3}\right) \Delta x$. The curve intersects the x-axis at when $2 x^{2}-x^{3}=0$, i.e. $x=0$ and $x=2$. So
$V=\int_{0}^{2} 2 \pi x\left(2 x^{2}-x^{3}\right) d x=2 \pi \int_{0}^{2} 2 x^{3}-x^{4} d x=\left.2 \pi\left(\frac{2}{4} x^{4}-\frac{1}{5} x^{5}\right)\right|_{0} ^{2}$

Is one method ever "better" than the other?

Take the region bounded between $y=2 x^{2}-x^{3}$ and the x-axis, and rotate it around the y-axis:

Instead, I want to use cylindrical shells! Now, the radius is x, the thickness is Δx, and the height is $h=y_{\text {top }}-y_{\text {bot }}=\left(2 x^{2}-x^{3}\right)-0$. So $\Delta V=2 \pi x\left(2 x^{2}-x^{3}\right) \Delta x$. The curve intersects the x-axis at when $2 x^{2}-x^{3}=0$, i.e. $x=0$ and $x=2$. So

$$
\begin{gathered}
V=\int_{0}^{2} 2 \pi x\left(2 x^{2}-x^{3}\right) d x=2 \pi \int_{0}^{2} 2 x^{3}-x^{4} d x=\left.2 \pi\left(\frac{2}{4} x^{4}-\frac{1}{5} x^{5}\right)\right|_{0} ^{2} \\
=2 \pi\left(\frac{1}{2} 2^{4}-\frac{1}{5} 2^{5}\right)-0 .
\end{gathered}
$$

You try:

For each of the following, (a) sketch a picture of the region, (b) pick a method - discs/washers or cylindrical shells, and (c) compute the volume of the described solid.

1. Rotate \mathcal{R} around the y-axis, where \mathcal{R} is the region bounded between $y=-(x-1)^{2}+2$ and the x-axis.
2. Rotate \mathcal{R} around the x-axis, where \mathcal{R} is the region bounded between $y=-(x-1)^{2}+2$ and the x-axis.
3. Rotate \mathcal{R} around the y-axis, where \mathcal{R} is the region bounded below $y=\frac{1}{2} x^{2}$, above the x-axis, and below the line $y=2 x-2$.

7.4: Arc length

Suppose you want to know what the length of a curve $y=f(x)$ is from the point $(a, f(a))$ to the point $(b, f(b))$:

7.4: Arc length

Suppose you want to know what the length of a curve $y=f(x)$ is from the point $(a, f(a))$ to the point $(b, f(b))$:

Slice!
$\ell=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}(\text { little length })_{i}$

7.4: Arc length

Suppose you want to know what the length of a curve $y=f(x)$ is from the point $(a, f(a))$ to the point $(b, f(b))$:

Slice!

$$
\ell=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}(\text { little length })_{i}
$$

7.4: Arc length

Suppose you want to know what the length of a curve $y=f(x)$ is from the point $(a, f(a))$ to the point $(b, f(b))$:

Slice!

$$
\ell=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}(\Delta s)_{i}
$$

7.4: Arc length

Suppose you want to know what the length of a curve $y=f(x)$ is from the point $(a, f(a))$ to the point $(b, f(b))$:

Slice!

$$
\ell=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}(\Delta s)_{i}=\int_{x=a}^{x=b} d \ell
$$

Let n go to ∞

7.4: Arc length

Suppose you want to know what the length of a curve $y=f(x)$ is from the point $(a, f(a))$ to the point $(b, f(b))$:

Slice!

$$
\begin{gathered}
\ell=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}(\Delta s)_{i}=\int_{x=a}^{x=b} d \ell \\
d \ell=\sqrt{d x^{2}+d y^{2}}
\end{gathered}
$$

Let n go to ∞

Manipulating into something we can actually calculate...

Remember, $y=f(x)$.

Manipulating into something we can actually calculate...

Remember, $y=f(x)$.

Manipulating into something we can actually calculate...

$$
\begin{aligned}
d \ell=\sqrt{d x^{2}+d y^{2}} & =\sqrt{d x^{2}+d y^{2}} \frac{d x}{d x} \\
& =\sqrt{\frac{d x^{2}+d y^{2}}{d x^{2}}} d x
\end{aligned}
$$

Remember, $y=f(x)$.

Manipulating into something we can actually calculate...

$$
\text { Remember, } y=f(x) \text {. }
$$

$$
\begin{aligned}
d \ell=\sqrt{d x^{2}+d y^{2}} & =\sqrt{d x^{2}+d y^{2}} \frac{d x}{d x} \\
& =\sqrt{\frac{d x^{2}+d y^{2}}{d x^{2}}} d x=\sqrt{\frac{d x^{2}}{d x^{2}}+\frac{d y^{2}}{d x^{2}}} d x
\end{aligned}
$$

Manipulating into something we can actually calculate...

$$
\text { Remember, } y=f(x) \text {. }
$$

$$
\begin{aligned}
d \ell=\sqrt{d x^{2}+d y^{2}} & =\sqrt{d x^{2}+d y^{2}} \frac{d x}{d x} \\
& =\sqrt{\frac{d x^{2}+d y^{2}}{d x^{2}}} d x=\sqrt{\frac{d x^{2}}{d x^{2}}+\frac{d y^{2}}{d x^{2}}} d x \\
& =\sqrt{\left(\frac{d x}{d x}\right)^{2}+\left(\frac{d y}{d x}\right)^{2}} d x
\end{aligned}
$$

Manipulating into something we can actually calculate...

$$
\text { Remember, } y=f(x) \text {. }
$$

$$
\begin{aligned}
d \ell=\sqrt{d x^{2}+d y^{2}} & =\sqrt{d x^{2}+d y^{2}} \frac{d x}{d x} \\
& =\sqrt{\frac{d x^{2}+d y^{2}}{d x^{2}}} d x=\sqrt{\frac{d x^{2}}{d x^{2}}+\frac{d y^{2}}{d x^{2}}} d x \\
& =\sqrt{\left(\frac{d x}{d x}\right)^{2}+\left(\frac{d y}{d x}\right)^{2}} d x \\
& =\sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
\end{aligned}
$$

Manipulating into something we can actually calculate...

$$
\text { Remember, } y=f(x) \text {. }
$$

$$
\begin{aligned}
d \ell=\sqrt{d x^{2}+d y^{2}} & =\sqrt{d x^{2}+d y^{2}} \frac{d x}{d x} \\
& =\sqrt{\frac{d x^{2}+d y^{2}}{d x^{2}}} d x=\sqrt{\frac{d x^{2}}{d x^{2}}+\frac{d y^{2}}{d x^{2}}} d x \\
& =\sqrt{\left(\frac{d x}{d x}\right)^{2}+\left(\frac{d y}{d x}\right)^{2}} d x \\
& =\sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
\end{aligned}
$$

So $\quad \ell=\int_{x=a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$

Arc length function

Find the length of the arc $y=x^{3 / 2}$, from $x=1$ to $x=2$.

Arc length function

Find the length of the arc $y=x^{3 / 2}$, from $x=1$ to $x=2$.

$$
f(x)=x^{3 / 2} \quad \Longrightarrow \quad f^{\prime}(x)=\frac{3}{2} x^{1 / 2}
$$

Arc length function

Find the length of the arc $y=x^{3 / 2}$, from $x=1$ to $x=2$.

$$
f(x)=x^{3 / 2} \quad \Longrightarrow \quad f^{\prime}(x)=\frac{3}{2} x^{1 / 2}
$$

So

$$
1+\left(f^{\prime}(x)\right)^{2}=1+\left(\frac{3}{2} x^{1 / 2}\right)^{2}=1+\frac{9}{4} x
$$

Arc length function

Find the length of the arc $y=x^{3 / 2}$, from $x=1$ to $x=2$.

$$
f(x)=x^{3 / 2} \quad \Longrightarrow \quad f^{\prime}(x)=\frac{3}{2} x^{1 / 2}
$$

So

$$
1+\left(f^{\prime}(x)\right)^{2}=1+\left(\frac{3}{2} x^{1 / 2}\right)^{2}=1+\frac{9}{4} x
$$

So

$$
\ell=\int_{1}^{2} \sqrt{1+\frac{9}{4} x} d x=\int_{1}^{2}\left(1+\frac{9}{4} x\right)^{1 / 2} d x
$$

Arc length function

Find the length of the arc $y=x^{3 / 2}$, from $x=1$ to $x=2$.

$$
f(x)=x^{3 / 2} \quad \Longrightarrow \quad f^{\prime}(x)=\frac{3}{2} x^{1 / 2}
$$

So

$$
1+\left(f^{\prime}(x)\right)^{2}=1+\left(\frac{3}{2} x^{1 / 2}\right)^{2}=1+\frac{9}{4} x
$$

So

$$
\begin{gathered}
\ell=\int_{1}^{2} \sqrt{1+\frac{9}{4} x} d x=\int_{1}^{2}\left(1+\frac{9}{4} x\right)^{1 / 2} d x \\
=\left.\left(\frac{4}{9}\right)\left(\frac{2}{3}\right)\left(1+\frac{9}{4} x\right)^{3 / 2}\right|_{x=1} ^{2}=\frac{8}{27}\left(\left(1+\frac{9}{4} \cdot 2\right)^{3 / 2}-\left(1+\frac{9}{4}\right)^{3 / 2}\right)
\end{gathered}
$$

You try:

Set up (but do not integrate) the integrals which compute the length of the following functions. Notice that most of the time, the resulting integral is "hard" (not elementary).

1. $f(x)=x^{2}$ from $x=-3$ to 2
2. $f(x)=x^{2}+5$ from $x=-3$ to 2
3. $f(x)=-x^{2}+\pi$ from $x=-3$ to 2
4. $f(x)=\sin (x)$ from $x=0$ to $\frac{\pi}{2}$
5. $f(x)=e^{x}$ from $x=0$ to 1

You try:

Set up (but do not integrate) the integrals which compute the length of the following functions. Notice that most of the time, the resulting integral is "hard" (not elementary).

1. $f(x)=x^{2}$ from $x=-3$ to 2

$$
\text { 2. } f(x)=x^{2}+5 \text { from } x=-3 \text { to } 2
$$

$$
\text { 3. } f(x)=-x^{2}+\pi \text { from } x=-3 \text { to } 2
$$

$$
\text { 4. } f(x)=\sin (x) \text { from } x=0 \text { to } \frac{\pi}{2}
$$

$$
\text { 5. } f(x)=e^{x} \text { from } x=0 \text { to } 1
$$

$$
\begin{array}{r}
\int_{-3}^{2} \sqrt{1+(2 x)^{2}} d x \\
\int_{-3}^{2} \sqrt{1+(2 x)^{2}} d x \\
\int_{-3}^{2} \sqrt{1+(-2 x)^{2}} d x \\
\int_{0}^{\pi / 2} \sqrt{1+\cos ^{2}(x)} d x \\
\int_{0}^{1} \sqrt{1+e^{2 x}} d x
\end{array}
$$

You try:

Set up (but do not integrate) the integrals which compute the length of the following functions. Notice that most of the time, the resulting integral is "hard" (not elementary).

$$
\begin{array}{lr}
\text { 1. } f(x)=x^{2} \text { from } x=-3 \text { to } 2 & \int_{-3}^{2} \sqrt{1+(2 x)^{2}} d x \\
\text { 2. } f(x)=x^{2}+5 \text { from } x=-3 \text { to } 2 & \int_{-3}^{2} \sqrt{1+(2 x)^{2}} d x \\
\text { 3. } f(x)=-x^{2}+\pi \text { from } x=-3 \text { to } 2 & \int_{-3}^{2} \sqrt{1+(-2 x)^{2}} d x \\
\text { 4. } f(x)=\sin (x) \text { from } x=0 \text { to } \frac{\pi}{2} & \int_{0}^{\pi / 2} \sqrt{1+\cos ^{2}(x)} d x \\
\text { 5. } f(x)=e^{x} \text { from } x=0 \text { to } 1 & \int_{0}^{1} \sqrt{1+e^{2 x}} d x
\end{array}
$$

Notice that the first three have the same arc length!

Arc length function

Suppose, instead, I have a particle traveling along the same curve, $y=x^{3 / 2}$, starting at $x=0$, and traveling in the positive direction. How far has the particle traveled as a function of x ?

Arc length function

Suppose, instead, I have a particle traveling along the same curve, $y=x^{3 / 2}$, starting at $x=0$, and traveling in the positive direction. How far has the particle traveled as a function of x ?

We saw that the arc length for this function over the interval $[a, b]$ is $\ell=\int_{a}^{b} \sqrt{1+\frac{9}{4} x} d x$.

Arc length function

Suppose, instead, I have a particle traveling along the same curve, $y=x^{3 / 2}$, starting at $x=0$, and traveling in the positive direction. How far has the particle traveled as a function of x ?

We saw that the arc length for this function over the interval $[a, b]$ is $\ell=\int_{a}^{b} \sqrt{1+\frac{9}{4} x} d x$. But I want my interval to be $[0, x]$, so I need to change my variable inside the integral:

$$
\ell(x)=\int_{0}^{x} \sqrt{1+\frac{9}{4}} t d t
$$

Arc length function

Suppose, instead, I have a particle traveling along the same curve, $y=x^{3 / 2}$, starting at $x=0$, and traveling in the positive direction. How far has the particle traveled as a function of x ?

We saw that the arc length for this function over the interval $[a, b]$ is $\ell=\int_{a}^{b} \sqrt{1+\frac{9}{4} x} d x$. But I want my interval to be $[0, x]$, so I need to change my variable inside the integral:

$$
\ell(x)=\int_{0}^{x} \sqrt{1+\frac{9}{4}} t d t=\left.\left(\frac{4}{9}\right)\left(\frac{2}{3}\right)\left(1+\frac{9}{4} t\right)^{3 / 2}\right|_{t=0} ^{x}
$$

Arc length function

Suppose, instead, I have a particle traveling along the same curve, $y=x^{3 / 2}$, starting at $x=0$, and traveling in the positive direction. How far has the particle traveled as a function of x ?

We saw that the arc length for this function over the interval $[a, b]$ is $\ell=\int_{a}^{b} \sqrt{1+\frac{9}{4} x} d x$. But I want my interval to be $[0, x]$, so I need to change my variable inside the integral:

$$
\begin{gathered}
\ell(x)=\int_{0}^{x} \sqrt{1+\frac{9}{4} t} d t=\left.\left(\frac{4}{9}\right)\left(\frac{2}{3}\right)\left(1+\frac{9}{4} t\right)^{3 / 2}\right|_{t=0} ^{x} \\
=\left(\frac{4}{9}\right)\left(\frac{2}{3}\right)\left(\left(1+\frac{9}{4} x\right)^{3 / 2}-1\right)
\end{gathered}
$$

You try

Compute the distance traveled, $\ell(x)$ along the curve $y=\frac{1}{2} x^{2}-\frac{1}{4} \ln (x)$, starting at the point $(1,1 / 2)$ and traveling in the positive x-direction.
Hint:

1. Compute $d y / d x$.
2. Compute $1+(d y / d x)^{2}$ and simplify. Notice that this factors as a perfect square.
3. Simplify $g(x)=\sqrt{1+(d y / d x)^{2}}$.
4. Change variables and compute $\int_{1}^{x} g(t) d t$.

Arc length of functions $x=f(y)$.

At the beginning, we had
$d \ell=\sqrt{d x^{2}+d y^{2}}$ and multiplied both sides by $d x / d x$.

Arc length of functions $x=f(y)$.

At the beginning, we had
$d \ell=\sqrt{d x^{2}+d y^{2}}$ and multiplied both sides by $d x / d x$.

Now, suppose we want to know the length of a curve $x=f(y)$ for $a \leq y \leq b$.

Arc length of functions $x=f(y)$.

At the beginning, we had
$d \ell=\sqrt{d x^{2}+d y^{2}}$ and multiplied both sides by $d x / d x$.

Now, suppose we want to know the length of a curve $x=f(y)$ for $a \leq y \leq b$. So now, multiply both sides by $d y / d y$!

Arc length of functions $x=f(y)$.

At the beginning, we had
$d \ell=\sqrt{d x^{2}+d y^{2}}$ and multiplied both sides by $d x / d x$.

Now, suppose we want to know the length of a curve $x=f(y)$ for $a \leq y \leq b$. So now, multiply both sides by $d y / d y$!

$$
d \ell=\sqrt{d x^{2}+d y^{2}}=\sqrt{d x^{2}+d y^{2}} \frac{d y}{d y}
$$

Arc length of functions $x=f(y)$.

At the beginning, we had
$d \ell=\sqrt{d x^{2}+d y^{2}}$ and multiplied both sides by $d x / d x$.

Now, suppose we want to know the length of a curve $x=f(y)$ for $a \leq y \leq b$. So now, multiply both sides by $d y / d y$!

$$
d \ell=\sqrt{d x^{2}+d y^{2}}=\sqrt{d x^{2}+d y^{2}} \frac{d y}{d y}=\sqrt{\frac{d x^{2}+d y^{2}}{d y^{2}}} d y
$$

Arc length of functions $x=f(y)$.

At the beginning, we had
$d \ell=\sqrt{d x^{2}+d y^{2}}$ and multiplied both sides by $d x / d x$.

Now, suppose we want to know the length of a curve $x=f(y)$ for $a \leq y \leq b$. So now, multiply both sides by $d y / d y$!

$$
\begin{aligned}
d \ell & =\sqrt{d x^{2}+d y^{2}}=\sqrt{d x^{2}+d y^{2}} \frac{d y}{d y}=\sqrt{\frac{d x^{2}+d y^{2}}{d y^{2}}} d y \\
& =\sqrt{\frac{d x^{2}}{d y^{2}}+\frac{d y^{2}}{d y^{2}}} d y
\end{aligned}
$$

Arc length of functions $x=f(y)$.

At the beginning, we had
$d \ell=\sqrt{d x^{2}+d y^{2}}$ and multiplied both sides by $d x / d x$.

Now, suppose we want to know the length of a curve $x=f(y)$ for $a \leq y \leq b$. So now, multiply both sides by $d y / d y$!

$$
\begin{aligned}
d \ell & =\sqrt{d x^{2}+d y^{2}}=\sqrt{d x^{2}+d y^{2}} \frac{d y}{d y}=\sqrt{\frac{d x^{2}+d y^{2}}{d y^{2}}} d y \\
& =\sqrt{\frac{d x^{2}}{d y^{2}}+\frac{d y^{2}}{d y^{2}}} d y=\sqrt{\left(\frac{d x}{d y}\right)^{2}+\left(\frac{d y}{d y}\right)^{2}} d y
\end{aligned}
$$

Arc length of functions $x=f(y)$.

At the beginning, we had
$d \ell=\sqrt{d x^{2}+d y^{2}}$ and multiplied both sides by $d x / d x$.

Now, suppose we want to know the length of a curve $x=f(y)$ for $a \leq y \leq b$. So now, multiply both sides by $d y / d y$!

$$
\begin{aligned}
d \ell & =\sqrt{d x^{2}+d y^{2}}=\sqrt{d x^{2}+d y^{2}} \frac{d y}{d y}=\sqrt{\frac{d x^{2}+d y^{2}}{d y^{2}}} d y \\
& =\sqrt{\frac{d x^{2}}{d y^{2}}+\frac{d y^{2}}{d y^{2}}} d y=\sqrt{\left(\frac{d x}{d y}\right)^{2}+\left(\frac{d y}{d y}\right)^{2}} d y=\sqrt{\left(\frac{d x}{d y}\right)^{2}+1} d y
\end{aligned}
$$

Arc length of functions $x=f(y)$.

At the beginning, we had
$d \ell=\sqrt{d x^{2}+d y^{2}}$ and multiplied both sides by $d x / d x$.

dx

Now, suppose we want to know the length of a curve $x=f(y)$ for $a \leq y \leq b$. So now, multiply both sides by $d y / d y$!

$$
\begin{aligned}
& d \ell=\sqrt{d x^{2}+d y^{2}}=\sqrt{d x^{2}+d y^{2}} \frac{d y}{d y}=\sqrt{\frac{d x^{2}+d y^{2}}{d y^{2}}} d y \\
&=\sqrt{\frac{d x^{2}}{d y^{2}}+\frac{d y^{2}}{d y^{2}}} d y=\sqrt{\left(\frac{d x}{d y}\right)^{2}+\left(\frac{d y}{d y}\right)^{2}} d y=\sqrt{\left(\frac{d x}{d y}\right)^{2}+1} d y \\
& \text { So } \ell=\int_{y=a}^{b} \sqrt{\left(\frac{d x}{d y}\right)^{2}+1} d y
\end{aligned}
$$

You try

Compute the arclength of $y=\arccos \left(e^{x}\right)$ for $\ln (1 / 2) \leq x \leq 0$. Hint:

1. Try setting it up in terms of x first.
2. Realize (1) is terrible. Solve $y=\arccos \left(e^{x}\right)$ for x instead. Compute the new bounds for y.
3. Calculate the arclength in terms of y. You may need some trig integral stuff.

